Архів
Відділ астрофізики та елементарних частинок
  1. Dark energy and dark matter in the Universe: in three volumes / Editor V. Shulga. — Vol. 3. Dark matter: Observational manifestation and experimental searches / Vavilova I. B., Bolotin Yu. L., Boyarsky A. M., Danevich F. A., Kobychev V. V., Tretyak V. I., Babyk Iu. V., Iakubovskyi D. A., Hnatyk B. I., Sergeev S. G. Kyiv, Akademperiodyka, 2015. ISBN 978-966-360-287-5, 375 p
  2. D. Iakubovskyi. “Checking the potassium origin of the new emission line at 3.5 keV using the K XIX line complex at 3.7 keV”, Mon. Not. Roy Astron. Soc. 453, 4097 (2015).
  3. A. Boyarsky, J. Franse, D. Iakubovskyi, O. Ruchayskiy. “Checking the Dark Matter Origin of a 3.53 keV Line with the Milky Way Center”,Phys. Rev. Lett. 115, 161301 (2015).
  4. D. Iakubovskyi, S. Yushchenko,“Comptonization of cosmic microwave background by cold ultra-relativistic electron-positron pulsar wind and origin of ~100 GeV lines”,Ukr. J. Phys.V.60, №12 (2015).
  5. D. Savchenko, D. Iakubovskyi. “Identification of the ~3.55 keV emission line candidate objects across the sky”,Advances in Astronomy and Space Physics5, issue 2 (2015);Arxiv:1511.02698.
  6. V. Sahni, Yu. Shtanov, A. Toporensky, “Arrow of time in dissipationless cosmology”, Class. Quantum Grav. 32, 182001 (2015).
  7. Ю.В. Штанов, “Темна матерія у Всесвіті: сучасний стан і проблеми”, Вісник НАН України, № 11, сс. 29–40 (2015).
  8. R. Fiore, L. Jenkovszky, V. Libov and Magno V.T. Machado, “Vector meson production in ultra-peripheral collisions at the LHC”, ТМФ, 182, №1, 171-181 (2015).
  9. A. Ster, L. Jenkovszky, T. Csorgo, Extracting the Odderon from pp and p¯p scattering data , Phys.Rev. D91 (2015) no.7, 074018 (2015).
  10. L. Jenkovszky, A. Lengyel, “Low t structure of the diffraction cone”, Acta Phys. Polonica B 46, 863-869 (2015).
  11. K. V. Cherevko, L. A. Bulavin, L. L. Jenkovszky, V. M. Sysoev, and Feng-Shou Zhang. Curvature correction term as a constraint for the Skyrme interaction, Phys. Rev. C 92, 01430811 (2015).
  12. R. Fiore, L. Jenkovszky, V. Libov and Magno V.T. Machado, “Vector meson production in ultra-peripheral collisions at the LHC”, ТМФ, V.182, №1, 171-181 (2015).
  13. V.P. Gusynin, S.G. Sharapov, and A.A. Varlamov, "Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials", Low Temperature Physics/Fizika Nizkikh Temperatur, V.41, No.5, 445--456 (2015).
  14. E.V. Gorbar, “Chiral asymmetry in magnetized dense relativistic matter and pulsar kicks”, Ukranian J. Physics, V.60, No.4, 289-296 (2015).
  15. D.O. Rybalka, E.V. Gorbar, and V.P. Gusynin, “Gap generation and phase diagram in strained graphene in a magnetic field”, Phys. Rev. B 91, 115132 (2015).
  16. E.V. Gorbar, V.P. Gusynin, and O.O. Sobol, “Supercritical Electric Dipole and Migration of Electron Wave Function in Graphene”, Europhysics Letters V.111, 37003 (2015).
  17. E.V. Gorbar, V.P. Gusynin, and O.O. Sobol, “Supercriticality of novel type induced by electric dipole in gapped graphene”, Phys. Rev. B 92, 235417 (2015).
  18. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, “Dirac semimetals A_3Bi (A=Na,K,Rb) as Z_2 Weyl semimetals”, Phys. Rev. B 91, 121101(R) (2015).
  19. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, “Surface Fermi arcs in Z_2 Weyl semimetals A_3Bi (A=Na,K,Rb)”, Phys. Rev. B 91, 235138 (2015).
  20. M. Tomchenko, “Point bosons in a 1D box: the ground state, excitations and thermodynamics”, J. Phys. A: Math. Theor. V. 48. 365003 (2015).
  21. Yu.A. Sitenko and S.A. Yushchenko, “Pressure from the vacuum of confined spinor matter”, Int. J. Mod. Phys. A 30, No. 30, 1550184 (2015).
  22. L. Jenkovszky, A. Salii, and V. Libov, “Vector meson production in ultra- peripheral collisions at the LHC”, Particle and Astroparticle Physics, Gravitation and Cosmology; Predictions, Observations and New Projects, World Scientific, www.worldscientific.com, 2015, p. 96.
Відділ фізики високих густин енергії
  1. Measurement of electrons from semi-electronic heavy-flavour hadron decays in proton-proton collisions at √s = 2.76 TeV with ALICE. Phys. Rev. D 91 (2015) 012001; arXiv:1405.4117[nucl-ex]; (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  2. Elliptic flow of identified hadrons in Pb-Pb collisions at √sNN = 2.76~TeV. JHEP 06 (2015) 190; (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  3. Production of Σ(1385)± and ζ(15300)0 in proton-proton collisions at √sNN = = 7 TeV with ALICE at the LHC. Eur. Phys. J. C75 (2015) 1; arXiv:1406.3206 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  4. Inclusive photon production at forward rapidities for proton-proton collisions in = 0.9, 2.76 and 7 TeV. Eur. Phys. J. C75 (2015) 146. (B. Abelev, A. Alkin,…G. Zinovjev et al. and ALICE Collaboration).
