ESTIMATES OF THE INNER RADII OF SYMMETRIC NON-OVERLAPPING DOMAINS

I. V. Denega¹

¹Institute of mathematics of the National Academy of Sciences of Ukraine, Kiev, Ukraine *iradenega@gmail.com*

Let \mathbb{N} , \mathbb{R} be the sets of natural and real numbers, respectively, \mathbb{C} be the complex plane, $\overline{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$ be a one point compactification and $\mathbb{R}^+ = (0, \infty)$. Let r(B, a) be an inner radius of the domain $B \subset \overline{\mathbb{C}}$ relative to a point $a \in B$.

Theorem. Let $n \in \mathbb{N}$, $n \ge 2$, $\gamma \in (1, n]$. Then, for any system of different points $\{a_k\}_{k=1}^n$ of the unit circle and any mutually nonoverlapping domains B_k , $a_k \in B_k \subset \overline{\mathbb{C}}$, $k = \overline{0, n}$, $a_0 = 0$, and B_k , $k = \overline{1, n}$, are symmetric about the unit circle $|a_k| = 1$, the following inequality holds

$$r^{\gamma}(B_0,0)\prod_{k=1}^n r(B_k,a_k) \leqslant n^{-\frac{\gamma}{2}} \left(\prod_{k=1}^n r(B_k,a_k)\right)^{1-\frac{\gamma}{n}}$$

Remark. If $\gamma = n$ then from above posed theorem the following inequality holds

$$r^{n}(B_{0},0)\prod_{k=1}^{n}r(B_{k},a_{k})\leqslant n^{-\frac{n}{2}}.$$

The author thanks the Prof. Alexander Bakhtin for posing problem, careful analysis of the work and remarks.

- Bakhtin A. K. Separating transformation and extremal problems on nonoverlapping simply connected domains. J. Math. Sci., 2018, 234, no.1, pp. 1–13.
- Bakhtin A. K., Bakhtina G. P., Denega I. V. Extremal decomposition of a complex plane with fixed poles. Zb. pr. In-t matem. of NAS of Ukraine, 2017, 14, no.1, pp. 34–38.