Bogolyubov Institute for Theoretical Physics
of the National Academy of Sciences of Ukraine

Department of Mathematical Methods in Theoretical Physics
Articles in journals, other publications
  1. A.M. Gavrilik, Yu.A. Mishchenko. Correlation function intercepts for μ̃, q-deformed Bose gas model implying effective accounting for interaction and compositeness of particles, Nucl. Phys. B, Vol. 891 (2015), 466-481.
  2. N. Iorgov, O. Lisovyy, J. Teschner. Isomonodromic Tau-Functions from Liouville Conformal Blocks, Commun. Math. Phys., Vol. 336, Issue 2 (2015), pp. 671-694.
  3. O. Gamayun, Yu. V. Bezvershenko, V. Cheianov. The fate of a gray soliton in a quenched Bose-Einstein condensate. Phys. Rev. A. Vol. 91 (2015), paper 031605.
  4. T. Skrypnyk. General integrable n-level many-mode Jaynes-Cummings-Dicke models and classical r-matrices with spectral parameters, J. Math. Phys. Vol. 56 (2015), paper 023511.
  5. T. Skrypnyk. Gaudin-type models, non-skew-symmetric classical r-matrices and nested Bethe ansatz, Nucl. Phys. B. 891 (2015), p. 200-229.
  6. T. Skrypnyk. Quantum integrable models of interacting bosons and classical r-matrices with spectral parameters J. Geom. Phys. v.97 (2015), pp. 133-155.
  7. P. Gavrylenko. Isomonodromic τ-functions and W N conformal blocks, Journal of High Energy Physics, 2015:167 (Online: 24 Sept. 2015).
  8. M.A. Bershtein, A.I. Shchechkin. Bilinear Equations on Painlevé τ Functions from CFT, Commun. Math. Phys. V.339 (2015), Issue 3, pp.1021-1061.
Articles in journals, other publications
  1. A.M. Gavrilik, Yu.A. Mishchenko. Virial coefficients in (μ,q)-Bose gas model related to com-positeness of particles and their interaction: Temperature-dependence problem, Phys. Rev. E vol. 90, 2014, 52147 (8pp.).
  2. N. Iorgov, O. Lisovyy, J. Teschner. Isomonodromic Tau-Functions from Liouville Confo-rmal Blocks, Commun. in Mathem. Physics, 2014, vol. 333, Issue 1; DOI: 10.1007/s00220-014-2245-0.
  3. N. Iorgov, O.Lisovyy, A.Shchechkin, Yu. Tykhyy. Painleve Functions and Conformal Blocks, Constructive Approximation, 2014, vol. 39, Issue 1, pp. 255-272.
  4. A. Its, O. Lisovyy, Yu. Tykhyy. Connection Problem for the Sine-Gordon/Painleve III Tau Function and Irregular Conformal Blocks, Internat. Math. Research Notices, Nov. 2014, doi:10.1093/imrn/rnu209.
  5. O. Lisovyy, Yu. Tykhyy. Algebraic solutions of the sixth Painleve equation, Journal of Geometry and Physics, vol. 85, Nov. 2014, pp. 124-163.
  6. T. Skrypnyk. Decompositions of quasigraded Lie algebras, non-skew-symmetric classical r-matrices and generalized Gaudin models, J. Geom. Phys. 2014, vol. 75, 98-112 .
  7. T. Skrypnyk. Generalized shift elements and classical r-matrices: construction and applications, J. Geom. Phys. 2014, vol. 80, 71-87 .
  8. T. Skrypnyk. Many-poled r-matrix Lie algebras, Lax operators, and integrable systems, J. Math. Phys., 2014, vol. 55, 083507.
  9. A.M. Pavlyuk. Polynomial invariants of torus knots and (p, q)-calculus, Algebras, Groups and Geometries, vol. 31, No.2, (2014) 175-182.
  10. O. Moroz. Analytical formulas for shear and bulk viscosities in relativistic gaseous mix-tures with constant cross sections, Computers & Fluids, 2014, vol. 90, p. 9.
Articles in journals, other publications
  1. A.M. Gavrilik, Yu.A. Mishchenko. Energy dependence of the entanglement entropy of composite boson (quasiboson) systems, J.Phys. A: Math. Theor. 46 (2013) 145301 (20pp).
  2. І.M. Burban. Unified (p, q;α, γ, l)-deformation of oscillator algebra and two-dimensional conformal field theory, Phys. Lett. A 377, 2863 (2013).
