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AHOTAIIISA

2KypaBaboB FO.C. Meros edpexkTuBHux hopmM-pakTopiB B KBAHTOBUX 1HTE-
I'POBHUX MOJIeJIgX. - KBasidikaliiiHa HayKoBa IIpalld Ha IIpaBax PYKOIIKCY.

HucepTraliis Ha 3100y TTsI HAYKOBOI'O CTYII€HsI TOKTOpa (isocodil 3a cieriaib-
mictio 01.04.02 “Teopernuna disuka” (104 - ®isuka Ta acTpoHoMmist). - [HeTUTyT
teopetndnol ¢izuku im. M. M. Borosirobosa Harmionaabaol akajaemii HayK Y Kpa-
inm, Kuis, 2024.

Kunrouosi ciaoBa: dhisnka KOHIEHCOBAHOI'O CepeIoBUIa, KBAHTOBI IHTEIPOBHI
CUCTEeMH, CIIIHOBI JIAHIIOKKH, HePiBHOBaXKHa, (pi3nKa, TPAHCIIOPT B OJHOBUMIPHUX

cucTeMax, aCUMIITOTUYHUI aHaIi3, MeToJ; (POopM-(HaKTOPIB.

Huceprariisi 6a3yerhest Ha poborax [1,2,3|, ge posrisggaimucs acuMITOTHIHI
BJIACTUBOCTI KOPEJIANINHUX (DYHKIH OJJHOBUMIPDHUX KBAHTOBUX CHUCTEM. € KiTbKa
HPUYNH JIJIg BUBYEHHS OJHOBUMIPHOI KBAHTOBOI (DI3UKM.

[Teprr 3a Bce, KBAaHTOBI OTHOBUMIPHI MOJIE1 3aBXK/IU ITPUBEPTAIN BEJIUKY YBa-
I'y 3aBJIIKN O0araTcTBy MaTeMaTUYHUX CTPYKTYP, 9Ki BUHUKAJINA IPU JTOCIIZKEeHH]
IXHIX KopeJsamiitHux (DyHKIIN, 1 3aBISIKI MOXKJIMBOCTI JIOC/IIzKEeHHsT HellepTypoa-
TUBHUX siBUII. KyJibMiHaII€0 IUX PO3POo0OK cTajio hopmysioBaHHs Moguesi JlaT-
TiHKepa, 110 € ePEKTUBHOIO TEOPIEI0 MOJI IIPU HU3bKUX TeMIIepaTypax.

[le oxna mpuynHa € OLIBII IPAKTUIHOIO. 3 PO3BUTKOM €KCIIEPUMEHTAIbHIIX
TEeXHIK B €KIIePUMEHTaX 3 XOJIOJHUMHI aTOMaMU OYJIO CIIOCTEPEXKEeHO DaraTro Heodi-
KyBaHWX BJIACTUBOCTEN B MOBEIHIT OJHOBUMIPHIX KBAHTOBUX CUCTEM. BiiMiTmMo
pobory Kinoshita et al (2006), B sikiit aBTOpH CcrioCTEpirasm, Mo Jjisi CHCTEMI XO-
JIOJHUX aTOMIB, 0OMEXKEHUX PyXaTHUCs JUIIE B OJHOMY BUMIPi, IOYaTKOBO 30ypeHa
cucreMa He Mmepexoau/ia J0 CTaHy piBHoBaru. Taka MOBeIiHKa € TUIIOBOIO JJIs iH-
TErpoBaHUX CHCTEM, SIKi MAIOTh OaraTo iIHTErpaJiB pyxy, IO 3a1100iraroTh TepMa-
Jizaril cucreMu. 3alliKaB/IeHICTh Y HEPIBHOBaXKHIH JuHaMini abo JuHaMilll BUCOKO
30YIZKEHNX CTaHIB CTUMYJIIOBaJIa 6araro TeOPeTUIHNX JOCTIIZKEHb, 1110 TPU3BEIN
JI0 BUHUKHEHHsI HOBUX KOHIIEIIIIii, TaKUX sIK y3arajbHeHi ancamb6si ['i60ca, MmeTo
KBeHY-/1i1 (quench action), y3arajbHeHa TigpoanHaMika Ta iHII.

OpHa 3 104ATKOBUX HPUYUNH JIJI JTOCIPKEHHST OJHOBUMIPHIX KBAHTOBUX CH-
cTeM ToJIArae y MiHIaTIOpu3allil eJIeKTPOHHIX MPUCTPOIB. BBarxKaeThCs, MO OJIHO-

ro JIHA €JISKTPUYHI ITPOBOJIM MOXKYTb CTaTu e(PeKTUBHO OJHOBUMipHHMU. Tomy
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BapTO BUBYATU TPAHCIOPT B OJHOBUMIpDHUX crucTeMax. OgHUM i3 Ha#OLIbII -
BOBIDKHUX SBUII y IIiif 00/1acTi € KBAHTYBaHHS MPOBIIHOCTI B KBAHTOBUX TOYKO-
BIUX KOHTaKTaX. TeopeTwdne MOsICHEHHS IIHOTO sABHUIIA OYJI0 3POOJIEHO 3 JTI0TIOMO-
roio hopmastizmy Jlangayepa-BiorTikepa, Knii OB’ A3y€ MATPUITIO TPOXO/IYKEHHS
(transmission matrix) 3 mposigaicTI0. X04ua B eJIeMeHTAPHIH Teopil TYHeII0BAHHST
HMOBIPHICTD MPOXO/PKEHHS BU3HAYAETHC B CTAI[IOHAPHI TOCTAHOBII 3a/1ad4i, OYJ10

TAKOXK IPUJIIJIEHO DAaraTo yBaru HepiBHOBayKHOMY ITJIXOJLY JIO 3aja4i TPAHCIIOPTY.

[ToTy>xHI aHAJITUYHI METO/M, IO BKJ/IIOYAIOTH TexHiKy Kesguira s GpyH-
kuil ['pina, Oy po3pobJieHi pi3HUME aBTOpaMi. 3 TOYKHU 30Dy OJHOBUMIDHIX
iHTerpoOBHIX MoOJIe/iell, 3alliKaBJIeHICTh 0 MOMIOHNX IIpobJeM Oy/a CIHpUIMHEHA
PO3IJISIOM KBaHTOBHX KBeHuel (quantum quench). OcranHi BUHUKAIOTH B 381~
Jyax, B AKUX He0OX1THO 3HAHTH YaCOBY €BOJIIOIIIO 130/ Tb0BAHOI KBAHTOBOI CHCTEMU,
dKa B MIOYATKOBUII MOMEHT Hacy 3HaXOJIUThCS B BUCOKOHEPIBHOBAXKHOMY CTaHI,
CTBOPEHOMY ab0 3a JOIIOMOI'OI0 IIBUJIKOI 3MiHM IaMijJibTOHiaHa, ab0 MICTUTH Ma-
KPOCKOIIIYHI ITPOCTOPOBI HEOIHOPITHOCTI.

[Io/10 06’ekTa JOCIIIKENH, yBara B JIncepTallil IepeBaXKHO 30CEPeIKYETHCA
Ha KOpesstiiinux GpyHKIisgX. OCHOBHUM ITiIX0IOM JI0 OOUHCIEHHS KOPeIsiiiHIX
YHKIIl B IHTErPOBHUX MOJEISAX € IpsMe IiJACyMOBYBaHHsI (hopM-(hakTOpiB Y
CIeKTpaJibHOMY po3KJjal. Ob4dnciieHHsT KOpeasiiiiHux (pyHKIINH Ipyu CKiHYeHii
Temieparypi abo, OLIBII 3arajJbHO, B CTaHaX 31 CKIHYEHHOIO €HTPOIIIEI0 JyKe Bil-
PIBHSIETHCA BiJ BAKyyMHOI'O BHIIQJIKY 4epe3 Te, 10 (popM-pakTopu K (PyHKIT
BiJl PO3MIPY CHCTEMH CHaIAlOTh €KCIIOHEHINIHO, a He CTeleHeBUM YUHOM. Tomy
Oy/in po3pobJIeHl pi3HI METOIM I PO3B’si3aHHsI TAKOI'O0 POJY IIPOOJIEM, BKJIIO-
a0 KBAHTOBUIT MeTOj MaTpuill nepexoiy (transfer matrix), wesiniiiai gude-
peHIiaIbHI PIBHSHHSI, siIKi BUBOJSITHCS 3a J0IoMOro 3ajadi Pimana-I'iin0epra,
aKcioMaTU4IHe BU3HAYEHHS TEIJIOBUX (POPM-(PaKTOPIiB B IHTEIPOBHUX KBAHTOBUX
TEOpIAX MOJIs, a TAaKOXK HYaCTKOBE I11JICYMOBYBaHHSI K1JIbKOX 4YaCTUHKOBO-/IIPKOBUX

30y/KeHb 1 BUJILIEHHS HAHOLIBINT CUHTYIAPHIX YacTUH (POpM-(PaKTOPiB.

Hucepramniitna pobora 6asyeTbcst Ha TpboxX craTTax. B [1] posrusiiaBes KBaH-
toBuit XY criHoBuil JaHIoKokK. [lg Mogens Oyia posrisuyTa Biiepiie B Lieb et
al (1961) sk oxpemmuii Buna ok Mojeni XYZ crinoBoro Janioxkka [eitzenbepra
(Jp # Jy, # 0,J, = 0). OCHOBHIM MOCHJIAHHAM J/Ist O3HAOMIIEHHS 3 II€I0 MO-

nemto € lzergin et al (2000), me aBTOpU BUBEIN IPEJCTABICHHS KOPEJSIIHHOT
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dbyuknii G(m) JaBOX CIIHOBUX OMEpaToOpiB (M — BijCTaHb MiXK HUMIE) Yy TE€pMi-
HaxX pizHuIl JBox jgeTepmiHanTiB @pearonbma. Ha ocHOBI 1boro pesysibraTy Ha-
MU OyJI0 PO3POOJIEHO METOJ, ACHMIITOTHYHOTO aHAII3Y KOPEJIAIiitHOT PYHKINT J1JIsd
BUNAJIKY, KOJIU BiJICTAHb 1M NPAMYE JI0 HecKiHdeHHocTi. MeTos mosisdrae y Bu3Ha-
JeHi edeKTuBHUX (PopM-PaKTOpIB JJIsi OJHOBUMIPDHUX I'PpATKOBUX (DEPMIOHIB i3
JOBLTbHUME (pa3oBUME 3cyBaMu. Jlayi BBOAUTLCS Tay-(DyHKILis, 0 € PAJIOM 0
M popm-akTopam. 3 oJHOro OOKY, Oy/10 BHKOHAHE TOTHE IiICYyMOBYBAHHS Tay-
GYHKIT B TepMOJAMHAMIYHIN IpaHuUIll Ta IPeJICTaB/IeHO BiJIIIOBLIL 3a JOIMOMOI'OI0
nerepminanTiB @pejirosibmMa. 3 iHIoro 60Ky, pocti Bupasu iist (hopM-phaKkTopiB
JIO3BOJIMJIN TIPEJICTABUTH BIATOBLIHI Psi/id sIK iHTErpaJii BiJl eJleMeHTapHuX pyH-
KIiii. BukopucroBytoun 1ieit 1miixis, Oyyim nmepeorpuMaHi acCUMITOTUKI CTATHIHIX

KOpeJIAiitHuX (yHKIIIi KBAHTOBOTO XY JIAHIIOYKKA [P CKIHYEHHI{ TeMIiepaTypi.

Y [2] BuBuasach Mojiesib OJHOBUMIDHUX HEIPOHUKHUX €HIOHIB Ha rpatii. [s
mMojiesib Oyna BBegena Pafu (2015) gk ysaranbHeHHst Mojeni kBaHTOBOro XXO
CIIIHOBOI'O JIAHIIIOXKKA. ABTOPOM 3HAMIEHO JBOTOYKOBY KOPEJSIitHY (YHKIIIO
G(x,t) y TepMomHAMITHIN I'PAHUI Y BUTJISI PI3HUI JBOX jeTepMinanTiB Ppe-
nroabMa. s onmcy moBeIiHKY 1€l KOpessaitinol (pyHKII, y BUMAIKY KOJIH dac
Ta BiJICTaHb HPSIMYIOTH JI0 HECKIHUEHHOCTI, B JiucepTrallil 0yB BUKOPUCTAHMI 111X
edpekTuBHUX popM-dpakTopiB. BijicTanb x Ta vac t npsgMyBaJ/ii JI0 HECKIHYEHHOCTI
TAKUM YUHOM, 11100 X BIJIHOIIEHHS 3a/TUIIAJI0CS TOCTiiiHuM &/t = const. 3uaiiieni
ACHMITTOTUYHI BUPA3U BIIPI3HAIOTHCS B IPOCTOPOBO-IOiOHII (/t > 1) 1 gacoro-
nibuiit (x/t < 1) obmactsix. 30KpeMa, y Jaconoibuiit 06acTi, OKpiM eKCIIOHEeH-
IiaIbHOT'O CITa Ty, CIIOCTEpIraBcs JOJATKOBUI CTEIIeHEeBUIT MHOXKHUK. ByJio moka-
3aHO, 10 Ieil pe3y/IbTaT € yHiBepcaJbHUM, OCKLJILKN BiH OB S3aHnil BUKJIIOYHO
i3 PO3PUBHOIO MOBE/IIHKOIO (DYHKIIIT pazoBoro 3cyBy. [Ipu creniaapHoMy 3HaAYCHH]
eHIOHHOI'O IapameTpa, k£ = 1, OyJia 1epeoTpuMaHa aCUMIITOTHKA, CITIH-CIITHOBUX
JUHAMIYHIX KOpessdiiftanx yHkiii y mojea kBaaTooro XXO cIiHOBOrO JaH-

IIFOYKKA.

Y [3] mocsiKyBaBCs TPAHCIIOPT B OJJHOBUMIDHUX CHCTEMax BIIbHUX (epMio-
HIB ITi/] BIIMBOM JOBIJIbHUX JIOKAJLHUX TOTEHINIAIIB. By/ia posriasHyTa cucrema,
0 CKJIAJAETHCA 3 JIBOX YaCTUH. YMOBa, HEOOXiJHA JJId IOYATKY TPaHCIOPTY,
MOJIeJTIOBaJIaCs MOYATKOBUM JIy?Ke HePIBHOBayKHUM PO3IIOJILIOM, JJIsd SKOTO, Hace-

JIeHOIo OyJia Jidille MoJIoBUHA cucTeMu. Ha j1ogaTok 10 1boro, JIOKaJIbHUI MOoTeH-
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IiaJl TaKOXK PalTOBO 3MIHIOBABCs, KOJIM MMOYMHABCA PYX YacTUHOK. /[yt Takoro
KBeHY 1poTOKO;y (quench protocol) Gyo o64nC/IeHO MOBHY CTATHCTHKY ITijIpa-
xyHky (Full Counting Statistics) kisbkocTi yacTunoxk JF(t) y 9acTuni cucremn, 1o
MOYATKOBO OyJsia TOPOXKHBOIO. ¥ TepMoanHaMivtHiil rpanuri F(t) Oy/ia Bupakena
gyepe3 jerepMiHanT OpearosibMa 3 sJIpoM, dKe 3aJeKUTh BiJl JaHUX PO3CIIOBAHHA
ta dyukiiit Mocra 1ist noTeHiaxis 10 KBenda Ta micist. Bysa gociiikena acum-
NTOTUKA OTPUMAHOTO JIeTepMiHAHTA V BUNAJKY, KON Yac MPAMYE /10 HECKIHUIEH-
HocTi. ByJo criocreperkeHo, 1o gKImo JiBa ado OiJIbIe 3B’ 13aHUX CTaHU IIPUCYTHI B
CHEKTPI MOTEHITIaTy i KBeHYa, TO iHopMallisd PO MOYATKOBUI CTaH MPOSABJIs-
€ThCsl y BUIVIsi CTifiKUX KosmBanb F (). HaBmakn, KoJiu 38’ sg3aHnx cTaniB neMae,
TO ACHMIITOTHYHA TOBeiHKA J (f) BU3HAUAETHCS BUKJIIOUHO JIAHIMMHI PO3CIFOBaH-
HsI TIOTEHIaJ/y Iicjsl KBeHda. ACUMITOTUYHNN CTPYM, ITOPAXOBAHUM SIK TEPIIHii

mMomeHT F(t) Jist 1IboTo BUIAJIKY, BiTBOpIoE (hopmyiy Jlanayepa—bBrorrikepa.
Crucok myOJtikartiii:
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ABSTRACT

Yurii Zhuravlov The method of effective form-factors in quantum integrable
models. - Manuscript.

Thesis for the Doctor of Philosophy degree in specialty 01.04.02 “Theoretical
physics” (104 - Physics and astronomy). — Bogolyubov Institute for Theoretical
Physics of National Academy of Sciences of Ukraine, Kyiv, 2024.

Keywords: condensed matter physics, quantum integrable systems, spin
chains, non-equilibrium physics, transport in one dimensional systems, asymp-

totic analysis, form factor approach.

The thesis is based on papers [1,2,3], where asymptotic properties of correla-
tion functions of one dimensional quantum systems were considered. There are
several reasons to study one-dimensional quantum physics.

First of all, quantum one-dimensional models have always attracted a lot of
attention due to the rich mathematical structures, which appeared when their
correlation functions were studied, and due to the possibility to address non-
perturbative phenomena. The culmination of these developments resulted in the
formulation of the Luttinger model which is an effective field theory at low tem-
peratures.

Another reason is more practical. With the advancement of experimental tech-
niques in cold atom experiments, it was observed a lot of unexpected properties
in the behavior of 1d quantum systems. One of them is a remarkable result of
Kinoshita et al (2006), where the authors observed for the system of cold atoms
confined to move only in one dimension, that initially perturbed system did not
approach an equilibrium state. Such behavior is typical for integrable systems,
having a lot of conserved charges, which protect the system from thermaliza-
tion. The interest in the non-equilibrium dynamics or dynamics of highly excited
states motivated a lot of theoretical research resulting in new concepts such as
generalized Gibbs ensembles, the quench action, generalized hydrodynamics, and
others.

One more reason to study one dimensional quantum systems is due to minia-
turization of electronic devices. It is believed that one day, leads may become ef-

fectively one dimensional. That is why, one should study transport in 1d systems.
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One of the most remarkable phenomenon in this area is a quantization of conduc-
tance in quantum point contacts. Theoretical explanation of this phenomenon
was done using Landauer—Biittiker formalism, which relates transmission matrix
with conductance. Even though, according to the elementary theory of tunnel-
ing, the transmission probability is defined in a stationary setup, there was a
lot of attention related to the non-equilibrium approach to the transport. The
powerful analytic approaches involving Keldysh Green’s function techniques were
developed by different authors. From the point of view of the one-dimensional
integrable models, the attention to similar problems was renewed in the context of
the quantum quenches, which are specifically, understood as the evolution of the
isolated quantum system initialized in the highly non-equilibrium state created
either via the rapid change of the Hamiltonian or containing macroscopic spatial

inhomogeneities.

As for the object of study, we mainly focus on correlation functions. The main
approach to the correlation function in integrable models is a direct summation
of the form-factors in the spectral expansion. The computation of the correlation
functions at finite temperature, or more generally at finite entropy (density of
states) is very different from the vacuum case due to the different decay rate of the
form-factors with the system size (exponential vs power-law). Therefore, different
approaches were developed to tackle this kind of problems including Quantum
Transfer Matrix approach, non-linear differential equations, mainly based on the
Riemann—Hilbert problem approach, the axiomatic definition of the thermal form-
factors in the Integrable Quantum Field Theories, as well as partial summations
of the few particle-hole excitations and extracting the most singular parts of the

form-factors.

The thesis is based on three papers. In [1] the quantum XY spin chain was
considered. The model was introduced in Lieb et al (1961) as a particular case of
the Heisenberg XYZ spin chain model (J, # J, # 0, J, = 0). The main reference
for introducing into the subject is Izergin et al (2000), where authors derived a
presentation for correlation function G(m) of two spin operators (m is a distance
between them) in terms of a difference of two Fredholm determinants. Based on
this result we developed a method for asymptotic analysis of the correlation func-

tion for large distance m. We introduce effective form factors for one-dimensional
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lattice fermions with arbitrary phase shifts. We study tau functions defined as
series of these form factors. On the one hand we perform the exact summation
and present tau functions as Fredholm determinants in the thermodynamic limit.
On the other hand simple expressions of form factors allow us to present the cor-
responding series as integrals of elementary functions. Using this approach we
re-derive the asymptotics of static correlation functions of the XY quantum chain

at finite temperature.

In [2], we considered the one-dimensional impenetrable lattice anyons. The
model was introduced by Pafu (2015) as a generalization of the XXO quantum
spin chain model. The author found two point correlation function G(x,t) in
the thermodynamic limit in terms of a difference of two Fredholm determinants.
To describe large time and long distance behavior of these objects we used the
effective form factor approach. In our study, we considered large distance x and
large time ¢ limit in such a way that its ratio remained a constant x/t = const.
The asymptotic behavior is different in the space-like (z/t > 1) and time-like
(x/t < 1) regions. In particular, in the time-like region we observed the additional
power factor on top of the exponential decay. We argued that this result is
universal as it is related to the discontinuous behavior of the phase shift function
of the effective fermions. At particular values of the anyonic parameter (k = 1),

we recover asymptotics of spin-spin correlation functions in XXO quantum chain.