  5. Centrality dependence of particle production in p-Pb collisions at √sNN = 5.02 TeV. Phys.Rev. C91 (2015) 064905. (J. Adam, D. Adamova, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  6. Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at √sNN = 5.02 TeV with ALICE at LHC. Phys. Lett. B741 (2015) 38-50; arxiv:1406.5463 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  7. Production of inclusive γ(1S) and γ(2S) in p-Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B740 (2015)105-117. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  8. Measurement of pion, kaon and proton production in pp collisions at √s = 7 TeV. Eur. Phys. J. 75 (2015) 226; arXiv:1504:00024 [nucl-ex]; (B. Abelev,…,G. Zinovjev et al. and ALICE Collaboration).
  9. Forward-backward multiplicity correlations in pp collisions at √s = 0.9, 2.76 and 7 TeV. JHEP 05 (2015) 097; arXiv:1502.00230 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  10. Two-pion femtoscopy in p-Pb collisions at √sNN =5.02 TeV. Phys. Rev. C91 (2015) 034906; arXiv:1502.00559 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  11. Search for weakly decaying Λn and ΛΛ exotic bound states in Pb-Pb collisions at √sNN =2.76 TeV with ALICE at the LHC. Phys. Lett. B752 (2015) 82; arXiv:1506.07499 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  12. Quark ensembles with infinite correlation length. ZhETP 147 (2015) 66-84. (S.V. Molodtsov, G. Zinovjev).
  13. Precision measurement of the mass difference between light nuclei and anti-nuclei. Nature Physics 11 (2015)811-814; arXiv:1508.03986 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  14. Charged jet production cross sections and properties in proton-proton collisions at √s = 7 TeV. Phys. Rev. D ; arXiv:1411.4969 [hep-ph]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  15. Thermodynamically anomalous regions as mixed phase signal. Physics of particles and nuclei letters 12 (2015) 238-245;(K. Bugaev, O. Ivanitsky, D. Oliinychenko, V. Sagun, I. Mishustin, D. Rishke, L. Satarov and G. Zinovjev).
  16. Non-smooth chemical freeze-out and apparent width of wide resonances and gluon bags in a thermal environment. Ukr. J. Phys. 60 (2015) 181-200. (K. Bugaev, O. Ivanitsky, D. Oliinychenko, E. Nikonov, V. Sagun and G. Zinovjev).
  17. Inclusive photon production at forward rapidities in proton-proton collisions at √sNN = 0.9, 2.76 and 7 TeV. Eur. Phys. J. 75 (2015) 146; arXiv:1411.498 [hep-ph]. (I. Ahmed, A. Alkin,…, G. Zinovjev at al. and ALICE Collboration).
  18. Measurement of charm and beauty production at central rapidity versus charged particle multiplicity in proton–proton collisions at √s = 7 TeV. JHEP 09(2015)148; arXiv:1505.00664 [nucl- ex]. (J. Adam, D. Adamova, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  19. Unexpected signs of quark condensating. Yad. Fizika 78 (2015) 438-444. Physics of Atomic Nuclei 78 (2015) 408-414. (S. Molodtsov, G. Zinovjev).
  20. Centrality dependence of high pT D meson suppression in Pb–Pb collisions at √sNN = 2.76 TeV. JHEP 11 (2016) 205; arXiv:1506.06604 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  21. Measurement of charged jet cross section and nuclear modification factor in p-Pb collisions at √sNN = 5.02 TeV. arXiv:1503.00681 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  22. Coherent ρ0 photoproduction in ultra-peripheral Pb-Pb collisions at √sNN = 2.76 TeV. JHEP 09 (2015) 095; arXiv:1503.0977 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  23. Measurement of jet suppression in central Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Let B746 (2015) 1; arXiv:1502.01689 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  24. Inclusive, prompt and non-prompt J/Ψ production at mid-rapidity in Pb-Pb collisions at √sNN =2.76 TeV. JHEP 07 (2015) 071; arXiv:1504.07151 [nucl-ex] (J. Adam, D. Adamova, …,G. Zinovjev et al. and ALICE Collaboration).
  25. Λ3H and Λ3H production in Pb–Pb collision at √sNN = 2.76 TeV. arXiv:1506.08453 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  26. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at LHC energies. arXiv:1506.08951 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  27. Rapidity and transverse momentum dependence of the inclusive J/Ψ nuclear modification factor in p-Pb collisions at √sNN = 5.02 TeV. JHEP 06 (2015) 55; arXiv:1503.07179 [nucl- x].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  28. Coherent ψ(2s) photo-production in Pb-Pb ultra peripheral collisions at √sNN = 2.76 TeV. Phys. Lett. B751 (2015) 358-370; arXiv:1508.05076 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  29. Measurement of dijet kT in p-Pb collisions at √sNN =5.02 TeV. Phys. Lett. B746 (2015) 385; arXiv:1503.03050 [nucl-ex]. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  30. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at √sNN = 2.76 TeV. arXiv:1507.06842 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  31. Ψ meson production at forward rapidity in p-Pb collisions at √sNN = 5.02 TeV. arXiv:1506.09206 [nucl-ex]. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  32. Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions = 2.76 TeV. arXiv:1506.07287 [nucl-ex].(B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  33. Quantum liquids resulted from quark systems with four-quark interaction. Eur. Phys. J. C75 (2015) 141-162. (S.V. Molodtsov and G.M. Zinovjev).
