UNIFORM APPROXIMATION BY FOURIER SUMS ON THE CLASSES OF DIFFERENTIABLE FUNCTIONS OF HIGHER SMOOTHNESS

A. S. Serdyuk and I. V. Sokolenko

Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine serdyuk@imath.kiev.ua, sokol@imath.kiev.ua

Let C and L_p , $1 \leq p \leq \infty$, be the spaces of 2π -periodic functions with the standard norms $\|\cdot\|_C$ and $\|\cdot\|_p$. Let r > 1 and $\beta \in \mathbb{R}$. Further, let $W^r_{\beta,p}$ be the set of all 2π -periodic functions f, representable as convolutions of the form

$$f(x) = \frac{a_0}{2} + \frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(x-t) B_{r,\beta}(t) dt, \quad a_0 \in \mathbb{R}, \quad \|\varphi\|_p \le 1, \quad \varphi \perp 1,$$

where $B_{r,\beta}(t)$ are Weyl-Nagy kernels of the form

$$B_{r,\beta}(t) = \sum_{k=1}^{\infty} k^{-r} \cos\left(kt - \frac{\beta\pi}{2}\right).$$

If $r \in \mathbb{N}$ and $\beta = r$, then the classes $W_{\beta,p}^r$ coincide with the well-known classes W_p^r , which consist of 2π -periodic functions with absolutely continuous derivatives up to (r-1)-th order inclusive and such that $\|f^{(r)}\|_p \leq 1$.

We investigate the quantity $\mathcal{E}_n(W^r_{\beta,p})_C = \sup_{f \in W^r_{\beta,p}} \|f - S_{n-1}(f)\|_C$,

where $S_{n-1}(f)$ is the partial Fourier sum of order n-1 of f.

Theorem 1. Let $1 \le p \le \infty$, $n \in \mathbb{N}$ and $\beta \in \mathbb{R}$. Then for $r \ge n+1$ the following estimate is true

$$\mathcal{E}_n(W^r_{\beta,p})_C = \frac{1}{n^r} \left(\frac{\|\cos t\|_{p'}}{\pi} + O(1) \left(1 + \frac{1}{n} \right)^{-r} \right), \qquad (1)$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, O(1) is quantity uniformly bounded in all analyzed parameters. If, in addition, $r/n \to \infty$, then formulas (1) becomes the asymptotic equality.

For $p = \infty$ the estimate (1) was istablished by S.B. Stechkin.