In [3], we studied transport in the free fermionic one-dimensional systems
subjected to arbitrary local potentials. We considered a system consisting of two
parts. The bias needed for the transport is modeled by the initial highly non-
equilibrium distribution where only half of the system is populated. Additionally
to that, the local potential is also suddenly changed when the transport starts.
For such a quench protocol we computed the Full Counting Statistics (FCS) of
the number of particles in the initially empty part. In the thermodynamic limit,
the FCS was expressed via the Fredholm determinant with the kernel depending
on the scattering data and Jost solutions of the pre-quench and the post-quench
potentials. We studied the large-time asymptotic behavior of the obtained deter-
minant and observed that if two or more bound states are present in the spectrum
of the post-quench potential the information about the initial state manifests it-

self in the persistent oscillations of the FCS. On the contrary, when there are
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no bound states, the asymptotic behavior of the FCS is determined solely by
the scattering data of the post-quench potential, which for the current (the first

moment) is given by the Landauer—Biittiker formalism.
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Introduction

Actuality of theme.

This thesis is based on the papers [1, 2, 3] and devoted to the study of correla-
tion functions in one dimensional quantum integrable systems. Below, we present
a few key directions in this area and also review existing methods for computation

and asymptotic analysis of correlation functions.

There are several reasons to study quantum one dimensional systems. One
of them originates from the richness of mathematical structures of quantum in-
tegrable systems. The exact solvability of such systems allows to study non-
perturbative effects. Let we say more about methods used in this area. The main
subject of the study is correlation functions. Their computations can be divided
into several steps. First of all, we mention the algebraic and coordinate Bethe
ansatz which allow one to find spectrum and wave functions [4] and analytically
address the thermodynamic properties of these systems [5]. The second step is
usually devoted to the computation of the matrix elements of physical operators.
They can be found analytically in many cases [6, 7, 8, 9], but the computation of
correlation functions, which is presented as a form factor series, still remains quite
challenging. For the vacuum correlation functions there are effective numerical
methods based on integrability [10]. The asymptotic behaviour of the correlation
functions can be investigated by means of effective field theory (Luttinger liquid)
[11]. The origin of this behavior has been linked to the finite-size scaling of the
matrix elements computed by means of the Bethe Ansatz |12, 13, 14, 15, 16]. For
dynamical correlation functions based on this approach the corresponding effec-
tive field theory bears the name of non-linear Luttinger liquid [17, 18, 19]. At
finite temperature, or more generally at finite entropy (density of states), both the
numerical and field theory approaches experience some difficulties. In the numer-
ical approaches one has to scan a much larger portion of Hilbert space to saturate
the sum rules, as the form-factors (matrix elements of the physical operators)

decay exponentially with the systems size contrary to the power-law decays at
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zero temperatures (see for instance [20, 21]). The field theory approach is based
mainly on the linear spectrum for the soft modes (low-energy excitations) which
is valid only for very low temperatures [22, 23|. A more rigorous approach was
developed to evaluate finite temperature correlation function in integrable lattice
models of Yang—Baxter type, based on the Quantum Transfer Matrix (QTM) [24].
The notion of the thermal form factor was introduced [25], which turned out to be
useful for the asymptotic analysis of two-point correlation functions [25, 26, 27].
In the scaling limit, thermal form factors also arise axiomatically in the context of
Integrable Quantum Field Theory [28, 29, 30, 31, 32, 33, 34, 35, 36]. Less rigorous
but numerically accurate approaches are based on the thermodynamic limit of the

form-factors and restricting summation to a finite number of particle-hole pairs
|37, 38, 39, 40].

Another reason to study one dimensional quantum systems is motivated by
the development of experimental techniques, where usually a system somehow
becomes confined to move only in one dimension. For instance, in cold atom
experiments [41, 42, 43|. It is hard not to mention the work [44], where authors
observed that the considered system of cold atoms initially disturbed out of min-
imum did not tend to the equilibrium state even after a very long time. Such
experiments boosted the interest in the non-equilibrium dynamics or dynamics
of highly excited states and motivated a lot of theoretical research resulting in
new concepts such as generalized Gibbs ensembles, the quench action [45, 21],
generalized hydrodynamics (GHD) [46, 47, 48], and others. Another big area of
experiments deals with the transport in one dimensional quantum systems. There
is a remarkable phenomenon — quantization of the conductance [49] of the elec-
tric current through the quantum point contact. The theory which explains such
phenomena called Landauer—Biittiker formalism [50, 51, 52|. It directly allows
one to express the conductance in terms of the transmission matrix, this way
relating transport and quantum properties [53, 54]. From the point of view of
the one-dimensional integrable models the attention to transport problems was
renewed in the context of the quantum quenches, which are specifically, under-
stood as the evolution of the isolated quantum system initialized in the highly
non-equilibrium state created either via the rapid change of the Hamiltonian or

containing macroscopic spatial inhomogeneities [55, 56, 57, 58, 59]. The latter is
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more pertinent to the quantum transport setup and is dubbed as the partition
approach [60, 61]. The large-time behavior of such systems can be described by
the generalized hydrodynamics [62, 46], which allows one to get analytic treat-
ment of the non-equilibrium steady currents, describe anomalous diffusion, and
address the correlation functions (for review see the special issue [63]).

The dissertation is devoted to the study of correlation functions in one di-
mensional quantum systems. More precisely, it focuses on derivation of exact
expressions for correlation functions and asymptotic analysis of them in the ther-
modynamic limit (size of the system goes to infinity). We develop a new method
called the effective form factor approach, which allow one to study asymptotics
of the correlation functions presented in terms of Fredholm determinants.

Scientific programs, plans, topics, grants related to the dissertation.

The dissertation work was carried out in the Department of Mathematical
Methods in Theoretical Physics of Bogolyubov Institute for Theoretical Physics
of the National Academy of Sciences of Ukraine within the framework of the aca-
demic theme "Symmetries, deformations and integrability in models of quantum
fields and particles", state registration number in UkrINTEI 0117000023 (2017 -
2021) and also "Deformation and symmetry aspects and integrability and exact
solvability of quantum physics models", state registration number in UkrINTEI
01220000888 (2022-2026).

In addition, the works included in the thesis were partially supported by
the National Research Foundation of Ukraine grant 2020.02/0296 "Equilibrium
and non-equilibrium processes in quantum integrable models in condensed matter
physics" (2020 - 2021, 2023).

The purpose and objectives of the research.

The objectives of this thesis address equilibrium and non-equilibrium processes
in one dimensional quantum systems. The main peculiarity of these systems is
that the standard methods usually cannot be applied there. For instance, the
Landau Fermi-liquid theory that describes fermions in 3D is not applicable for
one-dimensional quantum systems. Instead, one has to introduce Tomonaga—
Luttinger theory, along with new mathematical methods such as bosonization
and soft-modes summation. The applicability of the Tomonaga-OLuttinger the-

ory and its various generalizations to the description of the specific physical one-
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dimensional systems is of interest to many groups in the world and presents the
main direction of the thesis. The thesis is focused mainly on quantum integrable
systems. Integrability allows us to advance in the exact computations and ad-
dress nonperturbative regimes. Even when it is impossible to perform analytic
calculations to the very end, the intermediate results significantly facilitate nu-
merical calculations and asymptotic analysis. The exact computations require
application of the modern algebraic and analytical mathematical methods: two-
dimensional conformal field theory, the nonlinear steepest descent method in the
matrix Riemann—Hilbert problem, combinatorial methods of the form factor sum-
mations etc. The necessity to apply these mathematical methods to specific phys-
ical problems naturally brings yet another goal of this thesis — the improvement
and expansion of the methods themselves. The obtained results are expected to

be important both for physical applications and pure mathematics.

Object of the research is equilibrium and non-equilibrium processes in one

dimensional quantum integrable systems.

Subject of the research is correlation functions and its asymptotics for the one
dimensional quantum integrable systems, which allows one to study static and

dynamical properties of the system.
Methods of the research.

We use a synthesis of various mathematical methods. In particular, we em-
ploy methods for summing form-factors in quantum models associated with free
fermions (XY model, impenetrable bosons, etc.). The result of such summations
consists in the presentation of the correlation functions as Fredholm determinants.
Our main method to find the asymptotic behavior of the correlation functions
consists in the direct extraction of it from the form-factor series in the finite sys-
tem. However, the number of summands in the form-factor series for correlation
functions at finite temperature or in the non-equilibrium setup is increased expo-
nentially with the system size. Therefore, in this thesis, we develop an alternative
method that modifies form factors but reduces the sums to the vacuum case, this
way simplifying the form factor summation. Finally, to check predictions for cor-
relation function in integrable models we use numerical methods based on [64],
which allow one to compute Fredholm determinants directly via discretization

procedure.
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Scientific novelty of the obtained results.

The following original results were obtained in the dissertation:

e The method of effective form factors was introduced and applied to the study
of asymptotics of correlation functions in different quantum one dimensional

models.

e In particular, it was re-derived asymptotics for correlation functions in the
XY model and more general asymptotics of Toeplitz determinants with

continuous symbol having arbitrary integer winding number.

e Additionally, it was obtained asymptotics of the correlation functions in
the anyonic model for large time and distance in time-like and space-like
regimes. In the time-like regime, the effective phase v(p) becomes discon-
tinuous. We developed regularization procedure and obtained additional

power-law prefactor on top of the exponential decay.

e We derived the Full Counting Statistics for the 1d transport via an arbi-
trary defect from the first principles. The answer was expressed via the
Fredholm determinant. Large-time asymptotic behavior of the obtained
Fredholm determinant was reduced to the determinant of the sine-kernel
type. The answer depends only on the transmission coefficient of the post-
quench potential, while traces of the original state are present only as the
energy distribution. When there are two or more bound states present in the
spectrum of the post-quench potential, the FCS gets persistent oscillating

behavior.

Personal contribution of the PhD candidate.

In work [1], it was found finite-size scaling of the effective form factors for neg-
ative values of the winding number 4, having the form very similar to the work
of [65]. It was obtained the relation between two representations of G(m), the
first one as the difference of two Fredholm determinants and the second one as
the single Fredholm determinants. Obtained analytical formulas for asymptotics
of correlation functions G(m) was presented in a convenient way for compar-
ing with existing results [66, 65|. For values of the winding numbers § > 1, it

was performed a summation of the tau function in the Fredholm determinant.
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Using discretization methods for computing Fredholm determinants [64], it was
performed numerical checks for the obtained analytical formulas for correlation

function G(m) for different values of the winding number 6 = 0, 1.

In work [2], it was rewritten the answer obtained in [67] for the correlation
function in the anyonic model in a way convenient for using the effective form
factor approach. It was observed that solutions of the equation for phase shift
v(p) may have discontinuities for large time and distance in the time-like regime.
It was developed a regularization procedure for singular solutions of the equation
for phase shift v(p), which led to the additional power law behavior of the cor-
relation function. Using generalization of the steepest descent method, namely
Watson'‘s lemma, the integral over holes was performed in the time-like regime.
The obtained formula was compared with [68], where a similar result was obtained
for the correlation function of the XX model. Numerical checks was performed
for the obtained analytical formulas for correlation function G(z,t) in space-like

and time-like regimes.

In work [3], it was observed that introducing Green’s function G(z,y,t) dras-
tically simplifies taking thermodynamic limit for the full counting statistics. For
comparison, one can read Appendices F' and G, where the similar computations
is done but without introducing the Green’s function. The case of two delta po-
tential barrier was analyzed, where by properly setting parameters two bounded
states may appear. In this case, it was observed that the current through the
barrier and the full counting statistics oscillate with the frequency proportional
to the difference of the energies of the bounded states. Numerical checks was
done for the full counting statistics, showing that it can be approximated by the

Fredholm determinant with more simple kernel, namely sine kernel.

Practical significance of the obtained results. The results obtained in
the dissertation can be used in the study of dynamical properties of quantum
systems as an alternative to the existing methods such as the Riemann-Hilbert
approach, thermodynamic Bethe ansatz, the Luttinger liquid theory etc. The
main advantage of the effective form factor approach is its relative simplicity
compared to the existing methods.

Approbation of the results of the dissertation. The results highlighted

in the dissertation were presented at the seminars of Bogolyubov Institute for
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Theoretical Physics of the NAS of Ukraine, as well as on international conferences
held in Kyiv, see Appendix J.

Publications. The results of this dissertation are presented in 3 journal
publications |1, 2, 3|, see also Appendix I.

Structure of the dissertation. The dissertation consists of an introduction,
3 chapters corresponding to logically completed stages of research, conclusions,
bibliography, which contains 182 references and 10 appendices. The dissertation

includes 10 figures. The total volume of work is 159 pages of printed text.
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Chapter 1

Effective free-fermionic form factors and the XY

spin chain

1.1 Introduction

This chapter is based on [1]|, where we developed a heuristic approach to address
correlation functions at finite density of states. Our main motivating example is
the XY spin chain in a transverse magnetic field. On one hand it allows to get
exact answers for spin-spin correlation functions in terms of Toeplitz or Fredholm
determinants and on the other hand matches the complexity of generic systems.
As we have mentioned above, this complexity is combinatorial in nature and re-
flects the fact that each form factor for the thermal states is exponentially small
so the number of relevant form factors is exponentially large. This makes direct
computation of the corresponding sum for the correlation functions notoriously
difficult and force researchers to focus at most on the two particle-hole excita-
tions |37, 38, 39, 40|, consider semiclassical approximations [69] or develop other
approximation schemes |70, 71].

We deal with this problem in a different manner. Namely, to describe the spin-
spin correlation function evaluated on a state with finite density of entropy (en-
ergy) we introduce effective form factors for the fermions with the modified phase
shift that absorbs information about the state and significantly simplifies com-
binatorics of excitations making it essentially analogous to the zero-temperature
case. Here we have to emphasize that the expressions of form factors was inspired
by the XX spin chain [72, 73, 74, 75|, rather than genuine spin form factors in the
Ising /XY models |76, 77, 78, 79, 80].

We focus on the static correlation functions for which we demonstrate that af-
ter complete summation of the effective form factors series and taking the thermo-

dynamic limit the answer can be presented in the form of Fredholm determinants.
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For the proper choice of the phase shift the kernels in the Fredholm determinants
differ from the exact ones [75] by the exponentially small (in distance between
spin operators) terms. Conversely, by first taking the thermodynamic limit of the
effective form factors and then performing their summation we manage to present
the Fredholm determinants as integrals of elementary functions. This kind of
asymptotic behavior for models in the continuum (not the lattice) arises similarly
from the solution of the Riemann—Hilbert problem for operators acting on the
whole real line [81]. This asymptotics was conjectured to be universal for corre-
lation functions of any gapless model of statistical mechanics at any temperature
and for an arbitrary coupling constant [82].

An important ingredient for our asymptotic analysis is the winding number of
the state-dependent phase shift v(q) defined as the difference across the Brillouin
zone, namely

v(+7m) —v(—m) =0 € Z. (1.1)
We recover the correlation length in the lattice version of the asymptotics in Ref.
[82] at 0 = 1 and additionally give an analytic expression for the prefactor. For
0 = 0 and 0 = +1 we derive asymptotic behavior for the correlation function in
the XY spin chain at finite temperature and compare it with the known answer
[66]. Different winding numbers correspond to different values of the magnetic
field and anisotropy. The winding number |§| > 2 does not have a direct physical
interpretation in this model, but we perform the asymptotic analysis anyway
and find the results consistent with the generalization of Szegs formulas [65].
Moreover, we have observed a peculiar identity between Toeplitz determinants
and Fredholm determinant of sine-kernel type with finite rank, which, to the best
of our knowledge, is new

det (1 + S, + 5‘71,) — det <1 + 5}) = det T}y, (1.2)

1<j,k<z

where the operators S, and 6V}, are generalized sine-kernels that act on L?([—, 71])

and are defined by their kernels

627riu(p) -1 . sin z(p—q)
Sulin) = 5 — (13
627riu(p) 1 _in(pt)/2
oV, (p,q) = g€ pra)e (1.4)
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and
Vs

T, = _i dSO e—i(kfl)g0+27ri1/((p). (15)
2

™

Notice that the right hand side of this formula can be also be presented as a
Fredholm determinant but with modified shifted v(k) [83]. For v(q) corresponding
to the XY spin chain Eq. (1.2) gives different representations of the spin-spin
correlation function, the left hand side was obtained in [75] and the right hand
side in [84, 66].

The chapter is organized as follows. In Sec. 1.2 we define the tau function
together with the effective form factors and outline the derivation of the Fredholm
determinant presentation resulting from the summation of form factors. The
details of this derivation are presented in Appendix A. In Sec. 1.3 we study the
thermodynamic limit of the form factors and argue for an explicit presentation of
the form factors series as integrals of elementary functions. All necessary technical
results are given in Appendices B and C. Sec. 1.4 deals with the application of
the general formulas to the XY spin chain. In Sec. 1.5 we discuss connection of
the general result to the Toeplitz determinant and relations such as Eq. (1.2).

Sec. 1.6 concludes the chapter and offers an outlook.

1.2 Effective form factors

We start with the formal definition of the static correlation function (tau function),

as a form-factor series

N41 N
ki—. )

(o0 = Y I e E TR, (19)

here the ordered set k = {k1,...ky11} consists of N+ 1 distinct shifted momenta
inside the Brillouin zone (k; ~ k; + 2mn, n € Z) each being a solution of the
transcendental equation

kL — ,—2miv(k) (1.7)

for a smooth function v(k). This function plays the role of the phase shift and is

assumed to be compatible with the Brillouin zone structure, i.e.
v(m) —v(—m)=4§ € Z. (1.8)
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The integer § is the winding number (index). One can easily argue that the
number of solutions of Eq. (1.7) is L+ 4, each root defined up to O(1/L?) terms.

The set q = {q1,-..,qn} is an ordered set of IV distinct solutions of equation
et = 1. (1.9)

Motivated by the spin form factors for quantum XY chain written in the XXO

basis [75], we postulate the following form-factor

N+1 N 2 N
4L e9ki)/2 gin v, ol
[(kla)|* = =5+ (H 7 [ e ?“(det D)?, (1.10)
T+ Zv(k) Vo
i=1

where det D is a trigonometric Cauchy type determinant that can be presented

in two equivalent forms

COt k1— QI COt kN-Q—%_Ql N+1 P
' _ _ [ sin 22t H SR
: T : 1> 1>

det D = = ) (1‘11)

ki1— (IN knii1—qn N+1 N

cot cot B

11 H sin &4

1 ce 1 1=1 j=

Furthermore, since we do not specify the specific operator we will sometimes refer
to Eq. (1.10) as to the overlap, and use this term interchangeably with form
factor.

We assume that the index is of order § ~ O(1) as both the system size and the
number of particles are approaching the thermodynamic limit N — oo, L — oo
such that N/L = 1. In this case, the summation over q can be performed exactly

(see Appendix A) and the result for the tau function reads

~

7(z) V2 det(1 4 V 4 6V) — det(1 + V), (1.12)

where the determinants are taken in the space L?*(S') and the corresponding

operators are defined by their kernels

2

. ke ]
AT sin Tq

(1.13)

9 .
oV (k,q) = —=sin’(wv(k))ed®eikta)z/2, k,q¢€[—m, ) (1.14)

v
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with
7 4,L'€—g(k)+ik‘x

— dq —9(q)+iqx q+i0—Fk
E(k) = /?e cot 5 e 1 (1.15)

The diagonal terms & = ¢ are understood as in L’Hopital’s limiting procedure.

Further, we impose the relation
A (1.16)
to present tau function as
7(z) = det(1 + S, + 6V, + R) — det(1 + S, + R) (1.17)

with S, being a generalized sine-kernel

eQWiI/(k) —1 . sin z(k—q)
S, (k,q) = )22 2 1.18
(k. q) 5 ¢ L (1.18)
2miv(k) _ 1 .
5V (k, q) = —62—6296(“(1)/2. (1.19)
T

This way, the remainder R = V — S, consists of integrals in Eq. (1.15), which are
exponentially suppressed! for large and positive . Let us call the tau function

with discarded R as 7, namely

~

75(z) = det(1 + S, + 0V,) — det(1 4 S,). (1.20)

This particular generalization of the sine-kernel is contained in the prefactor
(e?™(*) — 1) and allows one to describe a modification of the system from the
vacuum state for which v(q) is constant within the arc k € [—kp, kp] and zero
everywhere else, to the finite-entropy state, where, for instance, for the thermal
state of the fermionic system the prefactor would be proportional to the single-
particle Fermi distribution function?. In Sec. 1.4 we relate this type of kernel to
the static spin-spin correlations in the XY chain. Then v(k) will depend not only

on the state but also on the parameters of the model.

"'We assume that exp(—2miv(q)) is an analytic function within some vicinity of the real line.

2See, for instance the discussion in Appendix A in Ref. [85].
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1.3 Thermodynamic limit and direct summation

of form factors

1.3.1 Winding number § =1

In the previous section, we considered the summation of the form factor series and
subsequent taking of the thermodynamic limit. This leads to the presentation of
the tau function as a Fredholm determinant. The essence of this derivation,
which is outlined in Appendix A, is that each momentum ¢; € q was treated
independently. In this section, we focus more on the detailed structure of the
ordered sets q in the sum of Eq. (1.6). The total number of solutions of the

equation e” = 1 inside the Brillouin zone is L, which can be presented as

21 L+1 _ _
Qj:f<_T—|—j), j=12,..., L. (1.21)

As we have already pointed out above, the number of solution of Eq. (1.7), depends
on the winding number §. In particular, for 6 = 1 there exist exactly L + 1
solutions inside the Brillouin zone

2 L+1 . :
kj:l<——+j—Vj)7 vi=v(kj)~=v(g), j=1,...,L+1. (1.22)

L 2
If we choose the set k = {ky...,kr11} in Eq. (1.6) then summation over q will
only involve one term q = {q1,...qr}. In the large L limit the corresponding
overlap reduces to a constant which is slightly counterintuitive from the orthogo-
nality catastrophe point of view [86]. The explicit value of this constant is given
by Eq. (C.11). The difference of momenta in Eq. (1.6) can be evaluated in the

large L limit as

L+1 L m

AP = Z k; — Z% ~T— /V(q)dq. (1.23)

-7

Combining these observations together we obtain explicit equality for the Fred-

holm determinants in Eq. (1.12), and approximation for the generalized sine-
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kernel

™

Ts(x) = 7(r) = exp | —imx + ix/z/(q)dq

X exp —/dq/dk[ V() _q(k k)/2m . (1.24)

2 sin 5

[t is interesting to note that only the periodic (i.e. having winding number 6 = 0)

part of (q) has entered the final answer.