  34. One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Rev. C92 (2015) 054908; arXiv:1506.07884 [nucl-ex]. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  35. Measurement of jet quenching with semi-inclusive hadron-jet distributions in central Pb-Pb collisios at √sNN =2.76 TeV. JHEP 9 (2015) 170; arXiv:1506.03984 [nucl-ex]. (J. Adam, D. Adamova, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  36. Observation of a J/ψ yield enhancement at very low pt in Pb-Pb collisions at √sNN = 2.76 TeV. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  37. Elliptic flow and transverse momentum distributions of charged particles as a function of event-by-event flow in Pb-Pb collisions at √sNN = 2.76 TeV. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  38. Forward-central two-particle correlations in p-Pb collisions at √sNN =5.02 TeV. (B. Abelev,…, G. Zinovjev et al. and ALICE Collaboration).
  39. Ds production in Pb-Pb collisions at √sNN =2.76 TeV. (B. Abelev,…, G. Zinovjev et al. and ALICE Collaboration).
  40. Elliptic flow of muons from heavy-flavour decays at forward rapidity in Pb-Pb collisions at √sNN =2.76 TeV. (B. Abelev,…, G. Zinovjev et al. and ALICE Collaboration).
  41. Centrality dependence of inclusive J/ψ production in p-Pb collisions at √sNN = 5.02 TeV. JHEP 11 (2015) 127; arXiv:1506.08808 [nucl-ex]. (B. Abelev,…, G. Zinovjev et al. and ALICE Collaboration).
  42. Study of the high muon multiplicity cosmic events with ALICE at CERN Large Hadron Collider. arXiv:1507.07577.(B. Abelev,…, G. Zinovjev et al. and ALICE Collaboration).
  43. Differential studies of inclusiveJ/Ψ and Ψ(2S) production at forward rapidity in Pb-Pb collisions at √sNN =2.76 TeV. arXiv:1506.08804 [nucl-ex]. (B. Abelev,…,G. Zinovjev et al. and ALICE Collaboration).
  44. Charged-particle multiplicities in proton–proton collisions at √s = 0.9 to 8 TeV with ALICE at the LHC. arXiv:1509.07541 [nucl-ex](B. Abelev,…,G. Zinovjev et al. and ALICE Collaboration).
  45. Forward-central two-particle correlations in p-Pb collisions at √sNN =5.02 TeV. Phys. Lett. B; arXiv:1506.08032 [nucl-ex]. (B. Abelev, …, G. Zinovjev et al. and ALICE Collaboration).
  46. Measurement of prompt D-meson production in p–Pb collisions at √sNN = 5.02 TeV. Phys. Rev. Lett. 113 (2015) 232301. (B. Abelev,…,G. Zinovjev et al. and ALICE Collaboration).
  47. Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at √sNN = 2.76 TeV. arXiv:1507.06194 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  48. Elliptic flow of muons from heavy-flavour decays at forward rapidity in Pb-Pb collisions at √sNN =2.76 TeV. arXiv:1507.03134[nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  49. Production of K(892)*0 and ϕ(1020) in p-Pb collisions at √sNN = 5.02 TeV. Phys. Rev. C 91 (2015) 024609. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  50. D meson production as a function of multiplicity in p-Pb collisions. arXiv: 1506.06604 [nucl-ex]. (J. Adam, D. Adamova, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  51. Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at √sNN =2.76 TeV. JHEP 06 (2015) 190. (J. Adam, D. Adamova, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  52. Transverse momentum dependence of D meson production in Pb-Pb collisions at √sNN = 2.76 TeV. arXiv:1509.06888 [nucl-ex].(B. Abelev,…,G. Zinovjev et al. and ALICE Collaboration).
  53. Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb at √sNN = 2.76 TeV. Phys. Lett. B ; arXiv:1509.07299 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  54. Direct photon production in Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Lett. B ; arXiv:1509.07324 [nucl-ex].(B. Abelev, A. Alkin, …,G. Zinovjev et al. and ALICE Collaboration).
  55. Multi-strange baryon production in p-Pb collisions at √sNN = 5.02 TeV. arXiv:1512.07227[nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  56. Multiplicity dependence of pion, kaon and proton production at large transverse momentum in p-Pb collisions at √sNN = 5.02 TeV. arXiv:1601.03658 (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  57. Azimuthal anisotropy of charged jet production in = 2.76 TeV Pb--Pb collisions with ALICE. Phys. Lett. B753 (2016) 511-525; arXiv:1509.07334 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  58. Charge-dependent flow measurements and the search for the chiral magnetic wave in Pb-Pb collisions at √sNN =2.76 TeV. arXiv:1512.05739 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  59. Measurement of electrons from semi-leptonic heavy-flavour hadron decays in p-Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B ;arXiv: arXiv:1509.07491 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  60. Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p-Pb and Pb-Pb collisions at the LHC. Phys. Lett. B ; arXiv:1509.07255 [nucl-ex].(B. Abelev,…,A. Alkin, G. Zinovjev et al. and ALICE Collaboration).
  61. Charged-particle multiplicities in proton–proton collisions at √sNN = 0.9 to 8 TeV, with ALICE at the LHC. (B. Abelev, A. Alkin,…, G. Zinovjev et al. and ALICE Collaboration).