  3. O. Gamayun, N. Iorgov, O. Lisovyy. How instanton combinatorics solves Painlevé VI, V and III's, J. Phys. A: Math. Theor. 46 (2013) 335203
  4. N. Iorgov, A.I. Molev, E. Ragoucy. Casimir elements from the Brauer-Schur-Weyl duality, J. of Algebra 387 (2013), 144-159.
  5. N. Iorgov, O. Lisovyy, Yu. Tykhyy. Painleve VI connection problem c=1 conformal blocks, J. High Energy Phys. 12 (2013) paper 029 (25pp.).
  6. T. Skrypnyk. The N-level, N-1 mode Jaynes-Cummings model: spectrum and eigenvalues, J. Phys. A: Math. Theor. 46 (2013) 052001 (18pp.).
  7. T. Skrypnyk. Z2-graded Gaudin models and analytical Bethe ansatz, Nucl. Phys. B 879, p.495 (2013).
  8. T. Skrypnyk., Infinite-dimensional Lie algebras, classical r-matrices and Lax operators: two approaches, J. Math. Phys., v.54 (2013), paper 103507.
  9. A.M. Gavrilik, I.I. Kachurik, A.V. Lukash. New version of q-deformed supersymmetric quantum mechanics, Ukr. J. Phys. V.58, no.11, pp.1025-1032 (2013).
  10. A.M. Gavrilik, Yu.A. Mishchenko. Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction, Ukr. J. Phys. 58, N.12, p.1171-1177 (2013).
  11. A.P. Rebesh, I.I. Kachurik, A.M. Gavrilik. Elements of µ-calculus and thermodynamics of µ- Bose-gas model, Ukr. J. Phys. V.58, no. 12, pp. 1182-1191 (2013).
  12. I.M. Burban. Unified (p, q;α, β, l)-deformations of oscillator, hybrid oscillator algebras and two- dimensional conformal field theory, Ukr. J. Phys. v.58, N 11 (2013), pp. 1114-1124.
  13. A.V. Nazarenko. Area quantization of the parameter space of Riemann surfaces in genus two, Ukr. J. Phys. v.58, № 11 (2013), 1055-1064.
  14. Yu. Bespalov. From bialgebras to operads. Quantum line and cooperad of correlation functions, Ukr. J. Phys. v.58, № 11 (2013), 1033-1045.
  15. Pavlyuk A.M. Generalization of polynomial invariants and holographic principle for knots and links, Ukr. J. Phys. v.58, N 7 (2013), pp. 673-676.
  16. A.M. Pavlyuk. HOMFLY polynomial invariants of torus knots and bosonic (q, p)-calculus, Ukr. J. Phys. v.58, N 12 (2013), pp. 1178-1181.
  17. Yu. Bezvershenko, P.I. Holod. Extended State Space of the Rational sl(2) Gaudin Model in Terms of Laguerre Polynomials, Ukr. J. Phys. v.58, N.11 (2013), p.1084-1091.
  18. A.V. Kozak. Integrability in AdS/CFT, Ukr. J. Phys. v.58, N 11 (2013), p.1108-1112.
  19. O.V. Moroz. Shear and Bulk Viscosities of a Hadron Gas within Relaxation Time Approxi- mation and Its Test, Ukr. J. Phys. v.58, N 12 (2013), 1127-1131.
Articles in journals, other publications
  1. A.M. Gavrilik, A.P. Rebesh, Deformed gas of p, q-bosons: virial expansion and virial coefficients, Mod. Phys. Lett. B 26, No.5 (2012) 1150030 (13 pp).
  2. A.M. Gavrilik, Yu.A. Mishchenko, Entanglement in composite bosons realized by deformed oscillators, Phys. Lett. A 376, No. 19 (2012), pp.1596-1600.
  3. A.M. Gavrilik, Yu.A. Mishchenko, Exact expressions for the intercepts of r-particle momentum correlation functions in μ-Bose gas, Phys. Lett. A 376, No.36 (2012), 2484-2489
  4. A.M. Gavrilik, I.I. Kachurik, Three-parameter (two-sided) deformation of Heisenberg algebra, Mod. Phys. Lett. A 27, No. 21 (2012) 1250114, arXiv:1204.2817.
  5. P. Gavrylenko, N. Iorgov, O. Lisovyy, Form factors of twist fields in the lattice Dirac theory, J. Phys. A: Math. Theor. 45 (2012) 025402.