1.3.2 Winding number ¢ =0

For 6 = 0 we proceed similarly to the previous subsection. This time however
the maximal possible number of the k; € k is L, so the maximal set q consists of
N = L—1 momenta. There are exactly L such sets and they can be parameterized

by the position of the “hole”

q = {a1, -, Qa-1,9a+1,---,qL}, a=1,2,..., L. (1.25)
The overlap is given by

A[qa]eg(%) F(L —a+1- Va)F(CL + Va) ? T+, 4
I3 TL—at1—v)T(at+vs)] \7—q .

[(klg')|* =
(1.26)

The derivation can be found in Appendix C.3 along with the explicit expression
for Alqa) (see Eq. (C.25)). For a ~ L and L — a ~ L the last two factors cancel

each other, which yields the following explicit expression

6—2mua -1

(klg')|” =

X exp / /dk[ = k)rl/u(q)cotww . (1.27)

-7

On a technical side, we have used a variation of Sokhotski-Plemelj formula

][ v(q) cot d ; kdq = / v(q) cot q_];—_HOdq + 2miv(k), (1.28)
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to transform the integral in the exponential. For a ~ 1 and L —a ~ 1, the overlap

is still O(1/L), so we can replace the sum in tau function Eq. (1.6) by an integral

—ix Y- (kj—q;) L .
T(r)=e > (k|q@)|e e = Ty(a) Yo () (1.29)

a=1

Ty(r) = exp zx/ q)dg — = /dq/dk[ SIRE k>r : (1.30)

with

and

™

[dk, . — k40
Yo(z) = /—(e%w(k) — e ™ exp —/V(q) cot udq . (1.31)

2 2
Equivalently we may re-write Y;(z) as a contour integral in the variable z = e
1 dz :
Yo(z) = =—— @ —(e W _1):7"& 1.32
0 =5 . S )26 (2), (1.32)

where the contour C. is a circle centered at the origin with slightly larger than

unit radius and
iy

S(z) = exp i/dQV(Q)

—T

z + e

z — ek

(1.33)

We assume that v(q) is non-singular in the region of integration, thus &(z) is
holomorphic outside the unit circle on the Riemann sphere, so the asymptotic
for large positive integers x is defined by the analytic behavior of v(k) in the

—2miv(k) is a meromorphic function (of z = ')

upper-half plane. For example, if e
outside the unit circle in the complex plane having simple poles at 2y, 2z9,...,
with 1 < |21] < |29 < ---, then for large x the leading contribution comes from

the smallest pole
Yo(z) & —27 1S () res,—,, e 2R, z = e, (1.34)

Applying this formula together with Eq. (1.30), we have an asymptotic expression

for the sine-kernel Fredholm determinant for = 0

To(x ,
Ts(z) =~ 7(2) ~ — Z(lgl)G(zl) res,_, e 2Tk, (1.35)
1
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Remark. Notice that even for 6 = 1 one could have chosen k = {ky,...k.}.
This would not affect the derivation of the Fredholm determinants, but instead
of one term in the form factor series as in the previous section, we still get a sum
of L terms. Using Appendix (C.3) and specifically Eq. (C.27), we obtain

L

—ix Z —) &
T(z)=e = ZI (klq'")[Pe™ " = 752 (z)
(

2 2F(¢a)+9(0a) [ ([, — 1—u )T 2
XZ 1TT—iTq, sin ) [ ( a-+ Va) (CL—I—Va) . (136)

e2Fm+e(m) | T(L—a+2—v)T(a+vy)

Here, by 75—1(z) we mean the r.h.s of Eq. (1.24). Notice that contrary to the
§ = 0 scenario, the middle parts a ~ L and L —a ~ L, are suppressed as 1/L?, so
their contributions are negligible as I — oo. The soft-modes at the edges a < L
and L —a < L now start to play more important role because the corresponding
overlaps are O(1). The prefactor in front of the Gamma functions simplifies to

one and the whole series reads

o) = o) G Y | e o). (1)

a=1

In order to compute this sum in the L — oo limit we expand it at the edges and
then perform the summation of the simplified expression extending the upper

limit to infinity. Namely, the asymptotics

NL—a+1-v)l(atv.) J(at+v)™ La< L
TL—a+2=v)0@+n) | (L—a-v)? L—a<I (1.38)
leads to
T(r) sin?(7v_) [ w— 1 o0 1
B sin?(7v_) > 1 B
=—— a;}@ PETAT 1. (1.39)

This way we restore the correct result even in the different formulation of the

form-factor series.
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1.3.3 Negative winding number § < 0

Let us consider § = 1 — n for positive integers n € Z~. The maximal number of

solutions of Eq. (1.7) is £ = L 4+ §. We choose all of them to comprise our set k

2 L+1
k:{kl,...kg}, ]{lefﬂ- <—%+i—%‘> . (140)

The set q*% is obtained from the complete set q in Eq. (1.21) by the omission

of the “particle” (creating a “hole”) at positions g,

g = {ql,,,,(jal,...cjan,...qL}. (1.41)

The total difference of momenta for such a state reads

l L n n n
APpa, = ki=> i+ Y o, ~0m— /V(q)dq +) o (142)
=1 1=1 =1 =1

—T

The corresponding overlap is analyzed thoroughly in Appendix C.4 for a; ~ L,
L —a; ~ L. Tt gives the following contribution to the tau function (1.6)

n . 2 n
e—ixAPal,...an|<k‘qa1,...an>|2 = A;[v] H (2 sin day 7 qaj) Hyam (1.43)
i=1

i>j
where

™

As[v] = exp ix/u(q)dq — jxdm

L [ = o) — (g — k)s/ )]
-3 fonf o ] wo

QSin%

and
sin?(7v(q,))
ya = —4 I
X exp | —ixq, + 9(qq) — ][dq (V(q) — 5%) cot 4 _2% . (1.45)

-7
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In order to evaluate the tau function we proceed similarly to Ref. [87, 88| (see
also [89]). First, we notice that one can present the product of sines in (1.43) as

Vandermonde determinants

n 2 n
I]:(Qshlg%—§l§i> ::I]:(ew%,__em%> (e_WWI——e_m%>

i>] k>j
— det (62(3_1)(]%) det (G_Z(J_l)qak)
1<j,k<n 1<j,k<n

— . . . . i(jl_ji)Qa i(jn_jé)Qan

= €j,..jnEj..J.€ L...e , (1.46)
where €, 1s a completely antisymmetric tensor; the summation over repeated
indices is implied. This expression is an almost factorized, so in the second step

we render summation over q,, to be independent, namely

3 :%ZZ (1.47)

qaq <-<qy, Gaq Gan
This immediately allows us to write the tau function (1.6) in the thermodynamic
limit

T(x) = det [Ys(x+j—Fk)] X

1<5,k<n

s

s T 9
1 — vs(k
o o a3 o0 |20

g 2

, (1.48)

where v5(q) = v(q) — (¢ + m)d/(2m) has zero winding number and Yj(z) stands

for

exp | —i(z — 0)q + idm — /dkm;(k) cot

—T

q—k+i0 (1.49)

The integral has been transformed using identities such as Eq. (1.28) to facilitate
finding asymptotic behavior at large positive x. Indeed, the exponential is an

analytic function, so after the proper deformation of the integration contour it
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can be dropped. This way, we demonstrate that, in fact, Ys(z) depends only on

vs(z), namely

s

d .
Ys(x) —/27qr ~2mivs(a) exp —ixq—/dkug(k:) cot

—T -7

q—k+10

> (1.50)

Let us emphasize that Eq. (1.48) gives the exact answer for the Fredholm deter-
minants (1.12). The asymptotic behavior for large x will give also asymptotics for
the generalized sine-kernel determinants (1.20). Similar to the treatment of the
0 = 0, the asymptotic expansion of Ys(x) is connected with analytic properties of

v(q). Let us assume that the first n leading terms are given by
Ys(z) = Aje” % + -+ + Ape” ™ + o(e” %), |22 < |2ti41]- (1.51)

Then the leading order of the determinant reads

n n 2
det [Vi(z+j— k)]~ [[Aae =] (2 sinh 22 > %9> . (1.52)
=1

1<j,k<n e
1>

For n = 1 we reproduce the results from the previous subsection.

1.3.4 Positive winding numbers ¢ > 1

For § > 1, similar to 6 = 1, we can keep the maximal available number of
k; € k, so the r.h.s sum in Eq. (1.6) consists of one term, which is of order
O(1/L). This means that the corresponding Fredholm determinants in Eq. (1.12)
vanish identically. The reason for this can already be seen before going into the
thermodynamic limit. Namely, first we notice that the matrix A;; in Eq. (A.10)
can be considered on the full set of momenta k = kq,...kp,s, which will not
change the determinant’s limiting value

lim det A =det(1+V). (1.53)

L—00 1<i,j<L+8

But since A;; has the form of Eq. (A.8) which can be schematically written as

Z Py, (ki) g, (K (1.54)
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for some functions ¢ and ¢. This means that the rank of this matrix is maximally
L and addition of the rank one matrix 6V can increase the rank to at most L+ 1.
Therefore, for 6 > 1

det(14+ V) =det(1+V +4V) =0. (1.55)

The corresponding determinants with sine-kernels are not zero i.e. det(1+ S’V) =+
0. In this case we see that even though the difference between V and S, is
exponentially small, it cannot be neglected, contrary to the cases for 6 < 1. To
address this issue we modify the definition of the tau function by considering
summation over k in Eq. (1.6) instead of q, namely

N+1 N
—iz( Y ki—)_ qi)
T (x) =) [Klg)ffe = ST (1.56)
k

where the overlaps keep their form (1.10) but with the modified relation between
v(g) and g(q), namely
e 9 = ¥mivla) _ 1 (1.57)

In the thermodynamic limit this sum transforms into Fredholm determinants (see
Appendix A)

() = det(1+ V_ +6V_) + (I — 1) det(1 + V) (1.58)
with (i)
V_(k q) _ € _ 1eix(q+k)/2+i(q—k)/2E*(k) _ E*(q) (159)
’ 47 sin % ’
[dk . .
I — /%e_mk(l _ 6—27721/(/4;))7 (160)
62m'u(k) -1 ‘ ‘ . 1/
SV (h,q) = S (B_(q) —iT/2) (E_(k) +iT/2) =09/ (161)
m—10 "
E_(q) = / - e~k (e=2miv(k) _ 1) cot — L 4 je~ina, (1.62)
s
—m—10

For large = > 0, we notice that I is exponentially suppressed and E_(q) ~ ie™%¢,
so 7_(z) transforms into a generlized sine kernel Fredholm determinant Eq. (1.20)

up to terms in exponentially small x. The corresponding asymptotic can be
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obtained in a way similar to 6 < 0, however instead of summation over “holes”
g, we will have summation over extra particles k,. We demonstrate how it works
for 6 = 2. In this case the set q consists of L elements and the set k of L + 1
elements, which we parameterize by the omission one of the L 4+ 2 momenta from

the all possible solutions of Eq. (1.7). Namely,
KD = {ky, .. kot kasts- . kreo}, a=1,2,... L+2 (1.63)

The relative momentum of this state in the thermodynamic limit reads as

=) k- qu—%—k—/ (¢)dg. (1.64)

kek (a) =1 o

The corresponding overlaps are given in Appendix C.2. Taking the thermody-
namic limit we obtain the following presentation suited for the asymptotic analysis

when £ — +00

A / 727m/ 1) %

exp | ik(z +2) + / (V(q) — 2) cot T.dq , (1.65)

—T

4m | fuf (0= ] e

For 6 > 2 one can obtain similar determinant representation as for 7_(x) as in
Eq. (1.48).

Even though we have constructed 7_(z) to address positive indices § > 1 it

is possible to describe § < 1 by the previous choice of g(k) Eq. (1.16) and

considering x < 0.

1.4 Quantum XY spin chain and its correlation

functions

In this section we consider an application of the general results obtained in the

previous sections to the derivation of large distance asymptotics of thermal spin-
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spin correlation functions of the quantum XY spin chain. The quantum XY spin

chain in a transverse field is defined by the Hamiltonian [84, 90|

1+ o o 1 - z
Hxy = —5 Z ( ! Om m+1 + 9 ,yo_y g@—}-l + ham) ) (167)

where a periodic boundary condition for the spin operators is assumed o7, = of,
~ is an anisotropy parameter, and A is the strength of the magnetic field. The
Hamiltonian Hxy of XY model can be considered as an anisotropic deformation
of the Hamiltonian Hxx of XX model, corresponding to v = 0. The Hamilto-
nian Hxx can be diagonalized in two steps: Jordan—Wigner transformation to
fermionic operators and a Fourier transform to momenta representation. To diag-

onalize the Hamiltonian Hxy an additional Bogoliubov transformation is needed
[84, 90, 75] specified by the angle 6(p):

S0 _ h — cos(p) + iy sin(p)
e W

Here £(p) stands for the spectrum of the effective Dirac fermions A,, and the

_ V(h — cos(p))? + 42 sin®(p). (1.68)

Hamiltonian Hxy reduces to the free-fermionic one, namely

Hyxy = Y E(p) (Af A, —1/2). (1.69)

We skip the details of the fermions boundary conditions as they are not important
in the thermodynamic limit. We focus on the following spin-spin correlation

function at finite temperature

G(m) = (04101)p = : (1.70)

It is the most interesting two point correlation function as the others are either
trivial in the thermodynamic limit: (o, ,07)r = 0, can be expressed in terms
of elementary functions as (o7, ,,07)r (see Ref. [66]), or related to G(m) after
the change v — —~v as (o}, 07)r. We follow Ref. [75] to present G(m) in the

thermodynamic limit as Fredholm determinants (m > 0):

G(m) = det(1 + W + W) — det(1 + W), (1.71)
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Figure 1.1: (left panel): the dependence of Bogoliubov angles on momentum for
three different points in h—~-plane: h = 0.7,y = 0.3 (§ = 1) —red solid, h = 1.1,
v=0.3 (6 = 0) - black dashed, h = 0.5, v = —0.1 (6 = 0) — blue dotted; (right
panel): three regions in h—~-plane corresponding to § = £1 (ferromagnetic phase

with v 2 0) and § = 0 (paramagnetic phase ).

where the operators I, §W are integral operators on L*([—m, 7]) with the kernels

given by
W(p,q) = —%6(2)% wr(q), (1.72)
SV (p, g) = = exp _Zm(g 9 p(g), (1.73)
wr(q) = % (1 — @ tanh %@> : (1.74)

In this form we immediately observe that G(m) can be identified with 7g(m)
defined in Eq. (1.20) with the appropriate choice of v(q), which can be read off

from the prefactor in front of the sine-kernel

eZriv(k) — 1 2wp (k) = ") tanh 652(1{:) (1.75)

This way, to find the large m asymptotics we approximate G(m) by 7(m) from
Eq. (1.12) and use results for form factor series obtained in the previous sections.
The analysis depends on the winding number § = v(7) — v(—m), which can be
read off from the following form of the phase shift

0(k) 1 BE(k)
5

k) = —~ 4+ — log tanh
v(k) o +2m’ og tan

(1.76)
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h=0.47,y=-5.0, f=1.5
0.8 h=0.47, y=0.25, B=1.5

G(m)
o
T

Figure 1.2: The exact values of the correlation function G(m) (red dots) and
its large distance asymptotics (blue solid curves). The left panel corresponds to
h =047, ~v = 0.25, 8 = 1.5, and 6 = +1. The right panel corresponds to
h=047~v=-5.0,8=1.5,and § = —1.

The winding number is governed by the Bogoliubov angle 6(7) — 6(—7n) = 2x4.
The possible values of § are 6 = 0, &1 depending on the anisotropy parameter =y
and the magnetic field h (see Fig. 1.1 for the typical behaviour of the Bogoliubov
angle and the phase diagram).

Notice also that Eq. (1.76) implies that the integral entering the asymptotic

formulas can be presented as

T B 1 T ﬁg(Q)
/ dqv(q) = md + 2m’/ dq log tanh 5 (1.77)

-7 —T

In Fig. 1.2 we plot exact values for the correlation function G(m) (red dots)
and compare them with the asymptotic formulas written explicitly below (blue
curves). We see that large m asymptotics gives reasonable approximation even
for m ~ 1. In fact, to get any visual discrepancy we had to consider large negative
anisotropies in the ferromagnetic phase (§ = —1 and v < —1). It turns out that
in this case the asymptotic formulas for non-integer m acquire nonzero imaginary
part, which is discarded in the plot. For integer points the imaginary part is equal
to zero. Below we analyze each case separately and present analytical formulas
for the asymptotics. These expressions turn out to be in accordance with the

results of Ref. [66] but have a more compact form.
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1.4.1 Paramagnetic phase h > 1 (6 = 0)

We start our consideration with relatively large magnetic field A > 1. For zero
temperature such values of A correspond to the paramangetic phase, while for
finite temperature the corresponding v(q) has zero winding number § = 0. This
way, we use formula (1.35) to find asymptotic behavior of the correlation function

G(m) at large m, namely
G(m) = 19(m) ~ —To(m)zl_m_16(zl) res,_ ., 6_27””(]“), 2 =¢*, (1.78)

where To(m) and &(z) are given by (1.30) and (1.33), respectively. The point z

—2miv(k)

is the position of the pole of e outside unit circle with minimal absolute

value. To find z; we factorize

Q(z) = E*(k) = (h — cos k) ++?sin*k =

1 — 2
ez a)(z -y )z - ), (L79)
h—h2+42 -1 h+h?+92 -1
2 = Stk S S Ch A () = yF. (180)

1E£7 ’
The exponent of the angle (k) of Bogoliubov transformation can also be presented

in a factorized form, which leads to

B/ Q(z)
o-2miv(k) _ ~ib(k) cothy BE(k) 2z /Q(z)coth =5~

= — . 1.81
2 L+ (z—2y)(z —ys) (1.81)
[t useful to present /Q(z) coth gw/Q(z) as an infinite product
00 B2Q(2)
2 Hn:l 1+ n—1)2m?
V() coth §\/Q(z) - [+ ) ) (1.82)

Notice that in such a form the branch cut singularities disappear manifestly.

—2miv(k) ig now a straightforward task, from

Moreover, the analysis of the poles of e
which we conclude that the smallest (by the absolute value) pole outside the unit
circle is z; = y4 for all non-zero temperatures. Therefore using Eq. (1.81) and
Eq. (1.82) we obtain

—2miv(k) _ +
I'eSZ: 6 —_— —_— . 1.83
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Finally, taking into account (1.77) for § = 0, the asymptotics reads

G(m) ~ Ae™™/¢, (1.84)
where
- ht VIE+ 72— 1
¢ =logy, — o / dq log tanh 582(@, Yy, = i 1 ++ 7 ., (1.85)
s Y

2

VR

2
exp / dq / dp[ p) +
2 sin 2

The sign of the magnetic field A is irrelevant since it can be flipped by the conjuga-

s

i/dqv(q)y++€%q . (1.86)

Yy — e

—T

tion of the Hamiltonian with o* acting in each site. Therefore below we consider
0<h<l

1.4.2 Ferromagnetic phase h <1, v >0 (§ = 1)

In the ferromagnetic phase h < 1 with positive anisotropy v > 0 we use the
asymptotics (1.24) and the integral (1.77) for 6 = 1 to obtain

G(m) = Ae™™¢, (1.87)
with
¢t = ——/dq log tanh 552(@ (1.88)
2
v(p) — (¢ —p)/2
A= exp —/dq/dp! 2smq2P . (1.89)

For particular values of the parameters we plot exact correlation function G(m)
and its asymptotics (1.87) in the left panel of Fig. 1.2.

Note that even though formulas for the correlation length in different param-
eter regions Eq. (1.85) and Eq. (1.88) look different, the transition A < 1 and
h > 1 is analytic in h. The same is true for prefactors A given by Eq. (1.86) and
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Figure 1.3:  The inverse correlation length (left panel) and the prefactor (right
panel) for different values of magnetic field h. Blue solid curves correspond to Eq.
(1.88) [Eq. (1.89)] for h < 1 and Eq. (1.85) [Eq. (1.86)| for A > 1, for the left
[right] panels, respectively. The orange line shows formal use of Eq. (1.88) for the
region h > 1.

Eq. (1.89) (see the corresponding plots in Fig. 1.3). This reflects the fact that at
finite temperature in one dimensional systems with short-range interactions phase
transitions are absent and the physical observables are smooth functions of system
parameters. This observation was used in Ref. [91] to obtain correct expressions

for the correlation length and prefactor for the Ising model in the scaling limit.