  62. Ds+ production and nuclear modification factor in Pb-Pb collisions at √sNN =2.76 TeV. Phys. Lett. B; arXiv:1509.07287 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  63. Pseudorapity and transverse momentum distribution of charged particles in proton-proton collisions at √s = 13 TeV. Phys. Lett. B753 (2016) 319-329; arXiv:1509.08734 [nucl-ex]. (B.Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  64. Measurement of an excess in the yield of J/ψ at very low pT in Pb–Pb collisions at √sNN = 2.76 TeV. arXiv:1509.08802 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  65. Inclusive quarkonium production at forward rapidity in pp collisions at √sNN = 8 TeV. Eur. Phys. J. C; arXiv:1509.08258 [nucl-ex]. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  66. New signals of quark-gluon-hadron mixed phase formation. arXiv:1510.03099 [nucl-th]. (K. Bugaev, V. Sagun, O. Ivanitsky, D. Oliinychenko, E.-M. Ilgenfritz, E. Nikonov, A. Taranenko and G. Zinovjev).
  67. Charge-dependent flow measurements and the search for the chiral magnetic wave in Pb-Pb collisions at 2.76 TeV. Phys. Rev. C ;arXiv:1512.05739 [nucl-ex].(B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  68. Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at √sNN =5.02 TeV. Phys. Rev. Lett. (B. Abelev, A. Alkin,…,G. Zinovjev et al. and ALICE Collaboration).
  69. Entropy production in chemically non-equilibrium quark-gluon plasma created in Pb+Pb collisions at the LHC energies, arXiv:1510.01235[hep-ph]. (Vovchenko V, Gorenstein M.I., et al)
  70. Undersaturation of quarks at early stages of relativistic nuclear collisions: the hot glue initial scenario and its observable signatures, Astron. Nachr. 336, 774 (2015). (Stocker H., Gorenstein M.I., et al).
  71. Fluctuations in the statistical model of the early stage of nucleus-nucleus collisions, arXiv:1509.06577 [hep-ph]. (Poberezhnyuk R.V., Gorenstein M.I., and Gazdzicki M.).
  72. Stocker H., Gorenstein M.I. et al, Glueball amass at RHIC and LHC Colliders! –The earliest quarkless 1st order phase transition at T=270 MeV – From pure Yang-Mills glue plasma to GlueBall-Hagedorn states, J. Phys. G (2015). arXiv:1509.00160[hep-ph].
  73. Poberezhnyuk R.V., Vovchenko V., Anchishkin D.V., and Gorenstein M.I., Limiting temperature of pion gas with the van der Waals equation of state, arXiv:1508.04585 [nucl-th].
  74. Vovchenko V., Poberezhnyuk R.V., Anchishkin D.V., and Gorenstein M.I., Non-Gaussian particle number fluctuations in vicinity of the critical point for the van der Waals equation of state, J. Phys. A (2015).
  75. Vovchenko V., Poberezhnyuk R.V., Anchishkin D.V., and Gorenstein M.I., Scaled variance, skewness, and kurtosis near the critical point of nuclear matter, Phys. Rev. C 92, 054901 (2015).
  76. Gorenstein M.I. New Theoretical Results on Event-by-Event Fluctuations, PoS CPOD2014 (2015), arXiv:1505.04135[nucl-th].
  77. Vovchenko V., Anchishkin D.V., and Gorenstein M.I. Van der Waals Equation of State with Fermi Statistics for Nuclear Matter, Phys. Rev. C 91, 064314 (2015).
  78. Gazdzicki M. and Gorenstein M.I. Hagedorn’s Mass Spectrum and the Onset of Deconfinement, Melting Hadrons, Boiling Quarks with a tribute to Rolf Hagedorn, Springer 2015, Ed. Johann Rafelski, arXiv:150207684[nucl-th].
  79. Poberezhnyuk R.V., Gazdzicki M., and Gorenstein M.I. Statistical Model of the Early Stage of nucleus-nucleus collisions with exact strangeness conservation, Acta Physica Polonica B 46, 1991 (2015).
  80. Vovchenko V., Anchishkin D.V., and Gorenstein M.I. Particle number fluctuations for the van der Waals equation of state, J. Phys. A 48, 305001 (2015).
  81. Vovchenko V., Anchishkin D.V., and Gorenstein M.I. Hadron Resonance Gas Equation of State from Lattice QCD, Phys. Rev. C 91, 024905 (2015).
  82. Begun V.V., Gorenstein M.I., and Grebieszkow K. Strongly Intensive Measures for Particle Number Fluctuations: Effects of Hadronic Resonances, J. Phys. G 42, 075101 (2015).
  83. Vovchenko V.Yu., Anchiskin D.V., and Gorenstein M.I. Mean transverse mass of hadrons in proton-proton reactions, Nucl. Phys. A 936, 1 (2015).
  84. D. Anchishkin, V. Vovchenko. Mean-field approach in the multi-component gas of interacting particles applied to relativistic heavy-ion collisions, J. Phys. G 42, 105102: 1-27 (2015).
  85. V.M. Shapoval, B. Erazmus, R. Lednicky, and Yu.M. Sinyukov. Extracting proton-lambda scattering lengths from heavy ion collisions. Phys. Rev. C 92, 034910 (2015).
  86. V.Yu. Naboka, S.V. Akkelin, Iu.A. Karpenko, Yu.M. Sinyukov. Initialization of hydrodynamics in relativistic heavy ion collisions with energy-momentum transport model. Phys. Rev. C 91, 014906 (2015).
  87. V.M. Shapoval, Yu.M. Sinyukov, and V.Yu. Naboka. Proton- Lambda correlation functions at energies available at the CERN Large Hadron Collider taking into account residual correlations. Phys. Rev. C 92, 044910 (2015).
  88. Dmitry Borisyuk and Alexander Kobushkin. Two photon exchange amplitude with πN intermediate states: spin-1/2 and spin-3/2 channels, Phys. Rev. C, 2015, v. 92 c. 035204.
