Bose-Einstein condensation in the Bose-Fermi lattice gas with strong correlations

I. V. Stasyuk and V. O. Krasnov

Institute for Condensed Matter Physics, Lviv, Ukraine ista@icmp.lviv.ua, krasnoff@icmp.lviv.ua

Observations of BE-condensation of the ultracold Bose-atoms in optical lattices (Greiner et al., 2002, ⁸⁷Rb) stimulates a considerable increase of interest to quantum effects in systems of such a type. Bose-Hubbard model is used as a basis for theoretical description of this effect that is determined by interplay of transfer of particles (t) and their on-site repulsion (U). The effect exists also in atomic B-F mixture on a lattice (Gunter et al., 2006, ⁸⁷Rb - ⁴⁰ K). Investigations of the Fermi-atoms influence on BEcondensation, that continue for a long time, are performed in the framework of Bose-Fermi-Hubbard model with allowance for the on-site Bose-Fermi interaction (U_{BF}).

Description, performed in the regime of given values of chemical potentials μ_B and μ_F , reveals a possibility of change of order of the phase transition (from 2nd to the 1st one) to the SF phase with BE-condensate (Stasyuk, Krasnov, 2015). The phase diagrams (μ_B, μ_F) and ($|t_0|, \mu_B$) give an evidence of this feature of BF mixture. At the temperature change, the re-entrant phase behavior can take place (with SF phase as intermediate one).

We show that the BF interaction influence is asymmetric with respect to the sign of U_{BF} parameter. The phase sequences are different in the cases $U_{BF} > 0$ and $U_{BF} < 0$. We consider also the boson one-particle spectrum found in RPA. The reconstruction of the respective spectral density at the change of μ_B and μ_F in different phases is analyzed.

Our study is performed in the limit of strong boson correlations (in the cases: 1) $U \to \infty$, $n_i^B \leq 1$ (hard-core bosons); 2) $U^{(3)} \to \infty$, $n_i^B \leq 2$) and in the heavy fermion approximation. The approach is used, whereby the U_{BF} interaction is taken into account exactly.