1.4.3 Ferromagnetic phase h <1, v <0 (6§ = —1)

In this region of parameters, the correlation function G(m) is given by Eq. (1.48)
for n = 2. We will need the large m asymptotics of Y_;(m), which for h? +~2 # 1
is given by

Y 1(m) =~ Aje” ™" + Age 2™, (1.90)

where, as seen from Eq. (1.80),

= log oy, 7y = logy., (1.91)
2 1 1
A =2 — & (xy), 1.92
N T 1) (192
2 1 1

(1.93)

Ay = —= —&_1(ys),
I s PR
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™

S_1(z) = exp i/dq (u(q) + 7r+q) Z+eziq : (1.94)

2 z —eu

—T

Therefore Eq. (1.52) becomes

Y_i(m) Y. (m+1)
Y iim—1) Y. i(m)

~
~~

16
- —m(logzy+logyy) (1
52(1 _7)26_1(I+)6_1(y+)6 . ( 95)
Finally, the large distance asymptotic for G(m) following from (1.48) is
G(m) ~ Ae™™/<, (1.96)
where
1
¢l =logx, +logy, — —/dq log tanh QS(Q), (1.97)
27 2
A= e @6 ()X
T s 2
1 — — 2
2 2 sin 5P

In the case when h? + % = 1 we have x, = y, and the derivation is changed
slightly (in particular, Y_j(m) ~ (B 4+ C'm)e ™8%+) however the final formula
for the asymptotic of G(m) is the same. Notice that for non-integer values of m
the right hand side of Eq. (1.96) becomes a complex valued function. We plot
the typical behaviour of G(m) and the real part of its asymptotics in (1.96) in
the right panel of Fig. 1.2.

1.5 Relation to Toeplitz determinants

The traditional approach to the correlation functions in the XY spin chain is
in presenting them via Toeplitz determinants [84, 66]. Asymptotic analysis of

these structures can be performed by means of the Szegd theorem [92, 93| and
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its generalization® by Hartwig and Fisher [65]. Let us comment on how similar
structures can appear within our effective form factors approach. In addition to
tau functions (1.6) and (1.56) that contained different number of “particles” in

bra- and ket- states, we define

(@)= |<p\q>|26m(i;pi;qj>v (1.99)

q

where the quasi momenta g are solutions of /4" = 1, while p are solutions of the
following equation

Pl — = 2miw(p), (1.100)

Here for convenience we have chosen a different notation for the phase shift. We
focus on the case of non-positive winding numbers for this function i.e. w(w) —

w(—m) < 0. The corresponding form factors read

1>] 1>]

=1 H sin 7w (p;)

. L N
. 1(1 + (i) \i=! ‘Hl sin® 24
= )=

N
[] e i) —g.(a) N
[(pla)]® = (

N N
: 2 Pi—Dj 2 Q;—G;
>2 | | S11 5 | | S11n 5

(1.101)
The summation in Eq. (1.99) can be performed using techniques developed in
Appendix (A), which together with the identification

e 9P) = o= 2miwlp) _ 1 (1.102)

leads to the Fredholm determinant expression of 7

ro(z) =det(1+V.),  Vo=25,+ R, (1.103)
where -
N eQm'w(p) — 1 sin 24

S = 2 1.104

(p,q) 5 = (1.104)

X 62m'w(p) -1 L - rw(p) - TW(Q)
Ro(p,q) = ————¢ 00 sin254

(1.105)

3Here we focus only on the smooth symbols with the only “singularity” given by the non-trivial winding

number
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d . : 0 —k
) = [ By 0

—T

(1.106)

Notice that definitions of the kernels of V and S, differ from their analogues
introduced in Sec. 1.2 by the conjugation with diagonal matrices, which does not
change the value of the determinant. Comparing overlaps (1.10) and (1.101) (see

Appendix C.5) we conclude that imposing the following relation between v(q) and

w(q)

q+m
wla) = v(a) = 5 —=nl9). (1.107)
we obtain exact equality for the tau functions, namely

det (1 +V, Wy) — det (1 + Vy) — det (1 + Vyl) . (1.108)
Here the finite rank contribution is modified due the conjugation with the diagonal

matrices amiv(p)
oV(p,q) = e 7 2p _ 1e_i(x+1)p/26_i(x_1)Q/2. (1.109)

T

Similar relations can be obtained between 7_(z) and 7y(z) for 6 > 1. For large
positive x, functions r,(x) are exponentially small, so Eq. (1.110) holds for the

generalized sine-kernels S,
det (1+5*V+5f/y) — det (1+S*,,) — det (1+S*,,1>. (1.110)

In fact we can easily demonstrate that this relation is true for any positive integer
x. To do so we will clarify the relation between Fredholm and Toeplitz determi-
nants (cf. |94, 83]). It is convenient to slight deform of the kernel by the set of
functions ag(p), ai(p), ..., az—1(p)

27rwp lx 1

Sy(p,q) = Zan emaP), (1.111)

For a;(q) = 1 one can easily see that we recover the kernel S, up to conjugation

with diagonal matrices, which does not affect the value of the determinant

det <1 + S) — det (1 + 5*\) . (1.112)
Clo:al:...aw_lzl
Furthermore, we can treat 54 as a product of two rectangular matrices
. e27ri1/(p) -1 _
St = AB, A =€, B, = Q—an(p)e_mp. (1.113)
s
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Then using the fact that det (1 +.48) = det (1 + BA) we obtain a relation be-

tween the Fredholm determinant and determinant of matrix x by x, namely

det (1 + SA) = det  (Spm+ Tom), (1.114)
0<nm<z—-1
T, = /;l—qan(q) (€2m'1/(q) . 1)€—i(n—m)q_ (1.115)
s

—T
For a, = 1 the matrix T},,, transforms into the Toeplitz one, namely

™

- da |
det (1 + Sa) — det o cr = / N omiv@g=ike(1.116)
0<nm<z—1 27

In order to account for the finite rank we notice that because rank-one contribu-

tions are at most linear in the determinant expansion, we can present

det (1 + S, + 5%) — det (1 + S‘V) = a% det (1 +S,+ 045VV)

(1.117)

a=0

To account for the finite o one must choose ag(q) = 1 — ae™™? and a,(q) = 1 for
n > 1, therefore

det (1 +5, + adVV> = det (1 + @) =

(CO —0Cy; C 1 —0Cx—1 ... Cgy1 — OéCl\

C1 (&) Ce C_z12

det ' ' _ ' . (1.118)

\ Cr—1 Cr_2 Ce C /

Since we are looking only to the terms linear in «, we can leave only terms that

are proportional to « in the first row. Moreover we can replace this row with the
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last one. This way we obtain

a% det (1 + S, + 045VV>

a=0

(Cl Co C. C_x_,_g\

Co C1 oo Czu3

(=1)"det | ' = det Gy, (1.119)

0<n,m<z—1

\CI Cyr—1 ... C1 )

where

- 7 dq or; (q) ,—i(k+1)q idq 2mivy(q) ,—ikq
_ Tiv i _ 1 p2mwv g 1.12
* /27T6 c 27‘(’6 ¢ ( 0)

Here we see the shift v(q) — 11(q) as predicted from the finite size scaling of the
form factors in Eq. (1.107). This shift together with Eq. (1.116) completes the
proof of Eq. (1.110).

Let us also comment on how results of Sec. (1.3.3) reproduce Hartwig and
Fisher asymptotic behaviour (Theorem 4 in Ref. [65]). As v5(q) has zero winding

number we can expand it as
—1 iqn
v5(q) = — E ke (1.121)

Then the integral in the exponential in Eq. (1.50) can be evaluated as

™
o

_ 0 d i(g+1i0) ip
—/dpm(p)cotw: dpe e > ke

2 2 eila+i0) — eip
g g n=—00

=—ko—2) €k, (1.122)

In this derivation we used that |e!4*)| < 1 and expanded the denominator as a
geometric series. Substituting this result back into Eq. (1.50) we immediately see

that Ys(z) = [, where the Fourier modes [,,, are defined through the relation

exp k_p e 4 — | ') | = 1, 1.123
(> JEp> (1123



Finally, expressing double integral in the asymptotic expression Eq. (1.48)

T s 2
1 vs(q) — vs(p) -
L — N nkok o, 1.124
:/ q/p[ mE | 2" .

we obtain the statement of Theorem 4 in Ref. [65].

1.6 Conclusions

In this chapter we have introduced the form factors (overlaps) to simulate the
static correlation functions for the states with finite entropy. The state was de-
termined by the phase shift function v(q). For the traditional approaches dealing
with the finite entropy states is notoriously difficult but for our approach it is
rather advantageous situation, since almost all available quantum numbers are
occupied which tremendously simplifies the computation of form factor series.
This allows us, in particular, to re-derive known asymptotics for the static two
point correlators in the XY spin chain and present them in a more compact form.
We hope that the simplicity of this approach will make it possible to obtain the
full asymptotic expansion at large distances.

Apart from the thermal state we can apply our approach to the states resulting
from the long time evolution after a quench [95, 96, 97, 45|, to models of 1D anyons
198, 99, 100, 101, 102], or mobile impurity models [85, 103, 104]. This can be done
by the appropriate modification of the phase shift function. We will discuss it
elsewhere.

[t is interesting to note that v(q) is apparently connected with the auxiliary
functions that appears in the Quantum Transfer Matrix (QTM) approach and
specifies the Bethe roots for QTM [105, 106, 107, 108|. It would be interesting to
completely clarify connection between these two approaches.

The correlation functions at zero temperature (entropy) can be formally ac-
counted by the jump discontinuities in v(q), which can also be treated by the form
factor summation developed for the critical models |14, 16]. In this case the role of
the lattice is not essential and the exponential asymptotic behaviour is expected
to be replaced by a power-law, which can be obtained from the proper modifi-

cation of the generalized sine-kernels (see section 9 in Ref. [109]). To address
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dynamical correlation functions we must modify appropriately the form factors

(kiz—e(ki)t) " The detailed constructions and

and the spectral factor e 12kt — ¢=i2
extraction of the asymptotic behavior in this case is considered in the next chap-
ter. However we can already anticipate that for the space-like region, i.e. when
the saddle point of the expression kx — €(k)t is outside the Brillouin zone, the
asymptotic analysis remains largely unchanged, which can be immediately seen
in the asymptotics of Ref. [82]. For the time-like region the main problem will
be that a suitable v(q) might have a jump discontinuity which leads to additional
power-law behavior (c.f. Ref. [110]). Finally, there will be extra 1/4/¢ terms
connected to the saddle point contributions indicated by the non-linear Luttinger

theory [17, 18, 19].
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Chapter 2

Large-time and long-distance asymptotics of the
thermal correlators of the impenetrable anyonic

lattice gas

2.1 Introduction

In the previous chapter, we developed a method to deal with correlation functions
in finite entropy states. This method allows one to derive the behavior of the
correlation functions in free-fermionic models for the observables that can be
expressed as Fredholm determinants of integrable kernels. In the previous chapter,
we focused mostly on static correlation functions, and applied the method to the
XY quantum chain.

In this chapter, we continue the development of the method of effective form-
factors for dynamical correlation functions. As a model of interest, we choose one-
dimensional impenetrable anyons on a lattice [67]. This model describes quantum
particles with unusual statistics [111, 112, 113, 114, 67, 115], which can be realized
experimentally in ultracold quantum gases confined in optical traps [116, 117, 118,
119, 120, 121, 122, 123, 124|. Furthermore, this type of models appears after the
spin-charge separation in interacting systems of spinful fermions and spin chains
(at certain values of the anyonic parameter) [125, 126, 127, 128, 129, 130, 131, 132,
133]. Similar determinants can also be obtained as the correlation functions of
Wigner strings [134]. Also, they appear in the description of the mobile impurity
propagating in the gas of free fermions [85, 135, 136, 137|. In the latter case the
anyonic parameter can be identified with the total momentum of the system (at
the infinite coupling).

The main idea of the effective form-factor approach is to replace computation
of the correlation functions averaged over some ensemble to zero-temperature

correlators with the appropriately modified phase shift. The correlation functions
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for one-dimensional impenetrable anyons can be presented as a linear combination
of the Fredholm determinants [67]. Therefore, we may identify the phase shift
comparing these determinants to the one that emerges from the summation of the
effective form-factors. For the space-like region we can simplify the corresponding
kernels for large-time and space separation and find the effective phase shift for
all values of the quasi momenta. The time-like region is characterized by the
critical points that separate different types of asymptotic behavior. So we can
robustly find the effective phase shift only away from these points. Even though
the vicinity of critical points where we do not know the solutions vanishes in the
large-time limit, we cannot simply combine solutions in the different asymptotic
regions into a single phase shift as the latter will be discontinuous. To tackle this
problem, we have assumed the existence of the gluing regularization functions.
While we have not been able to find them explicitly, we have demonstrated that
they only affect the overall constant in the asymptotic expression of the Fredholm
determinants.

The structure of this chapter is as follows. In Sec. 2.2.1 we define the anyonic
model and recall its spectrum and the presentation of some correlation functions
in terms of Fredholm determinants. In the subsection 2.2.2, for the reader’s
convenience, we collect the main results obtained in this chapter. In Sec. 2.3 we
recall the effective form-factor approach and give two expressions for the 7 function
in the thermodynamic limit. In Sec. 2.4 the effective form-factor approach is
applied to the derivation of the large-time and long-distance asymptotics of the
dynamical correlation functions. We discuss separately space-like and time-like
regimes. In Sec. 2.5 we summarize the main results of the chapter, compare with
the known results in the literature, and discuss different possibilities for further
research. Appendix D contains technical details of the asymptotic analysis of the

form-factors with the regularized effective phase shift.
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2.2 Model

2.2.1 Definition

The one-dimensional impenetrable lattice anyons on L sites can be described by

the following Hamiltonian [67]

L
1
H = _Z§< Ta]+1+aj+1aj +hZa;a], (2.1)
j=1 j=1
— P o=al 2.2
ar+1 = ay, Aryp = g (2.2)

The operator algebra is specified by the anyonic parameter 0 < xk < 1 and reads

as
ajal = 0j, — e ™Rl g (2.3a)

aja, = —e™ Mg q;, (2.3b)

a}a,i —eimreli— )a};aT (2.3¢)

here €(j) = sign(j) and we prescribe that €(0) = 0.

The x = 0 case corresponds to fermions, and x = 1 describes operators in
the Hilbert space of the impenetrable bosons. Note also that in the latter case,
the Hamiltonian (2.1) can be identified with the Hamiltonian of the quantum XX
spin chain after the mapping a; = o7, a} =0

The spectrum of the Hamiltonian H can be found by means of the Bethe
ansatz. The N-particle states are labeled by N momenta {p1,po,...,pn} from
the set of L inequivalent solutions of the equation
ipL

Pl — mimr(N=1), (2.4)

The energies of such states are

E({prp2, - oon}) = D _e(py), (2.5)
e(p) = h — cosp. (2.6)
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An interesting and non-trivial problem in the considered model is to analyze

two-point correlation functions

Trle"al | (t)a(0)]

G_(x,t) = Tafe—77] : (2.7)
G (z,t) = Tr[e_ﬂ;ﬁz* ;S]) a3 (0) (2.8)
It is easy to check the symmetry relations
Gi(—x,—t) = Gi(z,1)7, (2.9)
and also for t =0
G_(z,0) 4 e ™ s0@) G (g 0) = 0,0 (2.10)

which allow us to consider only £ > 0. In what follows we will restrict ourselves
to the analysis of the correlator G_(z,t). An analogous analysis can be done for
G (z,t). It was shown that these correlators in the thermodynamic limit L — oo
can be written in terms of Fredholm determinants [67]. We will use the following

equivalent representation for G_(x,t):
G_(z,t) = det(1 + W + §W) — det(1 + W), (2.11)

where W and W are integral operators on [—m, 7] with the kernels

_ 1 -0 e(p) — e(q)

Wp,q) = 5e-(p)e-(g)e it (2.12)
1
OW(p,q) = 5—e-(p)e-(q), (2.13)
1
np(p) = 0 1 (2.14)
e_(p) = \/np(p)e PR (2.15)
Tdg . . — 1 .

e(p) = sin? %ﬁ; g %emq_”‘g(q) cot % +3 sin(mr) e Pt P), (2.16)

Eq. (2.11) allows us to compute the correlation function G'_(z,t) numerically.
However, large-time and long-distance asymptotics of the correlation functions
are hard to extract by numerical means due to the oscillatory behavior of integral
kernels. In the present paper, we analyze these asymptotics analytically by means

of the effective form-factor approach (see chapter 1).
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2.2.2 Results

Before presenting an application of the effective form-factor method to the prob-
lem, for the reader’s convenience we collect the main results obtained in this
chapter: the asymptotic formulas for the correlation function G_(z,t) for large x
and t with a fixed ratio v = x/t. To present the answer we will need the effective
phase shift functions v4(q) defined as

vela) = 5 log (14 np(g) (™ 1)), (2.17)
The asymptotic behavior of G_(z,t) depends essentially on v. The spacelike
region is specified by the condition v > 1, and the asymptotics there reduces
to the analysis of a single integral (2.60). Depending on the velocity, there are
two additional regimes within the spacelike region: the, so-called, saddle-point-
dominated regime 1 < v < v, and the pole-dominated regime v > v.. The critical
velocity v, separating these two regimes can be read off from Eq. (2.69).

The asymptotics for 1 < v < v, reads
G_(x,t) ~ C1 K (z, t)t /e e spHVUR T ith, (2.18)
where
2 = 0+ iV0? — 1, (2.19)
K(z,t) = Z*[v, et ) mve@da, (2.20)

For v > v, a pole gives the leading contribution
G_(z,t) ~ CoK (z, t)e *logzt 5] (2.21)

where zj is given by

20 = ho+\/hZ — 1, h0:h+%(1—m), (2.22)

The prefactors Z2[v,], C1, and Cy are constants on the rays of fixed v. Their
explicit expressions are given by Egs. (2.44), (2.71), and (2.73). Note, in the
case of the saddle-point contribution there is an additional power factor ¢~ /2
correcting the exponential decay of the correlation function. For v < —1 there
are similar regions, and the asymptotics can be obtained from the above upon the

replacement v, — v_.
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For the timelike region, 0 < v < 1, the asymptotics of the correlation function

is given by

G_(z,1) & Root 17%¢! S (=t (@)v(g)dg

ale—ixq1 +ite(qq) a2€—ixQQ+it5(q2)
x( T ) (2.23)

For a fixed v, constants a; and ay are given by Eq. (2.91), while the constant R,

still remains unknown. The critical momenta ¢; and ¢o are defined by
g1 = arcsin v, gs = ™ — arcsin v, (2.24)
the effective phase shift v(q) is piecewise function

1% if —m<qg<q org<q<m,
sy =" B (2.25)
v_(q) ifq <q<g,

and d; and Jy are the magnitudes of jumps of v(¢q) at critical momenta

or=v_(q1) — vy (q1), &2 =r4(q) —v_(qo) (2.26)

Besides the expected exponential decay of the correlation function G_(x,t) we
observe an additional power factor 010 depending on the parameters of the

model.

2.3 Effective form-factor approach

2.3.1 Effective form-factors and tau function

In this section we recall the effective form-factor approach initiated in the chapter
1. To specity the effective form-factor we require two smooth periodic functions

v(k), g(k). The first one is called the effective phase shift and defines the shifted

set of momenta as solutions of
eikL _ €f2m'1/(k). (227)

Here L is regarded as a system size. Since v(k) is periodic, i.e., it has a zero

winding number in terms of the chapter 1, the largest ordered set of the shifted
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momenta has L terms k = {ky,...,kp}. Each k; is a solution of (2.27). The

unshifted momenta are solutions of
et =1. (2.28)

All momenta are considered up to the equivalence k ~ k + 27, and it is convenient
to choose them to have real parts in the Brillouin zone [—7, 7].
The effective form-factors are defined for the subsets of momenta q of the size

L — 1. Such subsets can be parameterized by the position of the “hole,”

7 = {q17 -3y 4qa—1,4a+1, - - '7QL}7 a = 17 - '7L' (229)

The effective form-factor then reads

g(k 2 L
(k|q) |2 = [1=2F H ‘ - ;m(k”)” (K)o ot get? pe. (2.30)
J

where detD® is defined for q'® and is merely a trigonometric variation of the
Cauchy determinant, in which the row corresponding to ¢, is omitted and replaced
with the line of 1

cot k1— Q1 cot kL FL—q1
. : :
detD cot bt cot bz | (2.31)
1 1

As we deal only with the square of the determinant, we can set this line as the
last one.

The tau (correlation) function is defined as a series over these form-factors

— Z |(k|q®)|2e~ (PO Pla®) +it(E(k)-E(a®)) (2.32)

Here we use notations for the momentum and energy of many-particle state |q)
=> ¢ El@=) =) (2:33)
qeq qeq

In chapter 1, we have demonstrated that in the thermodynamic limit L — oo the

tau function can be presented as a difference of two Fredholm determinants

~

7(z,t) = det(1 + V + 6V) — det(1 4 V), (2.34)
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where V and 8V are integral operators on [—m, 7] with kernels

1 i-a) ¢(p) — ¢(q)
4 = —cC_ _ L 2.35
(p.q) = 5—c-(p)e-(g)e e (2.35)
1
0V(p,q) = 5—c-(p)e-(a), (2.36)
c_(p) = sin wy(p)e P/ 2FitR)249P)/2 (2.37)
™ da . . . .

This form allows us to relate the correlation function of anyons with the tau
function for a special choice of v(k) and g(k). This relation will be described in

the next section.

2.3.2 Finite size scaling

In this subsection we give an alternative formula for the tau function based on
first taking the thermodynamic limit of the form-factors and then performing
the summation. The obtained expressions will have a simple form convenient for
asymptotic analysis.

We start by representing det D? in a factorized form

L . 9
sin® wv(k;) "
H Tdet2D( ) = Z2Za, (239)
i=1
i1 o ki
_ 2
i=1 j=1 2
L : 2 kjffh
(k) popsin” S5
Z, = sin 7 H FNCETRT (2.41)
j#a 2

Extracting the hole dependent factors the tau function (2.32) can be rewritten as

() =L-K(x,t) -y el Z, emiratitclic), (2.42)

a=1
where K(x,t) is an a-independent part given by

L
K(z,t) = 2% =0 -P@)+tEl)-Ea) » TT

j=1

e9(k;j)—9(q;)

1 + %V’(k}j) .