  89. V.A. Kizka, V.S. Trubnikov, K.A. Bugaev and D.R. Oliinychenko, A possible evidence of the hadron-quark-gluon mixed phase formation in nuclear collisions, arXiv:1504.06483 [hep-ph] (2015) 33 p.
  90. L. M. Satarov, K.A. Bugaev and I.N. Mishustin, Equation of state and sound velocity of a hadronic gas with a hard-core interaction, Phys. Rev. C 91 (2015) 5, 055203–1-15.
  91. O. Borisenko, V. Chelnokov, M. Gravina, A. Papa. Deconfinement and universality in the 3D U(1) lattice gauge theory at finite temperature: study in the dual formulation, Journal of High Energy Physics, 2015.62 (2015).
Відділ квантової електроніки
  1. C. Marschler, J. Starke, M.P. Soerencen, Yu.B. Gaididei, P.L. Christiansen, "Pattern formation in annular systems of repulsive particles", Physics Letters A, 380, 166–170 (2016)
  2. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Yu. Gaididei, "Coupling of Chiralities in Spin and Physical Spaces: The Möbius Ring as a Case Study", Phys. Rev. Lett., 114, 197204 (2015).
  3. D.D. Sheka, V.P. Kravchuk, Yu. Gaididei, "Curvature effects in statics and dynamics of low dimensional magnets", Journal of Physics A: Mathematical and Theoretical, 48, 125202 (2015).
  4. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, "Controllable vortex chirality switching on spherical shells", J. Appl. Phys., 117, 083908 (2015).
  5. O.M. Volkov, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, F.G. Mertens, "Effects of a spin-polarized current assisted frsted field in magnetization patterning", J. Appl. Phys., 117, 213910 (2015).
  6. Sang-Koog Kim, Myoung-Woo Yoo, Jehyun Lee, Ha-Youn Lee, Jae-Hyeok Lee, Yu. Gaididei, V.P. Kravchuk, D.D. Sheka, "Resonantly excited precession motion of three-dimensional vortex core in magnetic nanospheres", Scientific Reports, 5, 11370 (2015).
  7. O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, Yu. Gaididei, "Vortex Polarity Switching in Magnets with Surface Anisotropy", Low Temp. Phys., 41, 466–481 (2015).
  8. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, "Curvature-induced domain wall pinning", Phys. Rev. B, 92, 104412 (2015).
  9. D.D. Sheka, V.P. Kravchuk, K.V. Yershov, Yu. Gaididei, "Torsion-induced effects in magnetic nanowires", Phys. Rev. B, 92, 054417 (2015).
  10. O.O. Vakhnenko, "Integrable nonlinear Schrödinger system on a triangular-lattice ribbon", J. Phys. Soc. Japan, 84, No. 1, 014003 (2015).
  11. O.O. Vakhnenko, "Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice", J. Math. Phys., 56, No. 3, 033505 (2015).
  12. D.V. Piatnytskyi, O.O. Zdorevskkyi, S.M. Perepelytsya, S.N. Volkov, "Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action", Eur. Phys. J. D, 69, 255 (2015).
  13. O.O. Liubysh, A.O. Vlasiuk, S.M. Perepelytsya, "Structurization of counterions around DNA double helix: a molecular dynamics study", Ukr. J. Phys., 60, 433–442 (2015).
  14. A. Onipko and L. Malysheva, "Electron transmission through step-like potential in armchair and zigzag graphene nanoribbons: Comparison of different interfaces", Physica status solidi (b), 252, No. 10, 1981–1987 (2015).
  15. G.B. Sushko, I.A. Solov'yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov'yov, "Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology", Eur. Phys. J. D, DOI: 10.1140/epjd/e2015-60424-9 (2015).
Відділ математичних методів в теоретичній фізиці
  1. A.M. Gavrilik, Yu.A. Mishchenko. "Correlation function intercepts for μ̃,q-deformed Bose gas model implying effective accounting for interaction and compositeness of particles", Nucl. Phys. B, Vol. 891 (2015), 466–481.
  2. N. Iorgov, O. Lisovyy, J. Teschner. "Isomonodromic Tau-Functions from Liouville Conformal Blocks", Commun. Math. Phys., Vol. 336, Issue 2 (2015), pp. 671-694.
  3. O. Gamayun, Yu. V. Bezvershenko, V. Cheianov The fate of a gray soliton in a quenched Bose-Einstein condensate. Phys. Rev. A. Vol. 91 (2015), paper 031605.
  4. T. Skrypnyk. "General integrable n-level many-mode Jaynes-Cummings-Dicke models and classical r-matrices with spectral parameters", J. Math. Phys. Vol. 56 (2015), paper 023511.
  5. T. Skrypnyk. "Gaudin-type models, non-skew-symmetric classical r-matrices and nested Bethe ansatz", Nucl. Phys. B. 891 (2015), p. 200–229.
  6. T. Skrypnyk. "Quantum integrable models of interacting bosons and classical r-matrices with spectral parameters" J. Geom. Phys. v.97 (2015), pp. 133–155.
  7. P. Gavrylenko. Isomonodromic τ-functions and W N conformal blocks, Journal of High Energy Physics, 2015:167 (Online: 24 Sept. 2015).
  8. M.A. Bershtein, A.I. Shchechkin. "Bilinear Equations on Painlevé τ Functions from CFT", Commun. Math. Phys. V.339 (2015), Issue 3, pp.1021-1061.
Відділ математичного моделювання
  1. А.П. Махорт Про рівновагу відкритої економічної системи за наявності невикористаного капіталу та заданих рівнів споживання. Системні дослідження та інформаційні технології, 2015, №1, с. 45-56.