  6. O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painleve VI, J. of High Energy Phys., Vol. 2012, No. 10 (2012), 38.
  7. T. Skrypnyk, Quasi-periodic functions on the torus and sl(n)-elliptic Lie algebra. J.Math. Phys. 53 (2012), 023502-023521.
  8. T. Skrypnyk, Quasigraded bases in loop algebras and classical rational r-matrices. J.Math. Phys. 53 (2012), 083501-083520.
  9. T. Skrypnyk, Rational r-matrices, higher rank Lie algebras and integrable proton- neutron BCS models. Nuclear Physics B 863, Issue 2 (2012), 435-469.
  10. T. Skrypnyk, Non-skew-symmetric classical r-matrices and integrable px+ipyproton- neutron BCS models, Nuclear Physics B 864, Issue 3 (2012) 770-805.
  11. T. Skrypnyk, Classical r-matrices and integrable BCS models with many types of fermions. J. Phys. A: Math. Theor. 45 (2012) 415203-415224.
  12. T. Skrypnyk, Elliptic three-boson system. two-level three-modeJCD-type models and nonskew-symmetric classical r-matrices.Nuclear Physics B 856, Issue 3 (2012), 552-576.
  13. B. Dubrovin, T. Skrypnyk, Classical double, R-operators, and negative flows of integrable hierarchies. Theor. Math. Phys. 172 (2012), 911-931.
  14. I.M. Burban, Generalized deformed oscillators in the framework of unified (q;α, β, γ, ν)- deformation and their oscillator algebras, Ukr. J. Phys., v.57, № 4 (2012), p. 396-407.
  15. A.M. Pavlyuk, On T(n, 4) torus knots and Chebyshev polynomials, Ukr. J. Phys. v.57, № 4, (2012), p.439-442.
Articles in journals, other publications
  1. A.M. Gavrilik, I.I. Kachurik, Yu.A. Mishchenko, Two-fermion composite quasi-bosons and deformed oscillators, Ukr. J. Phys. v. 56, No.9, 948-954 (2011).
  2. A.M. Gavrilik, A.M. Pavlyuk, Alexander Polynomial Invariants of Torus Knots T(n, 3) and Chebyshev Polynomials, Ukr. J. Phys. v. 56, No.7, 680-687 (2011).
  3. I.M. Бурбан, Новій фізиці нову математику і концептуальна інтерпретація R-операції Боголюбова-Парасюка, в пам'ятній збірці. ОСТАП ПАРАСЮК. Слава української науки(укладачі Н.Вірченко, В. Козирський), Київ, 2011, c.309-353.
  4. В.I. Кучерявий, R-операція Боголюбова-Парасюка: джерела, суть, потенціал, здобутки, подальший розвиток, в пам'ятній збірці. ОСТАП ПАРАСЮК. Слава української науки(укладачі Н.Вірченко, В. Козирський), Київ, 2011, c.354-361.
  5. A.M. Gavrilik, A.P. Rebesh, Intercepts of the momentum correlation functions in ?-Bose gas model and their asymptotics, Europ. Phys. J. A 47, paper 55 (2011), pp.1-8.
  6. A.M. Gavrilik, I.I. Kachurik, Yu.A. Mishchenko, Quasibosons composed of two q-fermions: realization by deformed oscillators, J.Phys.A: Math.Theor. 44, paper 475303 (2011), p.-23.
  7. N. Iorgov, V. Shadura, Yu. Tykhyy. Spin operator matrix elements in the quantum Ising chain: fermion approach. J. Stat. Mech., 1102, P02028 (2011), pp.1-19.
  8. N. Iorgov, O.Lisovyy, Ising correlations and elliptic determinants, J.Stat.Phys.143(2011), 33-59
  9. N. Iorgov, O. Lisovyy, Finite-lattice form factors in free-fermion models, J. Stat. Mech., 1104, P04011 (2011), pp.1-12.
  10. N. Iorgov, Form factors of the finite quantum XY-chain, J. Phys. A: Math. Theor. 44, Issue 33, paper 335005 (2011), pp.1-20.
  11. A.V. Nazarenko. Directed random walk on the lattices of genus two, Int. J. Mod. Phys. B, 25, No.26 (2011), pp.3415-3433.