(2.43)
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The expressions Z2 and K (z,t) have a finite thermodynamic limit,

log Z = /dq/dk [ . _k)r, (2.44)

log K (1) =2los 2~ [ vialg@da+i [0~ @twiade. (249

The hole dependent factors are suppressed in the thermodynamic limit,

™

Z,~ L *sin®1v(q,) exp | — ][dq v(q) cot a _2% : (2.46)

—T

but the whole tau function (2.42) has a finite thermodynamic limit and can be

presented as an integral,

dk .
T(.’L‘7 t) - K(l‘, t) / 2_€g(kz) Sin2 ﬂy(k})e—mk"‘”g(k)
m

s

X exp —][dq v(q) cot 1

-7

(2.47)

Thus we have two alternative presentations of the tau function in the thermo-
dynamic limit: Eq. (2.34) as a difference of Fredholm determinants, and Eq. (2.47)
in terms of integrals. The first form is convenient for the identification with other

models, and the second form is convenient for large x and ¢ analysis.

2.4 Asymptotic behavior of anyonic correlation

function

2.4.1 Anyons and effective fermions

To apply the method of effective form-factors for the large x and ¢ asymptotics
of the correlation function G_(z,t) given by (2.11), we have to find suitable
functions v(k) and g(k). This can be done after the identification of the kernels
n (2.11) and in (2.34). In this section, we focus on the case of h > 0; the case
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h < 0 can be considered similarly. Also, we restrict the value of the parameter of
anyonic statistics to 0 < k < 1. The peculiarities with the limiting case Kk = 1
corresponding to the quantum XX spin chain are briefly discussed in Sec. 2.5.

Equating G_(z,t) = 7(x,t), we see that their integral kernels coincide if we

choose v(p) and g(p) to satisfy the equations

c-(p) =e-(p), clp)=ep) (2.48)
The first equation gives a relation between g(p) and v(p)

o) _ S0 v(p)

r (D) (2.49)

The second equation allows us to obtain an integral equation for v(p)

" dq >\+(Q) A—(Q) ixq—ite
/ —( L+ ——— e | € =, (2.50)

- 2T tan“—5—  tan "

where we have denoted

pE2miva(q) _ E2miv(q)
Ax(q) = ne(q) ’ (2:51)
et2mive(a) _ q + nF(q)(ei“m — 1). (2-52)

We can solve Eq. (2.50) asymptotically for large x and ¢. The solution has different
forms for two different values of v = z/t. We call |[v| > 1 the spacelike region
and |v| < 1 the timelike region. These names should not be confused with similar
terms in the relativistic theory — there the spectrum is linear for all momenta.

In our case the names come from the condition in which the function
®(q) = vq + cosq (2.53)

has (timelike) or does not have (spacelike) a critical point for ¢ € [—m, 7]. This
function is merely the phase xq — £(q)t up to rescaling by time and shift by the

constant h.
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2.4.2 Asymptotic behavior of the correlation function in

the spacelike region

To treat Eq. (2.50), we first have to look at each of the integrals separately. It is
useful to present them as

/7T @)\i(q)eitcb(q)

—pFi0

™ dq eit@(q)

—pFi0
— 27T tan %

+ /ﬂ- @(Ai(Q) T )\i(p))eit@(q)' (254)

q—p
T 21 tan 5

= A (p)

If we assume that v(q) does not become singular even in the asymptotic region,
then in spacelike region the second term in RHS of Eq. (2.54) becomes exponen-
tially small for large x and ¢. The remaining integral in (2.54) can be rewritten

as

s dq eit(I)(q) .
/_7r 2mi tan L0 = "W (F(p) £ 1), (2.55)

where

™ dq eit@(q)

F(p) = e ®®) (2.56)

_r 2mi tan P '
For large t > 0 the function F(p) can be approximated up to exponentially small
terms as

F(p) ~ sign (®'(p)). (2.57)
As the spacelike region is characterized by the absence of critical points of ®(p) for
p € [—m,m), we can put sign (®'(p)) = signv. This way, one of the two integrals
in Eq. (2.50) is exponentially small due to (2.54) and (2.55), while the other allows

us to find the effective phase shift for large ¢ > 0

I/(p) ~ Vsign’v(p>7 (258)

where v4(p) are defined by Egs. (2.52). We use this asymptotic solution and the
relation (2.49) in (2.47) to obtain

7(x,t) = K(x, )T (z,t)e™, (2.59)

where K(x,t) is given by Eq. (2.45) and T'(x,t) corresponds to the integral in

(2.47), which after the change of variables z = ¥, takes the following form

1 dz e 3(2)
T(x,t) = — —_— . 2.
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Here C. is a counterclockwise circle with a radius slightly larger than 1 and

0(z) = —vlog z — %(z + 271, (2.61)

™

S(z) = exp i/dq v(q)

—T

J(2) = exp (ﬁ (h - “L;_l) ) (2.63)

In what follows we consider v > 1; the other case, v < —1, can be considered in

z + e

z — ek

, (2.62)

the same manner. To find large x and ¢ asymptotics of T'(x,t), we deform the

contour Cs to the steepest-descent curve ' defined by
Imf(z) =ImO(zgp) = —7v/2 (2.64)

going through the saddle point zg,

Zsp = 10+ 1/ 02 — 1. (2.65)

Deforming the contour we might cross the poles of the integrand, which can only
appear from the denominator, since S(z) is a holomorphic function for |z| > 1.

This way, we get

1 dz e S(2) - e?#)S(2)
Tat)=—¢ L& 2% - ) 2.66
(@:%) 2mi %11 z J(z) +emr Z e "2(J(2) + €ei™) (2.66)

n=—oo

where the points z, are defined as

2=+ /R — 1, hn:h+%(2n+1—m), (2.67)

and ng is the maximal number of a pole, which was crossed in the deformation
process. This number depends on the velocity v and can be found from the
inequality

)
arg Zng < 5 = — < AG Zngt1. (2.68)

2
Schematically, the contours C-, ', and the positions of poles z, are shown in

Fig. 2.1.
The formula (2.66) allows one immediately to read off the asymptotic behavior.

The residues produce exponentially decaying terms; the leading contribution is
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Figure 2.1: The integration contours (color online). The dashed circle corresponds
to the initial contour of integration C'=. The black solid line represents the steepest
descent contour C7. The cross marks the position of the saddle point. Red and
blue dots correspond to the poles z, defined by Eq. (2.67) for non-negative and
negative indices, respectively. The shaded areas show the regions of positive (pink)
and negative (light blue) values of Ref(z), see Eq. (2.61).
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given by the smallest real part Ref(z,). For a wide range of the parameters of
the model, we observed that this was achieved for the pole at zy. Another type
of contribution to the asymptotics comes from the saddle-point evaluation of the
integral in (2.66). To find the overall leading contribution, we need to compare
Ref(z)) and Ref(zy,). This leads to the equation for the critical velocity v,
separating two regimes,

velog(ve + /02 — 1) — /0?2 — 1 = v.log |z| — %(1 — R). (2.69)

For v < v,, the saddle point is dominating and T'(x,t) is given by

T(x,t) ~ Clt_1/2e_‘”IOgZSP_%t(ZSp*Z;Pl), (2.70)
S(2s 1
I . (271)
J(zsp) + € 2myv/v? — 1
For v > wv,, the pole gives the leading contribution
T(x,t) ~ Che "lo820— 5 (20t2 ") (2.72)
2 —ITK
B 2y — <0
We also provide the simplified expression for K(x,t),
log K (x,t) ~ 2log Z[v] + z':r:/u(q)dq, (2.74)

where v(q) is given by Eqgs. (2.58) and (2.52), and Z[v] is defined by Eq. (2.44).
Using the identification G_(x,t) = 7(x,t), the asymptotic behavior of the

correlation function G_(z,t) in the spacelike region can be found from Eq. (2.59)
G_(z,t) = K(x,t)T(x,t)e'™, (2.75)

where K (x,t) is given by Eq. (2.74), and T'(x,t) is given by one of* Egs. (2.70),
and (2.72) depending on the value of v. We compare these asymptotic expressions
for the correlation functions with numerical evaluation of Fredholm determinants
(2.11) in Fig. 2.2. We see that the asymptotics given by the integral (the red solid
line), i.e. by the tau function, is hardly distinguishable from the true correlation

function even for small z.

61



7))

0.15
0.1
0.05 |

Re G_

0.08 |

0.04 |

Re G_

10 20

X

<
z

0.04 |
0.02 |

—-0.02

b)

10

d)

20

40

60

Figure 2.2: Asymptotic behavior of G_(x,t) for k = 0.6, h = 0.7, § = 2.3. These

parameters correspond to critical velocity v. &~ 1.676. Black dots present G_(z, t)

computed numerically from (2.11). Red lines present effective 7 function (2.59)

computed with (2.58). Blue lines present asymptotics of integrals in (2.59) given

by Egs. (2.70), (2.72). Panels a) and b) correspond to overcritical region v = 2.5.

Panels ¢) and d) show real part and absolute value of G_(z,t) in the subcritical

region v = 1.3, respectively.
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2.4.3 Asymptotic behavior of correlation function in time-
like region

Now let us try to apply the same reasoning for the timelike region, |v| < 1. In

this case there are two critical points ¢; and ¢
(i) =0, g €l[-mmn), (2.76)
therefore the approximation (2.57) naively gives rise to the solution

V(p) = Vsigna'(y) (D), (2.77)

where v (p) are defined by Eqs. (2.52). This is valid for all p lying far enough from
the critical points. Indeed, the approximation (2.57) holds everywhere outside

small vicinities of width ~ ¢1/2

around critical points ¢; and ¢o.

[t is very tempting to ignore these domains and approximate v(p) as a truly
discontinuous function, since we are interested in the large-t behavior. This pro-
cedure, however, is not consistent with the approximations made in Eq. (2.54)
where we have discarded critical point contributions (the last integral). But even
bigger problems appear when one tries to use discontinuous v(p) for the asymp-
totic expression. For instance the double integral (2.44) is divergent for such a
choice.

Therefore, we expect that the solution of Eq. (2.50) will have the following

“regularized” form:

v(p) = Alp) + B(p)s(p), (2.78)
where
Alp) = vy (p) ; V(p)’ B(k) = v, (p) ; V(p)’ (2.79)

and the function s(p) is a regularization of the sign function,
s(p) = fF(Vi9'(p)), (2.80)
with f being a smooth function satisfying
f(£o00) = £1. (2.81)

So away from the critical points on a distance bigger than O(1/+/t), we recover

the solution (2.77). We demonstrate this schematically in Fig. 2.3. Notice that
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the regularization is needed only for the imaginary parts, and the real parts of

vi(p) and v_(p) coincide. Now for the smooth v(p) we can use all the results

Im »(p)

Figure 2.3: The schematic dependence of the effective phase shift v(p). The
black and blue dotted lines represent v, (q) and v_(q), respectively. The red
lines shows the regularized expression for v(p). The shaded rectangles show the
regions where the transition between v, and v_ happens and the regularization is
required to approximate v(p). These regions are located near critical points g1, ¢
and their widths are O(t‘l/ 2). We show only the imaginary part as the real part

is continuous and does not require regularization.

from the previous sections. In particular, we can integrate Eq. (2.44) by parts to

obtain

sin (2.82)

1 s s
log Z = E/dq/dkl/'(q)l/(k) log

q—k‘

We can perform asymptotic analysis of this expression for large ¢ and obtain
Z e t7200) 7 (2.83)
where Z,, is a t-independent factor depending on s(p), and

o =v-(q1) —vilq), 02 =r4(q)—v-(q). (2.84)
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Therefore the only regularization dependence remains in the overall constant pref-
actor. It is remarkable that the exponent of power law t-dependence of Z is uni-
versal [it does not depend on the regularization s(p) for any f satisfying (2.81)].
These computations and the exact form for Z,,, are given in the Appendix.

Let us also discuss the asymptotic behavior of the remaining part of the tau
function. In there we substitute already discontinuous v(q). Namely, we analyze

the integral

™

i |
T(a.t) = / np(R)e ) (2.85)

-7

where
™

Y(k) = ][dq v(q) cot d

—T

2

(2.86)

The function Y (k) is logarithmically divergent at ¢; and go because of the discon-
tinuity of v(q). It leads to power like singularities in the integrand of (2.85) which
are integrable if Red; > —1. In our case, v, (k) and v_(k) are conjugate to each
other, rendering the real part of the effective phase shift continuous, Red; = 0.

We separate a regular part Y (k) of Y (k) as

Sinu ’
Y (k) =Y (k) + (v_(k) — vy(k))log (mﬁ) , (2.87)
V() = [ da () = v (1) cor L
i / dq (v-(g) ~ v- (k) cot 2

+ /dq(v+(q) — v, (k) cot L 3 ko (2.88)

q2

Now all is prepared to find the asymptotic behavior of T'(x,t) for large = and ¢

coming from the contributions of two critical points ¢; and ¢

T(JJ, t) ~ T1 + TQ, (289)
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Figure 2.4: Real and imaginary part of R(z,t) with v = z/t = 0.5, kK = 0.6,
h = 0.7 and § = 2.3. Red line present R(x,t) for which the integral T'(z,t)
in Eq. (2.85) computed exactly. Black dots present R(zx,t) for which we use
asymptotics of integral T'(x,t) given by Eq. (2.89).

where

Ty = aje "), (2.90)

—25 . _1_5.
. - _ J t(l)” . 279 1
21 2 2 2

The final formula for the asymptotics of the correlation function G_(x,t) is

™

G_(z,t) ~ R Tz, t)t 1% exp (z/

-7

(x — tsin q)u(q)dq) : (2.92)

where Ro is a constant different on each ray v = x/t that additionally depends
on the parameters k, h, and inverse temperature 3. To check this asymptotics, we
plot in Fig. 2.4 the ratio R(z,t) of G_(z,t) calculated numerically from (2.11) to
the asymptotics from the right-hand side of Eq. (2.92) without R.,. We observe
that it approaches a constant value. The possible deviations are of order O(1/ \/i),
which is consistent with our approximations made for the v(k). It would be
interesting to see if these corrections can be interpreted in terms of the non-linear

Luttinger liquid paradigm [138, 18|.
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2.5  Conclusions

In this chapter, we found the asymptotics of dynamical correlation functions of
anyonic gas with the parameter of anyonic statistics 0 < k < 1 using a effective
form-factor approach. The main difficulty of this method is to find the phase-
shift function v(q) for effective fermions solving an integral equation. For large
x and t we found approximate solutions for this integral equation that depend
on the ratio v = z/t. For the spacelike region, v > 1, the solution v(gq) can
be approximated by the smooth function v, (q). In this case, the asymptotics
of the correlation function is given by asymptotic analysis of integrals producing
the leading contribution either from a pole or from a saddle point. In the case
of saddle-point contribution, there is an additional power factor correcting the

exponential decay of the correlation function.

For the timelike region, |v| < 1, we approximate the solution v(g) for a large
finite ¢ by a function having discontinuities at critical points and corresponding to
the solution of the integral equation at ¢ = oo. Unfortunately, this approximate
solution can not be used directly to find the asymptotics of the correlation function
by the methods of the chapter 1, since the latter requires a smooth v(q). For
large finite t we consider a class of regularized v(gq) having the same limit at
t = oo as the genuine solution. It is remarkable, that the regularized v(q) lead
to the same asymptotics up to a prefactor independent of ¢. This universal time
dependence of asymptotics has an additional power-like factor to the exponential
decay of the correlation function. The exponent of this power-like factor is related
directly to the jumps of v(q) at critical points. We hope that the use of a better
approximation to v(q) as a solution of the integral equation for a large finite ¢ will
fix the exact form of the constant prefactor. Further analysis of the correlation
functions in the timelike region by the method of effective form-factors will be

presented in future publications.

We believe that the appearance of the power-law corrections is universal and
takes place in all dynamical correlation functions of quantum one-dimensional
models at finite temperature (entropy) in timelike region. It was observed similar
behavior for a continuum model [139]. Equivalent phenomena are present in XX

spin chain [140, 106, 107]. Finally, quite unexpectedly, similar asymptotics appear
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also while describing large x and ¢ behavior of the classical integrable systems
[141, 142, 143|. Perhaps, it is related to the fact that the tau functions in such
systems can be presented as Fredholm determinants, and the role of momentum
distribution np(q) is played by the reflection coefficient [144, 145]. We plan to

investigate these models in the future.

The limiting case x = 1 of the model corresponds to the quantum XX spin
chain model studied intensively in the literature. Therefore, it is interesting to look
at the limits of our results as kK — 1 and compare with the known formulas. For
the paramagnetic phase, h > 1, in timelike region the results for the asymptotics
were obtained in [68] up to an overall constant depending on 5 and h. Our results
have the same structure as a function of t. The ferromagnetic phase, h < 1,
was studied in [140, 106, 107] in spacelike region and [140] in the timelike region.
Unfortunately, the direct application of our approach is not possible due to the
appearance of singularities of v1(q) at ¢ = £ arccos h, where £(q) = 0. We believe
that these singularities can be properly resolved. But one needs to develop a more

delicate limiting procedure, on which we hope to report in the nearest future.

An important ingredient in the derivation of asymptotics in [140, 68, 146]
is the use of the fact that the correlation function satisfies differential-difference
equations of Ablowitz—Ladik integrable system. It would be interesting to gener-
alize this approach to the correlation functions with arbitrary anyonic parameter

x and determine the precise v dependence of R, in Eq. (2.92).

Another important application of our approach is to use it to describe the
scaling behavior of the correlation functions of the anyonic gas. One has to be
able to reproduce results for the asymptotics obtained in [147, 148, 149]|. Recently,
using effective form-factors, the finite temperature tau function for the continuum

case was investigated in [139].

Finally, an important generalization would be to the interacting case. Re-
cently, the asymptotic behavior of the static one-body correlation function at
zero temperature was derived for the interacting anyonic gas via the Luttinger
liquid approach [150]. To reproduce this result, at least in the Tonks—Girardeau
limit, we would have to take into account next to leading asymptotics. Indeed,
the only way to reproduce zero temperature power-law behavior is first to re-

cover finite T" CF'T predictions, which, roughly speaking, replace power-law as
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1/2% — 1/(sinh(Tz)/T)? [151]. In the expansion of this expression at large x
one obtains not only the leading exponential but also a bunch of the subleading
ones. One way to capture this could be in a more precise identification between
integral kernels. Right now, we do not know how to generalize our methods to the
fully interacting model, i.e. to the case when Fredholm presentation is not avail-
able. A perspective direction could be to derive it directly from the form-factor

series [71].
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Chapter 3

On Landauer—Biittiker formalism from a quantum

quench

3.1 Introduction

In this chapter, we study the continuous bipartite system with an arbitrary defect
localized around the middle of the system. We consider a bipartite quench proto-
col, in which initially the “right” part of the system is empty and the “left” part is
filled up to some energy with fermions subjected to the local short-range potential
Vo(x), or distributed according to some probability (to model, for instance, the
thermal initial state). After that, the dynamics of the whole is governed by the
Hamiltonian with the local potential V' (z), which may, in principle, be different
from Vj(x). We compute the Full Counting Statistics (FCS) of the number of par-
ticles in the right part of the system. We derive an expression for FCS in the form
of Fredholm determinant that is expressed via the Jost functions that correspond
to the potentials V' and Vj. This is an exact expression in the thermodynamic
limit that describes both the transient dynamics and the formation of the non-
equilibrium steady-state. We argue that in the absence of the bound states in
the potential V' (x), the leading terms in the FCS are defined via the transmission
coefficient of the potential V' (z) and are given by the Levitov-Lesovik formula
[152, 153, 154] (with logarithmic corrections for zero temperature states). If two
or more bound states are present in the system they affect even the properties of
the steady state by introducing persistent oscillations with a frequency equal to
the difference of energies between the bound states. Moreover, the amplitude of
these oscillations depends on the Jost functions of the potential Vj(x), this way re-
taining the memory of the initial state. This phenomenon can be observed already
on the level of the current, where even for the constant bias the persistent oscilla-

tions are present on top of the constant Landauer—Biittiker contribution. Similar
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dependencies of the initial correlation in the case when bound states are present
in the system were observed in [155, 156]. This effect seems to be overlooked in
the traditional approach (see for instance footnote 54 in [157]).

The chapter is organized as follows. In Section 3.2 we recall definitions of the
scattering data, the Jost states and adopt notations for one-dimensional systems.
In Section 3.3 we formulate the problem and present the main results. The outline
of the derivation of the main results is presented in Sections 3.4 and 3.5. In Sec-
tion 3.4 we describe a construction of the wave functions in the finite system and
in Section 3.5 we discuss how to obtain the kernel for the Fredholm determinant.
Section 3.6 contains derivation of the Landauer—Biittiker expression for the cur-
rent and its modification in the case when multiple bound states are present in the
systems. A short summary and outlook are presented in Section 3.7. Appendices
E, F, G and H deal with some details of the derivations and contain scattering

data for a few exemplary potentials.

3.2 (General properties of scattering

In this section we briefly remind some general notions of the one-dimensional
scattering on the local potential V' (z). The eigenvalue problem satisfies the

Schrodinger equation

HyV = (—dd—; + V(a:)) U =FEV. (3.1)
The locality means that the potential vanishes fast enough as |x| — oo. For
all practical purposes we assume that the potential is nonzero only in the finite
domain |z| < £. This way, for |z| > £ the wave functions that correspond to
the energy E = k? are the plane waves eT™**. So for every real k # 0 there
exists a two-dimensional space of solutions. The typical basis in this space can
be conveniently described by the Jost states iy, ¢ defined by their asymptotic

behavior, namely
Yr(x) = e ™ 4 o(1), T — 400, (3.2)
or(z) = e 4 o(1), T — —00, (3.3)
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For a real potential these states are connected to their complex conjugated coun-
terparts as ¥_i(x) = ¥p(2), p_r(z) = @r(x). If additionally the potential is sym-
metric V(z) = V(—xz), then ¢y (—x) and ¢;(—2) are still eigenfunctions. Consid-
ering the asymptotic behavior one can conclude that in this case ¥y (—z) = @r(z).