  2. В. Козирський, О. Полевецька, Шендеровський В. Підвалина інформаційного простору. Український інформаційний простір, № 4, 15с. (2015)
  3. N.S. Gonchar, Mathematical Model of Banking Operation, Cybernetics and Systems Analysis, 2015, V. 51, p. 378-399
  4. N.S. Gonchar, A.S. Zhokhin, W.H. Kozyrski, On Mechanism of Recession Phenomenon, Journal of Automation and Information Scince. 2015, v.47, p.1-17 .
  5. N.S. Gonchar, A.S. Zhokhin, W.H. Kozyrski, General Equilibrium and Recession Phenomenon, American Journal of Economics, Finance and Management. 2015, №1, p.559-573.
  6. Makhort A.Ph. On the influence of the price dependence of a goods consumption structure on the equilibrium of an economy. Cybernetics and Systems Analysis, 2015, v. 51, p. 205-212.
  7. В. Козирський, В.Шендеровський. Творення термінів: проблема парадигми. В: “Українська наукова термінологія: творення термінів та їх походження”, Київ, 30 жовтня 2015, 15 с.
Відділ теорії нелінійних процесів в конденсованих середовищах
  1. V.M. Loktev, Yu.G. Pogorelov. “Impurities and Dopants in High-Tc Superconductors ”. – /ІТФ ім.. М.М. Боголюбова/. – Київ. Академперіодика, 2015, 223 с.
  2. Гомонай Е.В., В.М. Локтев. Использование обобщенных уравнений Ландау-Лифшица для описания динамики многоподрешеточного антиферромагнетика в присутствии спин-поляризованного тока. ФНT. – 2015. – 41, № 9. – С. 898-907.
  3. Pogorelov Yu.G., V.M. Loktev. Electric bias control of impurity effects in bilayer graphene. Phys. Rev. В. – 2015. – 92. – P. 075401-9.
  4. Eremko A.A., L.S. Brizhik, V.M. Loktev. Spin-eigen states of Dirac equation for quasi-two-dimensional electrons. Annals of Phys. – 2015. – 361, No 10. – P. 423-439.
  5. L. Brizhik, A.P. Chetverikov, V. Ebeling, G. Röpke, M.G. Velarde. Bound states of electrons in harmonic and anharmonic lattices. Chapter in: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, Springer Series in Materials Science, 2015, Vol. 221, Pp. 291—319. DOI: 10.10L.
  6. L. Brizhik, Influence of electromagnetic field on soliton mediated charge transport in biological systems. Electromagn. Biol. Med., 2015, Vol. 34, No. 2, Pages 123-132;
  7. Giuliani L., D’Emilia E., Lisi A., Grimaldi S., Brizhik L. and Del Giudice E. Copper ion fluxes through the floating water bridge under strong electric potential. Electromagn. Biol. Med., 2015, v. 34(2), pp. 167-169.
  8. Єремко О.О. Спiновi стани квазiдвовимiрних електронiв, Доповiдi НАН України, 2015, No. 4, стор. 65-70, (2015).
  9. S.G. Sharapov, "Thermodynamic properties of the 2+1-dimensional Dirac fermions with broken time-reversal symmetry'', J. Phys. A: Math. Theor. 48, 365002 (2015).
  10. V.P. Gusynin, S.G. Sharapov, and A.A.Varlamov, “Spin Nernst effect and intrinsic magnetization in two-dimensional Dirac materials”, ФНТ 41, 445 -456 (2015).
  11. Zolotaryuk A.V., Zolotaryuk Y., A zero-thickness limit of multilayer structures: a resonant-tunnelling δ′-potential, J. Phys. A: Math. Theor. 48, 035302 (14pp) (2015).
  12. Zolotaryuk A.V., Zolotaryuk Y., Controllable resonant tunnelling through single-point potentials: A point triode, Phys. Lett. A 379, 511-517 (2015).
  13. Zolotaryuk A.V., An explicit realization of resonant tunnelling δ″-potentials, J. Phys. A: Math. Theor. 48, 255304 (17pp) (2015).
  14. Y. Zolotaryuk and I.O. Starodub, “Fluxon mobility in an asymmetric SQUID array”, Phys. Rev. E. 91, 013202 (9 pp) (2015).
  15. R.L. Pylypchuk and Y. Zolotaryuk. “Discrete breathers in an one-dimensional array of magnetic dots”, Fiz. Nizk. Temp. 41, 942-948 (2015) [Low Temp. Phys. 41, 733-739
  16. N.I. Grigorchuk. “Acoustical wave emission from embedded noble nanopa(2015)].rticles induced by ultrashort laser pulses”, Eur. Phys. J. B, (2015) 88: 29, p. 1-9.
  17. М.І. Григорчук, В.Г. Карпов. "Нуклеація плазмонних резонансних наночастинок сфероїдальної форми", Журнал Фізичних досліджень, т. 19, № 3 (2015) 3701 (10 с.).
  18. V.N. Ermakov, S.P. Kruchinin, T. Prushke, J.K. Freerics. Thermoelectricity in tunneling nanostructures. Phys.Rev. B 92, 155431 (2015)
  19. E.A. Ponezha “Relaxation times and correlation functions under the influence of cross-correlated сolored noises for the model of resonant tunneling”, Укр. фіз. журн., 2015, Т.60, №7, c. 657-664
Відділ обчислювальних методів теоретичної фізики
  1. Поліщук А.П., Бордюг Г.Б., Кручинін С.П., Сліпухіна І.А. Вступ до квантової та атомної фізики. Навчальний посібник, НАУ, 2015, 240 c.