  12. Yu. Bezvershenko, P. Holod. Dynamical stabilization of spin systems in time-dependent magnetic fields. Physica Scripta T143 (2011), paper 014005 (5pp).
  13. Yu.V. Bezvershenko, P.I. Holod, Resonance in a driven two-level system: analytical results without the rotating wave approximation, Physics Letters A, 375 (2011), pp.3936-3940.
  14. T. Skrypnyk . General integrable two-level, one-mode Jaynes-Cummings-Dicke models and classical r-matrices with spectral parameters, J. Stat. Mech. (2011) P10009. 18 pp.
  15. Nikolay Gromov, Didina Serban, Igor Shenderovich, Dmytro Volin, Quantum folded string and integrability: from finite size effects to Konishi dimension, JHEP 1108: 046, 2011
Articles in journals, other publications
  1. A.M. Gavrilik, A.M. Pavlyuk, On Chebyshev polynomials and torus knots, Ukr. J. Phys. v. 55, N 1, 129-134 (2010).
  2. N.Z. Iorgov, Spontaneous Magnetization of Quantum XY-chain from Finite Chain Form-factors, Ukr. J. Phys. v. 55, N 1, 116-120 (2010).
  3. A.V. Nazarenko, Glasma evolution in partonic medium, J. Phys. Stud., v. 14, N 3, 3202 (2010).
  4. V.I. Kucheryav, Self-consistent renormalization as an efficient realization of main ideas of the Bogoliubov-Parasiuk R-operation, Ukr. J. Phys. v.55, N 5, p.487-504 (2010).
  5. S.V. Kutnii, P.I. Holod, Four-fermion Interaction in the Low-energy Approximation of Quantum Chromodynamics, Ukr. J. Phys. v. 55, N 11, p.1161-1164 (2010).
  6. Ю.В. Тихий, Власні стани скінченних вантових інтегровних систем. Авторефереат на здобуття наукового кандидата фізико-математичних наук. Київ - 2010. 16 с.
  7. A.M. Gavrilik, A.P. Rebesh, Polynomially deformed oscillators as k-bonacci oscillators, J. Phys. A:Math. Theor. 43 095203 (15pp) (2010).
  8. A.M. Gavrilik, I.I. Kachurik, A.P. Rebesh, Quasi-Fibonacci oscillators, J. Phys. A: Math. Theor. v. 43 245204 (16pp) (2010).
  9. I. M. Burban, Generalized deformed harmonic oscillator in framework of unified (q;α, β, γ, ν)-deformation, Mod. Phys. Lett. A, 25 1239 (2010).
  10. I. M. Burban, Arik-Coon oscillator with q>1 in framework of united (q;α, β, γ, ν)-deformation, J. Phys. A:Math. Theor., 43 3052 04 (2010) .
  11. N. Iorgov, S. Pakuliak, V. Shadura, Y. Tykhyy, G. von Gehlen. Spin operator matrix elements in the superintegrable chiral Potts quantum chain, J. Stat. Phys., V 139, no. 5, pp.743-768 (2010).
  12. T. Skrypnyk, Isomonodromic deformations, generalized Knizhnik-Zamolodchikov equations and non-skew-symmetric classical r-matrices, J. Math. Phys., V 51, no.8, p.3516-24 (2010).
  13. T. Skrypnyk, Generalized Knizhnik-Zamolodchikov equations, off-shell Bethe ansatz and non-skew-symmetric classical r-matrices, Nucl. Phys. B, V 824, no. 3, p. 436 (2010).
  14. T. Skrypnyk, Generalized Gaudin systems in an external magnetic field and reflection equation algebras, J. Stat Mech.: Theor. Exp., no.6, p.06028 (2010).
  15. T. Skrypnyk, Lie algebras with triangular decompositions, non-skew-symmetric classical r-matrices and Gaudin-type integrable systems, J. Geom. Phys., V 60, no. 3, p. 491 (2010).
  16. T. Skrypnyk, Integrable modifications of Dicke and Jaynes-Cummings models, Bose-Hubbard dimers and classical r-matrices, J. Phys. A: Math. Theor., V 43, no. 20, p. 205205 (2010).
Preprints
  1. N. Iorgov, V. Shadura, Yu. Tykhyy. Spin operator matrix elements in the quantum Ising chain: fermion approach. arXiv:1011.2603.
  2. B. Dubrovin, T. Skrypnyk, Classical double, R-operators and negative flows of integrable hierarchies. arXiv:1011.4894.