Using (3.2) we see that the Jost solutions satisfy the following integral equations

R e 3.4
pr(z) = e + / Sm(k("z - y))V(y)wk(y)dy- (3:5)

As both Jost solutions form a basis they are connected by the linear transforma-

tion, the transfer matrix,

Spk(x) ’Qbk(x) ap by
T () T = . |
(mm) ) (W)) (k) (bk ) (36)

Note that for a real potential a_j, = aj, b_j, = by, while for a symmetric potential
by is purely imaginary.
Considering the Wronskian of the eigenvalue problem (3.2) we conclude that

the transfer matrix is unimodular
det T (k) = |ap|* — |bx|* = 1. (3.7)

The transfer matrix 7 can be repacked into the S-matrix [158| as follows

1 [ =b 1
S=—( " . (3.8)
ag 1 b

The unimodularity condition (3.7) means the unitarity for S-matrix SS* = 1.
The transmission and the reflection coefficients are defined as the squared absolute

values of the off-diagonal and diagonal components of the S-matrix, respectively,

1 R

T(E) = Tan? R(E)

=P (3.9)

Here we present them as the functions of energy E = k?. The unitarity (3.7)
guarantees that T'(F) + R(E) = 1.
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The coefficient a; can be analytically continued to the upper half plane where it
might have zeroes that correspond to the bound states. They are purely imaginary
k = i so the corresponding energy is negative £ = —s?. In fact the analytic

properties allow one to present (see for instance [159])

N . >
k — i, 1 log(1 + |by|?)
= —_— d 3.10
ak :1k+i%neXp 27r2'/ qg—k —10 ¢ (3.10)

To describe the wave function of a bound state we can use either o (x) and ()
as both these functions can be analytically continued to the upper half plane. In
fact, it turns out that they are proportional ¢;,.(z) = b,.i,.. Taking into account
the definition of transfer matrix (3.6) this relation is hardly surprising and b,, can
be considered as an analytic continuation of the by, however, contrary to aj such
continuation is not always possible, and the coefficient b,, should be considered as
additional scattering data.

Finally, let us comment on the normalization conditions of the continuous

spectrum. Similar to [159] we conclude that
/ dzor(2), () = a,0(k — q). (3.11)

Theqrefore the Green’s function G(z, y, t) defined as a solution of the Schrodinger
equation in x variable with the initial condition G(z,y,t = 0) = d(z —y), can be
presented as

G(Z’,y,t) _ /C%‘pk(xﬁzk(y) o~ Ek (3_12>

2 ay

As for the continuum spectrum the contour C' goes along the real line. We notice
however that the integrand can be analytically continued in the upper half plane.
Moreover, in this form we can easily take into account also contributions from the
bound states. To do so the contour C' should run above all positions of zeroes
of aj in the upper half plane (see figure 3.2 below). Below we re-derive this
presentation using wave functions in the box (hard-wall boundary conditions),
and demonstrate how to express full counting statistics via the scattering data

and Jost solutions.
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3.3 Quench protocol

The scattering states introduced in the previous section describe an infinite sys-
tem. To correctly formulate transport problem we consider open (hard-wall)
boundary conditions placed at x = R, perform computations at finite R, and
send R — oo in the end of the computation. At the initial moment of time only
the left part of the system = < 0 is filled. Meaning that the single particle wave

functions A, are non-zero only in the interval z € [—R, 0], more formally

A,

dx?

+Vo(z)A, = ¢*A, A, (0) = Ay(=R) = 0. (3.13)
The post-quench wave functions satisfies

X
dx?

+ V(@)xk = K xx, Xi(—R) = xx(R) = 0. (3.14)

The initial N-particle state of the system |in) is given in a Fock space by an
ordered set of momenta ¢; < o < --- < qu. Formally, it can be presented as a

wedge product
in) = Ag, /\ Ag, -+ /\ Agys (3.15)

which in the coordinate space corresponds to a single Slater determinant. The
case of the statistical ensemble in the N — oo limit can be described by taking
the typical distribution of ¢;. To characterize many body dynamics we consider
full counting statistics (FCS). It can be written as
¢
FO01) = (infe ™ eMVreitH gy — inje iy, (3.16)
where Ng is number of particles in right part of the system and J(7) is the current

through the point = 0. Introducing the resolution of the unity, we can formally

present FCS as a form factor series
F(At) = (in|k) (k[e"|p)(plin)eFFe). (3.17)
k,p

Here k) and |p) are many-body states of the form (3.15). Theqrefore the overlaps

and the matrix elements are the determinants of the Cauchy type matrices.
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Due to the free fermionic structure of the initial state (3.15) the FCS can be
presented as
F (A t) = det Xy, (3.18)

with indices a and b corresponding to the momenta in the initial state |in), and

the matrix elements are

a7 7P 7A ] —
ab —5ab+ 6 _1 Z Xk Xk‘ >Xp)<Xp b) e?,t(Ek Ep) (319)

Y Aa,A )Xk X0) (Xps Xp) A/ (A, Ap)

Here P- is a projector on the right part of the system i.e. x € [0, R). This formula

can be obtained from (3.17) using some variant of the Cauchy—Binet formula (the
product of determinants is the determinant of product of matrices). Our goal is
to present (3.18) in the thermodynamic limit as a Fredholm determinant of some
trace-class operator. Namely, we present

T
Xab = 5ab + }_%K(Qaa Qb) + O(I/R) (320>

so that FCS in the thermodynamic limit R — oo transforms into a Fredholm

determinant
F(\ ) = det X — det (1 + ,off) , (3.21)

where p in the density of the initial state and the operator K acts on the integrable

functions L?(R) via the convolution with the kernel K(q, ¢'), namely

= / K(q.4")f(d)dq. (3-22)
We compute this kernel in Section 3.5. It can be presented as
K(q.q") = Kola.q') + 6K (q,9), (3.23)
where . B,y
Kolg,q) = — la(q, q’)% (3.24)
with

i[@4(0)[| 2 (0)]
®,4(0)®y(0)agay

o(q, q/) - (iﬁq'(o)@qu(o) - %(0)%%/(0)-) (3.25)

Here v, are Jost solutions defined by equation (3.4) and by ®,(x) we denote the

Jost solution equation (3.5) on the potential V4. The expression for § K can be
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found in Section 3.5. It contains, in particular, contributions from the bound
states if they are present in the spectrum of V(x). We see that the kernels are
expressed via the scattering data and the Jost solutions. The separation on K
and 0K is done to facilitate the large ¢ asymptotic analysis. Namely, in this limit
0K contains only oscillating terms, while formally K tends to a delta function.
For this reasoning we can heuristically argue that the leading contribution to the
FCS will be given by Ky and 6 K will results in smooth prefactor for FCS. For a
specific lattice system this effect was observed in [160]. Moreover, since o(q, ¢’)
is a smooth function we can replace it with diagonal values o(q,q") — o(q,q).
Further, taking into account that the Wronskian 1, (2)9,1,(z) — ¥, (2)0,10,(z)
does not depend on x, which can be checked by the immediate differentiation. We
evaluate it at  — —oo and arrive to the conclusion that o(q, q) = 2q/|a,|*. This
allows us to transform the kernel to act on the energy space instead of momentum.

This way, we obtain a Fredholm determinant of the generalized sine-kernel type

. {(E—E)
et — 1 sin ——=
E— FE

F(\t) =~ C(\,t)det (1 + (3.26)
Here we have written a kernel of the integral operator. The prefactor C'(A,t)
appeared due to discarding 0 K. Notice that in this form all information about
the Jost function disappears and only the transmission coefficient T'(E) for the
post-quench potential remains. Large ¢ asymptotic behavior of the Fredholm
determinant can be easily found either by solving the corresponding Riemann—
Hilbert problem [109, 81, 161| or using the effective form factors developed in the
chapters 1, 2. It is worth to mention the paper [139], where the effective form
factor approach was applied for the case of continuum systems. For the smooth
distribution p(E) the result reads

F(A\t) = C(\t)Fs(A, 1) (3.27)
with
log F5(\, t) = %/log(l + (e* = 1)p(E)T(E))dE = it/uA(E)dE. (3.28)

The prefactor C'(\,t) contains both C'(\,t) and the constant prefactors from

the asymptotic expression for the Fredholm determinant. When bound states
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Figure 3.1: Ratio of the FCS F(A,t) (3.21) to the large t asymptotic formula
Fs(\, t) given by (3.29), the initial state is characterized by kp = 1, Ep = k% = 1,
p(E) = 0(Ep — E): (a) delta barrier V(z) = ¢d(z), g = —0.3 (one bound
state), A = 0.3; (b) symmetric double delta barrier potential (3.87) with d = 2.3,
g = —1.3 (two bound states), A = 1.3.

are absent in the spectrum or there is only one bound state then we expect only
decaying transient time dependence of C'(\,t) ~ C(\), see figure 3.1(a). This
way, in equation (3.28), we recover predictions for the FCS also known as the
Levitov—Lesovik formula [152, 153, 154]. The large deviation theory perspective
on this formula can be found in [162], while the generalized hydrodynamic point
of view is presented in [163]. When the function p(E) has sharp jumps, as it
happens, for instance, at zero temperature p(F) = 0(Er — E), or for the non-
equilibrium setups [164, 165|, then additionally to the smooth time dependence in
C'(A, t), we obtain also power law dependencies, with the corresponding exponents
defined by the value of the function v)(F) at the jump points. In particular, the

modification of the vacuum case reads

log F5(A,t) = — (vA(0)% + v\(EF)?) log t
4 % / log(1 + (¢* — 1)T(E))dE. (3.29)

Notice that v,(0) = 0 for a generic barrier since T(E = 0) = 0. However for
special potentials with T(E = 0) # 0 (e.g. reflectionless potentials) v,(0) # 0

also gives a contribution to (3.29).
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Finally, when there are two or more bound states in the spectrum, then C'(\, t)
contains persistent oscillatory contributions with the frequency equal to the dif-
ference of energies of the bound states, see figure 3.1(b). Notice that after a few
periods oscillations are described by one harmonic with a constant amplitude. For

a specific defect in a lattice model this was demonstrated in [160].

3.3.1 Entanglement Entropy

Let us also mention that one can relate the entanglement entropy S(¢) obtained
after tracing out the left part of the system to the FCS by a simple integral

[166, 167, 168, 169]. We express this relation in a simple and convenient form as

oo

1 [ log F(A7)
() = 4 ,/ sinhQ()\/Q)d/\’ (3.30)

—0
where the integral at A = 0 should be treated in the principal value sense. Sub-
stituting instead of complete F its asymptotic expression F; for instance for zero

temperature case (3.29), we obtain as t — oo

Er

S(t) ~ t / %( — T(E)log T(E) — R(E)log R(E))
0
logt [ va(0)2 + vy(Ep)?
4 / sinh?(\/2) dA, (3:31)

Here R(F) = 1 — T(F). The linear in time part of this formula is generic for
one-dimensional systems [170], and in this case it has a form of classical Shannon
entropy (see also [171] and [172]), the suitable generalization to the interacting
systems was obtained in [173]. The logarithmic growth becomes important in
the case of the absence of the defect, or for the reflectionless potential, when the
linear part disappears. The coefficient in front of the logarithm is compatible with
predictions from conformal field theories [174, 175, 171]

S(t) = glogt +O(1), t— oo (3.32)

In our case for T(E) = 1 we get ¢ = 2 after computing the integral in the last line
of (3.31). Notice that the coefficient in front of the logarithmic correction when

the linear part is present can be non-universal similarly to [171].
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3.4 Hard-wall wave functions

The key part in deriving explicit expression of kernels is an explicit presentation
for the hard-wall wave functions (3.13), (3.14) in terms of the Jost functions and
scattering data. We start with y;. Assuming that the range of the potential ¢ is

much smaller than R, the wave function can be presented as

Xi(x) = Im [y ()], (3.33)

where 1y is a Jost function that corresponds to the potential V(x) (see (3.4)).
This way the condition x;(R) = 0 is satisfied automatically, while for the large

negative x the behavior reads
xr(z) = Im [ (age ™" — bre’™)] . (3.34)

Here the scattering data corresponds to the potential V' (x). Demanding x,(—R) =
0 will provide us with the spectrum condition, that can be resolved as

e%kR _ Im by, + \/1 + (Re bk)2
ay

= ¢ 20(k), (3.35)

Here we have introduced the scattering phase d(k). We have to take into account
two possible solutions that correspond to two different branches of the square
root. This way, in fact we have two different scattering phases. For both of them
we have §(k) = —d(—k), meaning that if £ is a solution than —k is solution as
well, with the same energy E) = k?. However, they describe the same state as
is clearly seen from (3.33). Theqrefore, we restrict ourselves to the positive k
solutions of (3.35).

Let us also discuss the normalization of the wave function. To this end we

notice that the k derivative of the y; satisfies
(=02 + V(2) — k) Oxi = 2k, (02 + V(@) = k) xx =0.  (3.36)

So we can write

d*0
2k (Xk» Xk) = / dx [— d;} “xn() + Oxe




This allows us to present

(&, Xx) = (Rebr + /1 + (Rebp)2)/1 + (Rebp)2(R + 0 (k). (3.38)

Here ¢’(k) means the momentum derivative. Similarly, we can describe the matrix

R
elements (xi, P>Xp) = [ dexi(x)x,(z) of the projector in (3.19) as
0

(Er — Ep)(Xk, P>xp) =
R

_ / da ([(—02 + V() xu(2)] xp() = xa(2) (=02 + V(@) xp(2))
0

R
= /d:cax (—Xp(a:)&vxk(x) + Xk($>anp(x))

= xp(0)0:x1(0) — x£(0)02x,(0). (3.39)

To describe bound states that might be present in the system, one can argue
that due to finite range of the potential the corresponding wave functions will
be localized around x = 0, and decay exponentially for large x. Theqrefore the
boundary conditions are satisfied automatically with the exponential precision,

and we may put

e (@) & i), k=i (3.40)

Its normalization can be found in a similar manner taking into account the iden-
tification @y, (x) = b, (x) discussed in Section 3.2. Indeed, using the fact that
at x — 400, the leading term in the momentum in the wave function behaves as
a;_e** we obtain
(Piser Pise) = iaf,bse. (3.41)
Similarly we can find the pre-quench wave function A,. In this case it is more
convenient to use the Jost solution (3.5) on the potential Vj, which we denote as
®,(z). In this notation we propose the following formula
Py ()

A(z) = Imm.

(3.42)

Notice that in this form the boundary condition A,(0) = 0 is satisfied automati-
cally, while the condition A,(—R) = 0 defines spectrum and the scattering phase
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n(q)

KA

2GR _ ¢(0) o—2in(a) (3.43)

a(0)

KA

Normalization now reads as

R+1'(q)

o o) = 55,002

(3.44)

Finally, computation of the overlaps between pre- and post-quench wavefunctions
n (3.19), can be avoided completely, and replaced by the corresponding overlaps
with the Jost’s functions. Namely, as it follows from (3.39) the time derivative
of the (3.19) can be expressed via the (conjugated) time evolution of the wave
function A,(y,t) defined as

0
Ay, t) = Z (A, Xk X (Y) B — /dqu(as)G*(:z:,y,t). (3.45)
“R

. (Xk, Xk:)

Here we have used the following presentation of the Green’s function

(x,y,1) . 3.46
; (X X&) ( )

The summation is taken over all spectral points (3.35). We perform this sum-
mation explicitly in E with the genuine discrete degrees of freedom and take the
thermodynamic limit only in the very end. The computation is straightforward
but a bit tedious. However, the obtained result can be easily explained heuristi-
cally. Namely, one can argue that in the thermodynamic limit instead of function
(3.46) one can use (3.12). This way, we can find a presentation only with the Jost

solutions introduced in the previous section

Aq(y,t) :/ dk( q,@k)@bk( ) citErk (3'47)

2m Qg

The integration path C runs from —oo to +00 in the upper half plane above all
positions of zeroes of ay, see figure 3.2. The overlap (A, ¢) can be computed

using the same trick as in (3.37) and (3.39). Indeed, if we introduce function

2= N 000) = [ A @)@ -V, (348)

81



we can present

0

(B~ E)) [ dedy(@)gn(o) = 20 = N(-R)eu(-R). (.49

~R
Here we have used that due to the finite range of the potentials the lower limit of
the integration in (3.48) can be either —R or —oo. Taking into account that for
ikR

k € C the last term vanishes exponentially @i (—R) ~ "', we finally present

A — b0 ztEk. '
q(y, 1) /O 27 (2 — Pag’ (3.50)

This is the final answer in the thermodynamic limit. Notice that =, is a regular
function and can be continued from the discrete spectrum to upper half plane of
the variable k. In the next section we will evaluate large-time asymptotic behavior
of the kernel, which is mostly defined by Z,_,. It can be computed from (3.49)
along with the asymptotic behavior A(—R) ~ —qe'?/®,(0) for large R (see
(3.42))

- q

S0 = =507 (3.51)

This expression can be directly obtained from the definition (3.48) already in the

thermodynamic limit. We demonstrate it in G. The direct computation of A,(0, t)

and its derivative in the finite system is given in F.

3.5 Kernel

To compute the kernel K(q,q’) for the Fredholm determinant of the FCS (3.21),
we start by considering its time derivative. Using explicit presentation (3.19) and
(3.39), along with the definition (3.45), we arrive at

dK(q,q)  2i(e* = 1)

v = - \<I>q<0)|(fé”(t)fq‘?)(t)—féo)(ofq(})(t)) @, (0)], (3.52)

where we have denoted

F0() = 07 A (2, 1)

q

5, a=0,1 (353)

_ / dk 2 x095(0) €™
] or ar, k? —q

=0
C

The contour C' runs as is shown in figure 3.2. Using presentation (3.50) we can
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Figure 3.2: Integration contours C' and C’ in the complex plane of k£ for the
integral presentation of fq(a) given by (3.53). The contours C' are C' are the
initial and transformed contours of integration, respectively. Blue dots on the
imaginary axis correspond to the bound states, red dots correspond to poles at
k = +q in (3.53). The shaded areas show the regions of exponential decaying
(I, IIT quadrants, light blue) and exponential growth (II, IV quadrants, pink) of
exp(itq?) for t — +o0.
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directly integrate (3.52). However, in order to easier assess the long-time asymp-
totic behavior we first identically transform féa) to highlight the most relevant
terms as t — 4+o00. To do so we notice that the exponential e*” is decaying in
the first and third quadrants of complex plane of k (see figure 3.2). So we deform
the contour C into C’ by pulling it towards the real negative line and crossing it.
By doing so we inevitably encircle all positions of the bound states and the pole

k = —q. The obtained deformation reads

= ol itq? NP —itr2
fq(a)(t) _ 12g,—q0% ¢_q(0) e + Z 12,5, %%n( ) e :
a—q 2q —) i, »: + q
dk 2,109 (0) &t
— . (3.94
i / 27 ay, k? — g2 (3:54)

C/

The “leading” coeflicient =,_, was computed in (3.51). Further we use the sym-
metry k — —k to fold the full contour C" and consider integration only with
Re k > 0, namely

( ) ol ) it 32 ( ) ita? Oodk (a) 6Ztk2

fq (t) = E 1 Bn7q€ n + Fq e q —|— / 7Qq,k‘ (]4; + 20)2 — q2, (355)
n= 0

Z 2,001, (0) RO
Blo) — b =qise Uz Vise, plo) — q 356
n,q a2%7l(%% +q2) ) q 2(1) (O)a_q ( )

N Zy.:0%;(0

Q) = Re ‘f’“;—f’“() (3.57)

Such form of fq(a)(t) is convenient for large ¢ asymptotic analysis. The first two
terms give persistent oscillations, while the integral in (3.55) is decaying as a
power law in ¢ for large t. This can be deduced from the stationary phase method
considering a saddle point at £ = 0. The corresponding exponent of the power
law decay depends on the behavior of Qéak) at £ = 0. In the case of generic
potentials, a; has a first order pole at k& = 0 while =, and 99 (0) are regular
at k = 0. Theqrefore Q( %) has at least first order zero at k = 0, which implies
the entire integral to be est1mated as O(t™1). For some special potentials (for

example reflectionless potentials), ay is regular at k = 0. For such potentials the

84



integral decays as t~1/2

o

dk ) € Iy i
/?Qq’k = = o, (3.58)
0

a Ve AE 00%y(0)
I = — 2an2 . (3.59)

To compute the kernel we substitute f(®(¢) in the form (3.55) into (3.52) and

integrate over t. Additionally, we perform conjugation with diagonal matrices
K(q,q) = K(q,q)e "Fa a2, (3.60)

This operation does not change the determinant, so for the transformed kernel we

obtain
K(q,q) = Kolq.q) + 0K (q,q). (3.61)

Here Ko(q,q') is given by

4i(er — 1)

v

KO(Q7 q/) -

_ 0 _ sint(E, — Ey)/2
% |0,(0)|(FVEY — FOE) @, (0) Iy
q q

(3.62)

Using definition (3.56) it can be equivalently presented as (3.24). The rest of the

kernel can be presented as

W 2i(er —1) _
0K (q,q') = ————|24(0)] (Mg (t) — My,(t)) |24(0)] (3.63)
with
My (t) = e " FamEa) /23 [K g, q,t) - KD(q. ¢, 0)} . (3.64)

Here different kernels have different physical meaning. The kernel K™ is respon-

sible for the contribution of the bound states only. It is given by

NP it(s2—32))
1 _ 1) p(0) 0)ply & "
KMY(q.q . t) =Y (BMB - Bfm)anq,)i 2 a2y (3.65)

m<n
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The kernel K® is responsible for contribution of the continuous spectrum only

. i B oM B0 o0 A1)
dk ey QUEY - QO R

q

K® /t:/ ak
@a. D= | BBy B —E,

o F it(Ep— (1) ((0) (0) (1)
+1 / ar / dp "B S8y, = Loy,
2 T
0 0

T iE B (B — BB, — ) %)

here Ey, = k? and Ef = (k £i0)% Finally the kernels K and K™ give the

mixed contribution from the bound states and the continuous spectrum

Z . (1) p0) _ (0) (1)
q q t Z/ dk etEk"F ) qu Bnq/ qu Bnq’ (3 67)
7T2E++%2) El - E, | |
@ (O (1) _ 0 oy
K 1) = By by = B by ) =5+ 508
(q7Q7 ) TLZ:;( ng - q ng 4 )Z(Eq + %721) ( )

Integrals in K® and K® decay for large t because of averaging of rapid oscilla-
tions as in the integral (3.55). Special care has to be taken for the reflectionless
potentials. At the first glance, in this case relations (3.58), (3.59) might produce
a logarithmic growth for large ¢ in the double integral in K®). This growth is,

however, absent because of the relation

Y — 101P =o. (3.69)

1/2 and a bit different asymp-

There are also potential singularities for small ¢ < ¢~
totic analysis of (3.58) is needed. Indeed, (3.59) shows a singular behavior for
small ¢, which in fact is not there, since in the asymptotic analysis of (3.58) we
have assumed that a pole at k = ¢ is far from the stationary point £ = 0. We
performed such analysis for the current and showed that the contribution of small
q gives only the subleading contributions.