  2. T.Yu. Nikolaienko and E.S. Kryachko. Formation of Dimers of Light Noble Atoms under Encapsulation within Fullerene’s Voids. Nanoscale Res. Lett. 10, No.1, pp. 185-1–185-9 (2015).
  3. T.Yu. Nikolaienko and E.S. Kryachko. He2@C60 : Thoughts of the Concept of a Molecule and of the Concept of Bond in Quantum Chemistry. Int. J. Quantum Chem. 115, No.14, pp. 859-867 (2015).
  4. E.S. Kryachko and T.Yu. Nikolaenko. Formation of Noble-Gas Dimers Within Fullerene’s Confinement. J. Material Sci. Eng. 4, No.3 (2015).
  5. E.S. Kryachko. On N-Representability Problem in Density Functional Theory. J. Material Sci. Eng. 4, No.3 (2015).
  6. Ermakov V., Kruchinin S., Pruschke T., Freericks J. Thermoelectricity in tunneling nanostructures. Phys. Rev. B 92, p.115531 (2015).
  7. Soldatov A.V., Bogolyubov N.N. Jr., Kruchinin S.P. Theory of quantum dots in external magnetic field. Quantum Matter, 4, 352-357 (2015).
  8. Kruchinin S., Kondo effect in superconducting nanoparticles. Quantum Matter, 4, 373-377 (2015).
  9. Kruchinin S. Richardson solution for superconductivity in ultrasmall grains. Quantum Matter 4, 378-383 (2015).
Відділ синергетики
  1. Б.І. Лев “Формування структур в рідкокристалічних колоїдах”, Київ, Інститут теоретичної фізики ім. М.М. Боголюбова, 2015, 198 с.
  2. K.V. Grigorishin, B.I. Lev “Toy model of high themperature supercondactivity”, Low Temperature Physics/Fizika Nizkikh Temperatur, 41, 482-485 (2015)
  3. Б.І. Лев, В.П. Остроух, В.Б. Тимчишин, А.Г. Загородній “Розподіл електронів на деформованій поверхні рідкого гелію”, Український фізичний журнал, т. 60, № 3, (2015).
  4. O.M. Tovkach, S.B. Chernyshuk and B.I. Lev “Colloidal interactions in a homeotropic nematic cell with different elastic constants”, Phys. Rev. E. Vol. 92, P. 042505. (2015)
  5. B.I. Lev, S.S. Rozhkov and A.G. Zagorodny “Model of coupling order parameter with its gradient”, Euro Phys. Lett. 111, 26003 (2015)
  6. Grytsay V.I. “Lyapunov Indices and the Poincare Mapping in a Study of the Stability of the Krebs Cycle”, УФЖ, 2015, т. 60, № 6, с. 564-577.
  7. Grytsay V.I. “Self-organization and Fractality in the Metabolic Process of Glycolysis”, УФЖ, 2015, т. 60, № 12, с. 1253-1265.
  8. V. Grytsay “Self-organization and fractality created by gluconeogenesis in the metabolic process”, Chaotic Modeling and Simulation (CMSIM), 2015
  9. A.K. Vidybida “Activity of Excitatory Neuron with Delayed Feedback Stimulated with Poisson Stream is Non-Markov,. J Stat Phys (2015) 160:1507-1518, DOI 10.1007/s10955-015-1301-2.
  10. A.K. Vidybida “Relation Between Firing Statistics of Spiking Neuron with Instantaneous Feedback and Without Feedback,. Fluctuation and Noise Letters Vol. 14, No. 4 (2015) 1550034 (7 pages), DOI: 10.1142/S0219477515500340.
  11. V.I. Grytsay, I.V. Musatenko “Nonlinear Self-organization Dynamics of a Metabolic Process of the Glycolysis”, Book of Abstracts CHAOS2015, 26-29 May 2015, Paris France 2015, p. 45.
  12. A. Rebesh, A. Gavrilik, Yu. Mishchenko “Intercepts of π-meson correlation functions in deformed Bose gas models”, International WE-Heraeus Physics School on Diffractive and Electromagnetic Processes at High Energies, August 17 – 21, 2015. Physikzentrum Bad Honnef, Germany, Programme&Abstracts, p. 46.
Відділ структури атомних ядер
  1. Yu.A. Lashko, G.F. Filippov, V.S. Vasilevsky, “Dynamics of two-cluster systems in phase space”, Nucl. Phys. A., 2015, vol. 941, pp. 121-144.
  2. Yu.A. Lashko, G.F. Filippov, L. Canton, “Scattering of 6He on α-particle: microscopic guidance for orthogonalizing pseudopotentials”, Ukr. J. Phys., 2015, vol. 60, № 5, pp. 406-415.
  3. O.M. Povoroznyk, V.S. Vasilevsky. “Spectrum of resonance states in 6He. Experimental and theoretical analysis”, Ukr. J. Phys., 2015, 60, N3, pp. 201-216.
  4. V.S. Vasilevsky, M.D. Soloha-Klymchak. “T-matrix in discrete oscillator representation”, Ukr. J. Phys., 2015, 60, N4, pp. 297-306.
Відділ теорії та моделювання плазмових процесів
  1. А.Г. Загородній, А.І. Момот. Вступ до кінетичної теорії плазми.–/Інститут теоретичної фізики ім.М.М. Боголюбова НАН України–/ Київ. Наукова думка, 2015. – 458 с. (43.5).
  2. W. Guan-Qiong, M. Jun, J. Weiland, A. Zagorodny. Excitation of zonal flows by ion-temperature-gradient Modes Excited by the Fluid Resonance. Chinese Phys. Lett. 32 (11), 115201 (2015).