Apart from the decaying terms, K contains also time-independent terms
K(t = 0), highly oscillating terms like K (¢), and terms that oscillate with
the frequencies given by the energies of the bound states KM (¢). The latter comes
in the form of the finite rank operators, and can appear in the final expression
of the determinant only linearly. As we have discussed in Section 3.3 we expect

that the contribution of the kernel § K to the asymptotic analysis of the Fredholm
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operator det(1 + K ) enters only as a smooth overall prefactor, which has non-
vanishing time dependence only if there are two or more bound states in the

spectrum.

3.5.1 FCS for perfect lead attachment

There are well-developed methods for asymptotic analysis of the Fredholm deter-
minants of the so-called integrable kernels [94, 176]. As we have shown above for
generic potentials Vy(x) and V' (z) the kernel for FCS K (q, ¢') is not an integrable
one.

In this subsection we consider a special case of quench setup when the obtained
kernel is integrable even for finite times. We call this situation the perfect lead
attachment because it corresponds to the scenario when Vy(z) = V() for x < 0.

In this case due to the integral presentation (3.5) the corresponding Jost func-
tions coincide for negative x: y,(x) = ®,(x) for < 0. From presentation (3.48)

we observe the factorization
Eq,k == A;(O)g@k(()), (370)

which imply a similar factorization féa)(t) = Ag(O)g(ga)(t) for fq(a)(t) given by
(3.53), where

—w W, = .
o F k2 — g2’ k ar.

Comparing (3.70) at k = —q with (3.51) we conclude that A (0) = —q/[p,(0)]>.
Theqrefore now (3.52) reads

dK(q,q) Qi(e)‘ —1)qq <gé1)(ﬁ)gé(/))(t) _ géo)(t)gé/l)(t» . (3.72)

dt 7l (0)lleg (0)

Integrating in ¢ we can present the kernel K(q,q') in the integrable form

2(e* — 1)qq

Kle4) = 20 O O]
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where
| ki )
Dt =i [ dr [ Srem™ [ g0 -l g n)]. 37

To check correctness of (3.73) we need to compare its derivative in ¢ with (3.72)

using
d (o)

Y
dtgq (t) = quQC(] )(t) +Z/_wl£: )eith?, (3.75)

27
C

Also we have to check that K(q,q¢') = 0 at ¢t = 0. This is ensured due to

the property géo)(O) = 0, which follows from analyticity of w,io)

in the upper
half-plane of k. The integrable form of kernel K(q,q’) allows one to replace
evaluation of the Fredholm determinants by a solution of the Riemann—Hilbert
problem [94, 176]. This approach is especially useful for the asymptotic analysis
at large time ¢ — 4o00. In this case, however, if we follow the standard procedure
outlined in [176], the corresponding jump matrix will have size 4 x 4. Theqrefore,
we postpone full analysis to a separate publication.

The asymptotic behavior of g((]a)(t) can be found similarly to (3.55), where one
can neglect the last integral. To find the large-time asymptotic behavior of D,(t)

we present it identically as

iy = [ [ B 1l e
1 2r ) 27 k%2 — p? p? — g2

C C*
27 —p?+10 P? — ¢ S
C

Here C* is a contour conjugated to C'. Moreover, for the symmetric potential

function gél)(t) simplifies significantly and the integral can be dropped even for

finite times, namely, we can present

(3.77)

Here we used that for arbitrary even potential V(—x) = V(x), the Jost solutions
are related as ©¥_j(z) = pp(—x), which leads to
1 _ #e(0)0:44(0) _

w — =
k ap

(3.78)
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Indeed taking into account that the Wronskian ¢y ()0, k() — ¥_p(z)0ppr(x)
does not depend on x and calculating it at + —+ —oo and £ = 0 we obtain the
relation (3.78). Thus, the integral in (3.55) vanishes identically, since it depend
only on the real part of (3.78). Further the bound state contribution vanishes
because the wave-functions are either odd or even, meaning that either the value at

zero or the value of the derivative at zero vanishes leading to ¢;,, (0)9,;,.,(0) = 0.

3.6 The current

Let us also discuss the full current J(¢) of the particles flowing through the middle
x = 0 to the right part of the system. It can be evaluated from the FCS (3.21)

as follows

J(t)idf(A,t)‘HTr< d dK )

T dt d Pat dx Ix=o

_ /O h dqp(q)m)qTWIm @), (3.79)

where at the last step we used explicit presentation (3.52) to compute the trace. As
we discuss in Section 3.5, the integral in (3.55) may be dropped for the calculation

of current for large t since it vanishes as ¢ — 0o, and we can approximate

Nb
FiO(t) ~ Fl®et 43 " Bl (3.80)
n=1

Substituting this expression into (3.79) we obtain three type of contributions to
the current
J(t) ~ Jip + J* + 0, (3.81)

where Jpp comes from the first term in (3.80), J® comes from the terms that
involve the bound states only and ¢.J described the mix of the first term with the
bound states.

To calculate Jig we use Im ¢/, (0)14(0) = —¢ and (3.9)

o

ho= | daapla) _ [ SootErre) (3.8
0

T |ag|? 27
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It is well-known Landauer—Biittiker formula for the current.

The contribution of bound states to the current is

Jb = Z Ay sint (32, — 32), (3.83)

m<n

where

4 (¥1,4, (0)901s,,(0) — ¥, (0)2)is, (0))

/ a/

1 1My,

Amn -

— —

Oodq 2 2,354, —q,i 5,
>< _ 1 @ 0 q, m q, n . 384
| oo 0)F e 35

For the symmetric potential V' (x), the bound states are either even functions
with @%n(O) = 0 or odd functions with 1, (0) = 0. Theqrefore, in this case, a
nontrivial contribution to the current may arise only from pairs of odd-even states.
Furthermore, in the case of perfect lead attachment, V(x) = Vy(x), we have
=g, = 0 for odd bound states &Wn(x) and theqrefore there is no contribution at
all to the current from bound states in the case of perfect lead attachment with

an even potential.

The integral in ¢ for 6J can be estimated by the contribution at ¢ = 0 by
the method of stationary phase and it can be shown that §.J decays for large ¢ at

1/2

least as /2 and theqrefore does not give a leading contribution to the current.

Finally we arrive to the following expression for the large-time asymptotic

current

J(t) ~ / L AENT(E) + 3 A sint(s2, — 52). (3.85)

m<n

We see that in addition to the constant Landauer—Biittiker current (the first term),
there are also oscillating terms connected with the presence of the multiple bound

states.

To illustrate this formula we consider an example of the reflecionless poten-
tial V(2) = —2/cosh?z. For this potential T(E) = 1, hence the name. The

Jost functions and functions fq(a)(t) can be easily computed and the results are
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Figure 3.3: Current through the point = 0 and its asymptotic behavior, the
initial state is characterized by kp = 1, Ep = k% = 1, p(E) = 0(Er — E): (a)
the reflectionless potential V() = —2/cosh®z (one bound state); the current

1/2 around Landauer—

(black) is oscillating with an amplitude decaying as ~ ¢~
Biittiker constant current Jpp = Fp/(27) (red). (b) symmetric double delta
barrier potential (3.87) with d = 2.3, ¢ = —1.3 (two bound states); the current
(black dots) has asymptotic oscillating behavior (3.90) with fixed amplitude (red

curve) around Landauer—Biittiker constant current (green line).
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presented in H.2. The exact expression for the current than reads as (3.79)

J(t) = / T

T

dk k)
7 14 k2 (k+1i0)2 — ¢2

00
X q+$ﬂﬂ+ﬂ%ﬂ+ﬂl+¥ﬂm/ﬁ (3.86)
0
We plot this expression for p(F) = 0(Ep — E) in figure 3.3(a) against the
Landauer—Biittiker expression Jpp = Ep/(27). Notice that even though the
bound state is present in the spectrum, it produces only vanishing with time

oscillations.
To demonstrate the persistent oscillations we consider the symmetric double

delta barrier potential

V(x) =go(x —d/2) + gé(z +d/2). (3.87)
The corresponding scattering data can be computed explicitly (for the details see
H.3)

P 4 (2k + ig)® ge "™ (g — 2ik) — g™ (g + 2ik)
b= . (3.88)
Ak2 iy

The bound states momenta follow from the relation a;,, = 0, which if we define

ap =

u=2x/|g|, D = |g|d can be written as
(u—1)> —e P =0. (3.89)

For the negative couplings this equation has two solutions for D > 2 and one
solution for 0 < D < 2. Note a; has a simple pole at £k = 0 if D # 2. The
case D = 2 describes a situation when the bound states is just starts to appear
from (disappear into) the continuous spectrum, which formally is reflected in ay
being regular at k£ = 0. Notice that same behavior is inherent for the reflectionless
potentials, while for generic potentials a; has a simple pole at £ = 0. The formula
for the asymptotic current (3.85) is now given by

where T(FE) = |ag|? is the transmission coefficient; the energies of bound states

E; = —%]2 are defined via solutions s; of the equation (3.89); the amplitude

92



Ay follows from (3.84) and is presented explicitly in (H.52). In figure 3.3(b) we
compare the asymptotic current (3.90) with the exact expression (3.79) computed
numerically using fq(a)(t) given in H.3. We observe that the asymptotic regime

establishes after few oscillations.

3.7 Conclusions

To summarize, we have presented derivations of the Full Counting Statistics for
the one-dimensional transport via an arbitrary defect from the first principles.
The derivation in the main part is based on the effective presentation of the
Green’s function in the thermodynamic limit. The procedure of taking this limit
(replacing the summation of the quantized quasimomenta to the integral) is not
absolutely rigorous, so in the appendix, we have presented an exact summation
over the quantized momenta with the subsequent thermodynamic limit. The
final answer can be expressed via the Fredholm determinant whose numerical
evaluation is straightforward.

We speculate that the large-time asymptotic behavior of the obtained Fred-
holm determinant could be deduced after certain approximations of the kernels,
which render the determinant to be of the sine-kernel type. In this form, the
answer depends only on the transmission coefficient of the post-quench potential,
while the correlations of the original state are present only as the energy distribu-
tion. After these approximations, the Fredholm determinant could be analyzed
either by the non-linear steepest descent method for the corresponding Riemann—
Hilbert problem or by application the effective form factors. This way we were
able to recover the Levitov—Lesovik formula and its modification by logarithmic
corrections in case of discontinuous initial distributions.

As for the future directions, one can turn to the special quench of the per-
fect lead attachment when the obtained exact kernel is an integrable one and
the Riemann—Hilbert problem appears without any approximations (see Sec-
tion 3.5.1). It would be also interesting to develop effective form factor methods
to find large-time asymptotic behavior directly from the series (3.17). Besides,
these methods could be used to describe the situation when the Levitov—Lesovik

formula is not applicable, i.e. when there are two or more bound states present in

93



the spectrum of the post-quench potential and the FCS gets persistent oscillating
behavior even for the constant potential bias. We plan to clarify how the am-
plitudes of these oscillations depend on the initial conditions and whether some

memory effects of the pre-quench potentials are present.

In this chapter, we have not considered the case when there are bound states
present in the pre-quench potential, but this case can be easily addressed in our
formalism. Much more involved improvement of the formalism would be needed to
tackle more general initial states (in particular, when there are some particles on
the right-hand side of the system (Ng(0)) # 0); to describe spinful electron and
superconducting setups, and to explore the case of the driven system i.e. when
the defect depends on time (for example, for the harmonically driven conformal
defect [177]).

Apart from introducing the spin degrees of freedom, it would be interesting
to address the multichannel scenario, which is more relevant to the theoretical
description of the mesoscopic experiments. Indeed, in the typical setup, the leads
are infinite in only one dimension while confinement in other dimensions cre-
ates additional channels connected with the possibility to excite transverse modes
[178, 179]. We expect that the corresponding Fredholm determinants for the Full
Counting Statistics will contain block kernels as the transmission coefficient T'(F)

will become a matrix.

It is worth noting that our main assumption is based on the validity of the
description of the electrons as essentially non-interacting fermions. This assump-
tion is valid for equilibrium situations as a virtue of the Landau—Fermi theory
and might be violated for non-equilibrium situations as we have here. We expect
however that it remains valid as for the typical descriptions of the transport in
driven nanoscale systems [180]. Physically, we require the existence of the quasi-
particles with a lifetime sufficient for the proposed effects to be detected. In our
case, this has to be larger than the frequency defined by the energy differences of
two bound states.

Finally, let us mention that the experiments with ultracold atoms open a
new venue to study transport in truly one-dimensional systems [181|. There the
interactions are taken into account within the bosonization theory. We expect that

the results of bosonization could be seen in the asymptotics of the corresponding
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Fredholm determinants (as it was for free fermions [160]|). However, the complete
inclusion of interaction in the leads requires a separate investigation. There is
also a full analog of the Landauer—Biittiker formalism for the interaction on the
defect [182]. It would marvelous to find analogous formulas for the FCS, which is

very challenging with our formalism.
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Conclusions

In chapter 1, the effective form factors were introduced to simulate the static
correlation functions for the states with finite entropy. The state was determined
by the phase shift function v(q). For the traditional approaches dealing with the
finite entropy states is notoriously difficult but for our approach it is rather advan-
tageous situation, since almost all available quantum numbers are occupied which
tremendously simplifies the computation of form factor series. This allowed us,
in particular, to re-derive known asymptotics for the static two point correlators

in the XY spin chain and present them in a more compact form.

Additionally, it was established a relation between two representations of the
correlation function, namelly, the first one is in the form of a difference of two
Fredholm determinants and another one is in the form of a single Fredholm de-
terminant. This fact allowed us to relate the tau function with arbitrary integer
winding number ¢ to the problem of the asymptotic analysis of Toeplitz determi-

nants with the winding number 6 — 1 and re-derive the Hartwig—Fisher theorem.

In chapter 2, it was found the asymptotics of dynamical correlation functions
of anyonic gas with the parameter of anyonic statistics 0 < x < 1 using the
effective form-factor approach. The main difficulty of this method is to find
the phase-shift function v(q) for effective fermions solving an integral equation.
For large x and t we found approximate solutions for this integral equation that

depend on the ratio v = x/t.

For the space-like region, v > 1, the solution v(q) can be approximated by the
smooth function v, (¢). In this case, the asymptotics of the correlation function is
given by asymptotic analysis of integrals producing the leading contribution either
from a pole or from a saddle point. In the case of saddle-point contribution there
is an additional power factor correcting the exponential decay of the correlation

function.

For the time-like region, |v| < 1, we approximate the solution v(q) for a large

finite £ by a function having discontinuities at critical points and corresponding
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to the solution of the integral equation at ¢ = oco. For large finite £ we consider a
class of regularized v(gq) having the same limit at ¢ = co as the genuine solution.
[t is remarkable, that the regularized v(q) lead to the same asymptotics up to a
prefactor independent of ¢. This universal time dependence of asymptotics has an
additional power-like factor to the exponential decay of the correlation function.
The exponent of this power-like factor is related directly to the jumps of v(q) at
critical points.

In chapter 3, we have presented derivations of the Full Counting Statistics
for the one-dimensional transport via an arbitrary defect from the first principles.
The derivation in the main part is based on the effective presentation of the
Green’s function in the thermodynamic limit. The final answer can be expressed
via the Fredholm determinant whose numerical evaluation is straightforward.

It was argued that the large-time asymptotic behavior of the obtained Fred-
holm determinant could be deduced after certain approximations of the kernels,
which render the determinant to be of the sine-kernel type. In this form, the
answer depends only on the transmission coefficient of the post-quench potential,
while the correlations of the original state are present only as the energy distribu-
tion. After these approximations, the Fredholm determinant could be analyzed
either by the non-linear steepest descent method for the corresponding Riemann—
Hilbert problem or by application of the effective form factors. This way we were
able to recover the Levitov—Lesovik formula and its modification by logarithmic
corrections in case of discontinuous initial distributions (e.g. in zero temperature

case).
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Appendix A

Summation of form factors and determinant

formula

In this appendix, we derive formula (1.12) presenting tau function in the thermo-
dynamic limit as a difference of two Fredholm determinants.
We consider solutions in the large L limit and choose k to fill a Fermi Sea,

namely

2 N
k22%<—§+l—1—yz>, 221,,N+1, (Al)

where v; = v(k;). For simplicity, we choose N to be even.

First, we identically rewrite the overlap as (note, det D = det D)

2
N+1 N+1 N
( e9(ki)/2 SlIl?TVZ>

(k|q)| _—4LHQ I - [[e?“det Ddet D (A2)

=1 =1
cot Fi-a xS cot%—z’
D= | A3
cot M1 A5 —q ... cot —kN“Q_QN — 1 (A3)
1 1
COt%—f‘Z‘ cotwn%
D= , A4
cot —kl_ZQN +1i ... cot —kN“Q_QN +1 (A4)
1 1
Q. = b A5
(3 1+27TV( ) ( : )

Then using standard linear algebra manipulations we rewrite the static tau func-

tion as

T(x) = det(A+d6A) —det A (A.6)
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with
4 ., 9(ki) g ilkithy)z/2
0A;; = A sin”(7y;)e I (A.7)

Aij = Q.M_§W69<ki>e—i<ki+kj>w/z
(3 1 L
% iqr—g(q) qQ—ki . q—Fk; .
ge cot 5 ¢ cot 5 +1i), (A8)
q

where summation over ¢ is happening over the whole Brillouin zone

2 L—1
e e | i—=1.....L\. A.
qE{L< 5 ) j=1,..., } (A.9)

For ¢ # j we present

12
Ajj; = Qism Vi eg(k‘i)e—i(ki+kj)x/2€i(ki—kj)/2C(ki) — c(k;) (A.10)

2L sin —ki;kj

with

(A.11)

hlw

E elar=9(a cot
q

This sum can be rewritten as a contour integral and evaluated at large L, namely,
choosing contour v running around ¢; and avoiding any other singularities of the
integrand we obtain

c(k;) = 7? LT cot 5 (A.12)

Further, we deform the contour into the rectangle that encapsulates interval
[—m,7]. The vertical parts of this rectangle cancel and we are left with two

lines above and below the real axis along with the contribution from the pole at
q=F

w410 J —g(q)+ig I 4 g(k:)+ik
q e 1qT q — k; 26_ i 1R X
/ / AL s P F)
T eW 1 2 e 1
m—10  —7+i0

Here we assume that the imaginary shift <0 is chosen to be larger then Im k; =

O(1/L). In this form we immediately see that, in the limit L — oo, the values

120



of c(k) at points k; are equal to the values of the FE(k;) for the analytic function
E(k) given by

- o q— L 4i6—g(k)+ikx
E(k) = —e glartiar oot 5 T e 1 (A.14)
—m+0

Using E(k) we can obtain values also for some vicinity of k;, which allow us to
effectively “omit” solving Bethe equations (1.7). Performing similar computation

for the diagonal components we arrive at

Vo S sin(wy;)? el1r=9(a)

g =Rk . A.15
e R N e

The sum can be evaluated in the same way as in Eq. (A.12):

a0 (14 LG )\
L
e Qi sin(my;)? h dq e 9@)+iar
(ki) =ik 220 22N 7). B
+ e % — q+i(2)—k¢ . (A.16)
Equivalently, using definition (A.14), we can present
2mv/' (ki oy S S0 (714)°

Ay = Q <1 + %(U + eg<ki>—zkﬂ%2mki). (A.17)

So recalling definition of (A.5) we obtain for generic i and j

.2
Aij = 5ij+—S1n (Wyi)eg(ki)e_i(k”*kj)x/?ei(k”_kj)/zE(ki) — E(k]) +0(1/L%), (A.18)
2L sin k;ij
where for ¢ = j the second term is understood in the L’Hopital rule sense. Simi-

larly we obtain for the finite rank contribution
4 .
0A;; = ~7 sin? () ed k) e =i kitkie/2 L O(1/L2). (A.19)

In this form we are at the position to take limit L. — oo, and taking into account
that k; is quantized in the units 27/ L, arrive at the Fredholm determinants (1.12).