  3. V.B. Bobrov, A.G. Zagorodny, S.A. Trigger. The collective-excitation spectrum in superfluid helium. Doklady Physics, 60 (9), 385-387 (2015).
  4. A.V. Kirichok, V.M. Kuklin, A.V. Pryimak, A.G. Zagorodny. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma. Physics of Plasmas, 22 (9), 092118 (2015).
  5. B.I. Lev, S.S. Rozhkov, A.G. Zagorodny. Model of a scalar field coupled to its gradients. EPL (Europhysics Letters), 111 (2), 26003 (2015).
  6. V.B. Bobrov, A.G. Zagorodny, S.A. Trigger. Regarding the relation between the photon-roton spectrum and the single-particle excitation spectrum in liquids with Bose-Einstein condensate. Low Temperature Physics, 41 (8), 589-594 (2015).
  7. V.B. Bobrov, A.G. Zagorodny, S.A. Trigger. The off-diagonal long-range order and inhomogeneous Bose-Einstein condensate. Doklady Physics, 60 (4), 147-149 (2015).
  8. В.Б. Бобров, А.Г. Загородний, С.А. Триггер. Кулоновский потенциал взаимодействия и конденсат Бозе–Эйнштейна. Физика низких температур, 41, № 11, 1154–1163 (2015).
  9. Jan Weiland, Chuan S. Liu and Anatoly Zagorodny. Transition from a coherent three wave system to turbulence with application to the fluid closure. J. Plasma Physics, 905810101 (2015).
  10. B.I. Lev, V.P. Ostroukh, V.B. Tymchysgyn, A.G. Zagorodny. Electron distribution on a deformed liquid-helium surface. Ukr. J. Phys., 60, N 3, 247-252 (2015).
  11. A.V. Kirichok, V.M. Kuklin, A.V. Pryimak, A.G. Zagorodny. Ion kinetics and ion sound generation under the development of modulation instability of an intense Langmuir wave in a plasma. Problems of Atomic Science and Technologies, №4(98), 258-263 (2015).
  12. A.V. Kirichok, V.M. Kuklin, A.G. Zagorodny.On the nature of sources of pulsating radiation in weakly inverted media. Problems of Atomic Science and Technologies, №4(98), 9-11 (2015).
  13. V.I. Zasenko, А.G. Zagorodny, O.M. Chernyak. Particle diffusion in a wave with randomly jumping phase. Problems of Atomic Science and Technologies, №1(95), 62-64 (2015).
  14. O.M. Cherniak. Particle’s diffusion in a two-dimensional random velocity field. Ukr. J. Phys., 60, No 12 (2015).
  15. Moskaliuk S.S. Category of Lie-Santilli Isogroups. AIP Conf. Proc., 1648, 510014 (2015); doi: 10.1063/1.4912719.
  16. Moskaliuk S.S. Polarization of Photons in Matter-Antimatter Annihilation. AIP Conf. Proc., 1648, 510013 (2015); doi: 10.1063/1.4912718.
  17. А. Загородній. Грід-технології для науки і суспільства. ХХVI Наукова сесія Наукового товариства Шевченка, Львів, 28 березня 2015 р. Вісник НТШ, число 53-54, весна зима 2015, с. 58-61.
Відділ теорії ядра і квантової теорії поля
  1. Yu.A. Sitenko, Influence of quantized massive matter fields on the Casimir effect, Mod.Phys.Lett.A – 2015. – V.30, No.20. – 1550099 (P.1-11).
  2. Yu.A. Sitenko, Casimir effect with quantized charged spinor matter in background magnetic field, Phys.Rev.D– 2015. – V.91, No.8. – 085012 (P.1-16).
  3. Yu.A. Sitenko, S.A. Yushchenko, Pressure from the vacuum of confined spinor matter, Intern. J. Mod. Phys. A – 2014. –V.30, No.30. – 1550184 (P.1-33).
  4. V.F. Kharchenko. “Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms”, Annals of Physics (N.Y.), Vol. 355, No. 1 ( 2015 ) p.p. 153 – 169.
  5. Бабенко В.А., Петров Н.М. О зарядовой зависимости константы пион-нуклонной связи. Ядерна фізика та енергетика, 2015, т. 16, № 2, с. 136–143. [Babenko V. A., Petrov N. M. Charge dependence of the pion-nucleon coupling constant. Nuclear Physics and Atomic Energy, 2015, Vol. 16, No. 2, P. 136-143.]
  6. Бабенко В.А., Петров Н.М. Разность энергий связи ядер 3H и 3He и низкоэнергетические параметры нейтрон-нейтронного рассеяния. Письма в ЭЧАЯ, 2015, т. 12, № 4(195), с. 904–915. [Babenko V. A., Petrov N. M. Mirror nuclei 3H and 3He binding energies difference and low energy parameters of neutron-neutron scattering. Physics of Particles and Nuclei Letters, 2015, Vol. 12, No. 4, P. 584-590.]
  7. Бабенко В.А., Петров Н.М. Изучение зарядовой зависимости пион-нуклонной константы связи с использованием данных о нуклон-нуклонном взаимодействии при низких энергиях. Ядерная Физика, 2015, т. 78, № 12, с. 1–5. [Babenko V. A., Petrov N. M. Study of the pion-nucleon coupling constant charge dependence on the basis of the low-energy data on nucleon-nucleon interaction. Physics of Atomic Nuclei, 2015, Vol. 78, No. 12, P. 1-5.]
  8. V.E. Kuzmichev, V.V. Kuzmichev. The expanding universe: change of regime, Ukr. J. Phys. 60, 665-675 (2015).