Similarly, we can perform summation for 7_(z) defined in Eq. (1.56). Instead
of Eq. (A.6) we obtain the following

7_(z) = det(A+6A) + (I' — 1) det A, (A.20)
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1 .
Aij = ﬁe 9(qi)+iz(qi+q;)/2
e9k)=iwk 6in? (k) k—q . k—qj .
X Z T (k) <cot 5 z) <COtT + z) , (A.21)
k L
5A--—4F( V(g B 4269 “iek sin? v (k) (A.22)
Z]_L +\4i) ' -\4qi), — Lk 1+27r k) ) .
9@ a1 eIk =ik gin? ry (k) k—q
Fi(g)=e 2 " t +i). A23
) =) ( 5 ) (A.23)

Here ) means sum over all L + § nonequivalent (mod 27) solutions of Eq. (1.7),
z
which can be presented as a contour integral

- Z d S (k) (A.24)

27r1/ 27T etkL+2miv(k) _ 1’

where the contour C' runs around poles of the denominator only and avoids and
singularities of f(k). Then the derivation goes along the lines as for 7(x). Namely,

for ¢ # 7 we present

Aij = ie 9(a:)+iz(ai+a;)/2 ilai—a;)/2 € cla:) — clg;) (A.25)

2L Sln %2% )

where now instead of Eq. (A.11)

2 edB) ke gin(ry(k)) k—gq
= — : A2
clg) =7 ; D cot — (A.26)

In the thermodynamic limit this function can be replaced by E(q), which does

not depend on the system size

m+10
. L —
c(q) = E_(¢q) =— / dk e9F) =% sin? v (k) cot 5 1

—7m+10

eg(q)_ixq Sin2 ﬂ-y(q)e_27riy(Q)

— 4 1 — e—2miv(q)

(A.27)
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For positive x it is much more convenient to rewrite this function as

m—10
1 : k —
E_(q) = - / dk 9 %)=k gin2 ru (k) cot 5 a

—1m—10

e—QTriV(q)

— 49 D)1 gy 2
die sin® 7v(q) (1 + = 6_2m.y(q)) . (A.28)

Now if we relate

e 9 = 2rivla) _ 1 (A.29)
this function transform into
7—10 dk
E_(q) = / I e~k (=2 k) _ 1) cot 9 | e (A.30)
T
—7m—10

For large positive x the integral can be neglected. For diagonal components we
obtain

1 .
Aii =1+ Ze_g(qi)_FZl:QiEl_ (QZ) (A31)

Function I' can be written as

[dk .
I = / %e_m“(l — e k), (A.32)
It is also exponentially suppressed for x — 4o0c0. The finite rank contribution is

easily evaluated taking into account that

e—9(@)/2+ixq/2

Fulg) = ———— (B () FT/2). (A.33)

After all these transformations one readily obtains the result Eq. (1.58) in the

thermodynamic limit.

Appendix B

Lemmas about products

In this appendix, we study products that appear in the overlaps. We assume that

v(q) is a smooth function on the segment [—m, | and assign its values in specific
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points as v;, namely

2m L+1
_ , S B.1
=vle) 4= (-E i), (B.1)
v =v(—m), vy =v(m), S=vy —v_ (B.2)
First we consider constant function v(q) = v = const.
Lemma B.1. The following product formula is valid
L-1 . 7w(j—v) .
sin =7 sin(7v)
B =] —%t=—+% (B.3)
o sin TJ L sin 7
In the limit L — oo this product simplifies to
sin(7v
Br(v) ~ ( ) (B.4)
TV
The denomainator is equal to
L—1 .
. ) L
H Sin f = F <B5)
j=1
Proof. We can rewrite identically the left hand side as
L—1 8111 (j—l/) e?zrz . 27TLZU
B V) — — —mzx— . B6
Taking into account that
L—1 L
- 1
. 271'1]/L) _ Z
| (z e P (B.7)
J=1
we obtain
sin(mv)
B = : B.8
Llv) =7 z (B.8)
[]

Further, we proceed with the generic function v(q).
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Lemma B.2. For an integer 0 < A < L — 1, the following asymptotic approxi-

mation in the limit L — oo is valid

A sin = ] (=)
B
aeb @l ==
7=1
Al LA T
~ LT e exp [ f)da . (B9)

A+1,1—1, L— A4y

where

ai, az, ... ap | T(a)l(a2)...I'(ay,)
FLM%.“%]Nmmm.mm’ (10
o ovlqa) | v- (@), g
ﬂ@——%_q+ﬂ+q+ S tan . (B.11)

Proof. First, we introduce the modified product

B siv(a) fﬁmﬂ%ﬂ 11 f[Fu+9 N2 —4)
A,L - . T Vj Vj = y l/] *
ey Slnfj 1_71+LTj j:lF(1+jL )F(Q——)

(B.12)
Due to this modification, it is enough to expand log B4 r[v(¢)] up to the linear

terms in v; since higher orders will be of order O(1/L), namely

A
log BAL[V(C])] = Zyj (% — LL_] — %cot f‘?) + O(1/L). (B.13)

Taking into account (B.1) we transform the sum into an integral

qa

g Baslvlo)] = [vlo) (- b g )a (B

q+m™ T 2T

—T
The rest of the product can be evaluated in a similar manner. First, we identically

transform

A4+1—uv, L+vy, L—A
A+1,1—1, L, L—A+vy

L) 52)(3%)
A (=2) ()
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The logarithm of the remaining product can be expanded only up to linear in v

terms to capture finite terms in L — oo limit, namely

1ogf[< ) L”Z):quwq)—u(—w)jdqv(q)_—m 51

A () L0 T
Combining this result with (B.14) and using Stirling’s formula we obtain the
desired result (B.9). O

Remark 1. For A = L — 1, using Stirling’s approximation for Gamma

functions we obtain

— Ly+—V-
1:[ sin 3 F(l + v )I'(1—v)
X exp/dq (W(Mr — V_2) il q§u+ ) + v(4) tan Q) . (B.17)
qQ-— T 2 2

-

. Remark 2. For A ~ L and L — A ~ L the prefactor can be simplified as

A+1-I/1,L+VA,L—A
A+1,1—w, L, L—A+vy

r

1 1 1
I T(1—wy) (A/L) (1 — A/L)a

The next lemma is a simple corollary of the previous one.

(B.18)

Lemma B.3. The following asymptotic expression is valid as L — 0o

TV, vy sin? T=0) 5
2 TVa L . 720-2 2
2, =sin 7 | | — o ~ L7 sin”(mv,)
e SN

a+v,, L—a+1-—1y,
a+ve, L—a+1—v_

2
x T ] e?Fla) - (B.19)

where

™

Vi Vg V(Q) qd — qq
F(q,) = — + — cot d
(%) /( 2T+ qu—q q—Qa 2 2 ) !

da
+/ - TR R v(4) cot L= qa) dq. (B.20)
2T +q—q 94— qa 2 2
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Proof. First, we identically present this product as

T

J+a)

H sin” . (B.21)
=1 Sln

Then using Lemma (B.2) and Stirling’s formula we obtain

a—
TV, sin?
Z, = — sin? H
L
Jj=1

wlb ~

2
a L — 1 - a
Z, ~ L* %sin®(rv,)T oy “r 3 e2F(da) (B.22)
a+vy, L—a+1—v_
with
o v v(ga)  v(Gatag+m), ¢
F(q.) = dg [ ——= tan = | —
(4a) /_W q( i 5 an
da _ —
- / dg (——C—— M) Vamamm) 3 g
. T—q T+g¢q 2 2
Changing variables we obtain the desired statement. O]

Further, we proceed with double products.

Lemma B.4. For § > 0 the following asymptotic expansion is valid in the limit

L — o0 Lo
L sin T VZ+V]) A
Z = HH . ) ~ L52/27 (B24)
1=1 j=1 L

where the L independent prefactor A reads

A=G(1+8)2r) " exp (é—éF( ))
v(q) = vik) = (g — k)/2m)]’
q—k

/dq/dk :

with F(m) is defined in Eq. (B.20) and G(x) stands for Barnes G-function defined
by the functional relation G(x+1) = I'(x)G(z). Notice that function v(q)—0dq/2m

has zero winding number so the integrals in the exponential are well defined.

B.25
4 sin ( )

Proof. To find the thermodynamic limit of Z we rewrite it as Z = Y] Yse® with

L i—1 . 7y. ] -
sinfl—j—vity) 1-—F  ww
Y, = L — = s
L i-1 COS m(vi—v;) tan W(VZEVJ) -
— H 1 Vi—U; (Z_j) eL—itj (B 26)
i—1 =1+ T Ta-t) tan =



L i-1
VvV, — UV;: — 5 ui—vj—é
1 ¢ J T L=itj+o B.27
XHH<+L—i+j+(5>€  (B27)

I Vi —Vj—0 o Vi — Vj
= ( et T j.>. (B.28)
pur L—i+j+0 L—i4+j5 L—i+y

The factors are designed in such a way that terms O(v") for n > 2 do not

contribute in L — oo case. In particular, we used that

L1 ]
t— = 0. B.29
;co 7 ( )

So keeping only quadratic terms we obtain

L -1 . N\ —2
1 11— 1

i=1 j=1

and taking L — oo

1 ) 4 1
onti =g [ da [ i@~ i) (ka?sing%). (331

Similarly

L -1 5 viv,
logHH( —z+j+5) e I=1i+3

——/dq/dk( 27__2?;5)2- (B.32)

The first part of the product in Y5 (by grouping terms with the same i — j) can

be presented as

L i—1 5 5 L-1
W(é)zHH(lJrL_—Hj) e I =

i=1 j=1 j=1

We consider an additional expression




Differentiating it by 0 we obtain

dlogd?/(d) _ _5dlogdlgfo(5). (B.35)
For large L we can approximate
s
Wy(0) ~ T +0) (B.36)
Solving Eq. (B.35) with initial condition log W (d = 0) = 0 we obtain
5
log W (8) ~ —%2 log L + / ;4108 Fd(zl 2 4. (B.37)

0
Finally, let us find L — oo expression for Rs defined in Eq. (B.28). First we
identically transform it into

L L

Rs=> (vi—v1)Sp—is1 — Y (i —11)S.. (B.38)

1=1 1=1

. 1\ _d, T+t )it
2 \G56 G) de BT(L+ (i t+e+0)

(B.39)

e=0 .

From the form of Eq. (B.38) one can conclude that as L — oo the non-vanishing

contributions to the sum will come from indices i = O(L). Theqrefore, using

$£=5(%—%)- (B.A40)

Stirling’s formula we can present S; as

Theqrefore Rs ~ R with

e (S () S (-2)

1=




So far we have proved that
7~ L7020, (B.42)

with

1)
log (1
05:6R+/zdog A+2),,

dz

20(v(q) —v(k)) — 6% (v(q) —v(k))’
/dq/dk( 27T—q+/€)  4sin? &F ) (BA43)

2

Further, we can use

5
/Zdlog 1;(1 + Z)dz _ 5((5;— 1 glog(2ﬂ) +log G(1 + 6), (B.44)
2

0

where G(x) is Barnes G-function. The final answer is obtained by tedious but

straightforward manipulations with integrals. ]

In the next lemma we address a similar double product for negative winding

numbers 6 < 0.

Lemma B.5. Let us define £ = L+ 6, with § < 0, then the following asymptotic
behavior is valid as L — oo (here we still assume that 0| < L)

Z = ﬁ ﬁ sinf(i —j— v +vy)  LV/2(2m)(0740)/2¢0/2
N i=1 j=1 sin (Z;j) N G<1 T 5)
2
— —o(q—k)/(2
X exp /dq/dk V() (qk )/(2m) . (B.45)
4 sin 4=
Proof. We present this product as a ratio Z = Z1/Zs with
{ i—1 i—1 . 7w(i—j)
sin & — v +v;) sin
i1 o1 sin €> i1 jo1 Sin (ej)
We can identically transform Z; as
L sin & — [vsli + [v5];)
Z =] e , (B.47)
1=1 j=1 T
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where [v5]; = v;(1 4+ /L) — §i/L. In thermodynamic limit this expression corre-

spond to the following function

T+ q

vs(q) = v(q) = 0—5— (B.48)
s

This function has zero winding number, so applying the previous lemma, we

obtain
us U 2
—v(k)—9(qg—k)/(2
71 = exp —/dq/dk vg) = v(k) (qk )/(27) : (B.49)
4 sin T~

Similarly, we can evaluate Zs. We present it as

Z =111 — . (B.50)

This corresponds to the positive phase shift v(q) = —dq/(27) = |d|¢/(27), and
allows us to use previous lemma once again and obtain

G(1 — 6)(2m) (0 +0)/2¢=0/2

Zy = 052/2

(B.51)

]

Here we used that F(7w) = —|d| log(27) for v(q) = |6|q/(27) (see Eq. (B.20)).
Finally, Egs. (B.49) and (B.51) immediately lead to the statement of the lemma.

Appendix C
Orthogonality catastrophe on the lattice

Here using results from Appendix B we evaluate the overlaps in Eq. (1.10).

C.1 Winding number 0 = 1

For 0 = 1 there exist L + 1 solutions of Eq. (1.7)

_27T L+1

k, f(_T+j_”j)’ vi=v(k), j=12,...,L+1 (C1)
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We use all of them in Eq. (1.10) and set q = {qu, - .. qr} with

2m L+1 :
qj:f(_T—i_])’ j=1,2,...,L. (C.2)

To evaluate Eq. (1.10) in thermodynamic limit L — oo, we first we transform

identically the determinant (1.11) as

) - L i
) L 9 kl2k] L Sln2 k:L+; k; L Hﬁéz sm2 qi— 2
(et D = [T on 2 < [ 2« . (C3)
gin? 4=% sin?2 kri1—q; L —
1 >17 2 =1 1 45
1>) J 2 1= Hl Sln 5
J:

We analyze this expression term by term. The last product can be written down
using Egs. (1.21) and (1.22) as

L 2 Qz L—1 92 ]
HHéZ sin 2 1 sin ”—L] L2 (C.4)
.9 ki—g sin® T4 &< gin? T sin® 7y '
H sin® =5~ =1
Jj=1

In the last step, we used Lemma (B.1). The next product can be evaluated

employing similar transformations and using Lemma (B.2), namely

ﬁst% _ sin’ % 1:[ in’ T (j — vy 4+ vi- J)ﬁ Sinz%j
jor sin? B sin® T 20 sin® jor sin? )
w2 L2 i
~ e | [diflo)]. ()
sin® vy
where v, =vpp and d = vy — vy =v(m) —v(—m) =1 and
2 q
filg) = + (v(7) — v(—q)) tan =. (C.6)
q— T 2
Notice that _
[ dafita) = 2P(x) =2P () (€.7)

with F'(q) defined in Eq. (B.20). Contrary to the expression (C.4), Eq. (C.5)
is asymptotic as L — oo. Finally, the first double product in Eq. (C.3) can be

evaluated using Lemma (B.4).

L ki—k; L 1

e e e S
sin QQ'L ]) ~ L ) )

1> =1 j=1 L
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Where A is defined in Eq. (B.25). The rest of the product in Eq. (1.10) can be

evaluated for generic ¢

Lﬁ (HQ%V’(’C )> A exp jv’(q)dq = ¢, (C.9)

i=1 g

= exp QWi/qu = (1—6727””)5, (C.10)

e2miv(q) — 1

—T

where in the last part we have used the relation between g(q) and v(q) Eq. (1.16)
and assumed that v(k) has a non-vanishing imaginary part. Combining all factors

together in Eq. (1.10) we obtain

\(k|q>|2 _ 47T2A262F(7r)—1

— exp ——/dq/dk[ k)_(k_k)/% 2 . (C.11)

2sin &2 h

C.2 Winding number 0 = 2

For 6 > 1 computation of the overlaps goes in the similar manner as in the
previous section. Namely, first we consider overlap with the set k = kq, ... kr41
with k; defined in Eq. (C.1). There instead of Eq. (C.5) we will have

L 2 kpt1—k; 2 27202
| i ) (C.12)

iy sin? w ~ sin?(mvy) T(6)?

with F'(7) defined in Eq. (B.20). Further, Eq. (C.8) we will replaced accordingly
to Lemma (B.4)

L st k I in? —j vit+v;) A2
12 -1 ) A o
1> i=1 j=1 L
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Taking into account Eqs. (C.9) and (C.10), for the corresponding function g(k)
(see Eq. (1.57) ) we find the thermodynamic form for the overlap

G(0)* (1 — €2Wiy+)6_1€—21«“(7r)(5—1)
LO-17 (27)0-10+2)

X exp —/dq/dk[ —vlk) = 5_(,3_“/2” . (C.14)

q
2 sin 5

[(kla)|* =

The overlaps for other sets k can be obtained from this one. We further focus on
0 = 2, in this case there are exacly L + 2 sets k parametrized by the omission of

one of the solutions of Eq. (1.7), namely
KW = {ki, .. koot kasts - kiee},  a=1,2,... L+2. (C.15)

With this notations k**? = k. Now let us consider ratio of the excited overlap

L+1

H sin?2 kryo—k;
2

|(k k' )| — p9(m)—glka) I=1

klg) |2 L+2
Kla)| ik
j#a
L-1
sin® Zsin® 28 [ sin® Z(j — vjyo + 1)
mw)— a =1
— 9(m)=g(ka) " V:V P P (C.16)
Hsm T —vatvasy) Hsm R A
Using Lemma (B.2) for a ~ L, L — a ~ L we obtain
[ ][ AWNEL
= = (2m) " exp |2F(7) + <V ——> cot dq| . C.17
)2 (2m)"exp |2F () () = — 54 (C.17)

-7

Combining this result with Eq. (C.14) for § = 2, the overlap can be written as

_ 7r
€2my(k)

—1 — k,
T exp ][ (V(q) — %) cot 4 5 dq

[ (o=stme=) | e

2

[(&“|q)]” =
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C.3 Winding number ¢ = 0

Let us study thermodynamic limit of the overlap (1.10) in the case N = L — 1,
which is especially useful for 6 = 0. Below, however, for the sake of generality, we

will keep 6 > 0. Our goal is to evaluate Z, defined via
[(kla')? = /%) Z,. (C.19)

We use notations (1.22) and (1.21) to label the momenta and Eq. (1.25) for q(®
. Let det D be the determinant in Eq. (1.11) that corresponds to the set q(@.
It explicitly reads as

H sin 22k H sin 424

1>] 1>]

a i,j#a
det D@ = — : . (C.20)
: q
sin
il;Iljl;Il
j#a

We can present it identically as

L -1 . i—k;

sin y; sin?
[T () o =TT e
=1 1=1j
L . 2 L 2 qi— c 2 kj— a
SIn Ty i sin 2 oz sin %
xH 7 7 X sin LH s (C.21)
j a

The last part of this product is nothing but Z, in Eq. (B.19), the middle part is
equal to 1 due to to Lemma (B.1), while the first part can evaluated with Lemma
(B.4) and gives A%/L%. Overall we have!

L /sinmr\? 22F (40)
sin Ty “ A‘e :
H ( 7 ) (det D)2 ~ WSHP(W%)
i=1
NL—a+1—v,)l'(a+v,)
I'L—a+1—v )(a+vy)

2, (C.22)

where F'(q,) is given by Eq. (B.20).

'Recall that v, = v(qq).
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Taking into account Eqs. (C.9) and (C.10), we obtain

5 A2€2F(Qa)_§

Za = —4(1 - 6727”‘14) L((g_l)z

sin?(7vg)

[F(L —a+1—v,)l'(a+v,)
'L—a+1—v )(a+rvy)

]5 (C.23)

For 6 = 0 we can rewrite this expression as

Alga] [ T(L—a+1—v,)T(a+ v, r (w + qa>2”+‘2”“ |

Ly =
L |[T(L—a+1—v )T (a+vy) T — (a

(C.24)

™

Alg) = —4sin*(nv,)exp | — ][ v(q) cot a _Qqadq

-7

X exXp /dq/dk[ . L)] . (C.25)

where the integral is understood as the principal value.

For 6 = 1 we can rewrite this expression as

Z, = 4sin®(mv,) (e — 1) A2 (@)1

[F(L —a+1—v,)l'(a+v,)
NL—a+2—v)l(a+rvy)

r. (C.26)

Using expression (C.7) and (B.25) we obtain

sin?(7v,)

o — 2T 2 2F(q,)—2F(m
Zy = T 2 1) (kg e )20

™

y {F(L—a—kl—l/a)F(a—kya)

T(L—at2—v)T(at m] (C:27)

with |(k|q)|? given by Eq. (C.11).

C.4 Negative winding number 0 < (

Following Sec. (1.3.3) we fix 6 = 1 —n with n € Z>, { = L + 6, the set
k = {ky,...k¢} is given as

2 L+1
ki:%<—%+z—m>, i=1,2,...¢, (C.28)
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the set q* % is obtained from the complete set q in Eq. (C.2) by the omission

of the “particle” at position g,

qal,...an = {Q17 e qAalv te qACbm e qL} <029)

The determinant (1.11) in (1.10) after certain restructuring of the factors and

employing Lemma (B.1) reads

1=1
£ 2 ki—k L 2 4—4
L : i—kj 24—
] sin’ ki—q; H S5 H S =5
14 2 1> 1>
. le i7j7éa1>"'7an
- L 2 qi—q; 14 L
sin k
=1 H 1 2 2 R QJ
i J# H H sin” =5
=1 j=1
j?é(ll, ;an,
£ 2 2 ¢i—q 2 4,—4
1 ] 3 1 J J K3
[] sin® =5 [ 1 sin” =5~ [ sin” *5 " "
1>9 1> 1> .92 Ya; a; nd
i a— T x [ ]si Z, (C.30)
? J i ] > 1 :1
[[sin® =5 [] ]1 sin” =5 i>] i
1>] i=17=1
J#
with
: 2 k
[] sin® =52
5 i=1
Z,== . (C.31)
H SlIl2 Qi;qa
i#a

The first factor in this expression can be evaluated via Lemma (B.5)

‘
[] sin? &2k
2

i B L62(27T)—(62+5)66
ﬁ sin? 424 G =)
i>j 2

QSin%

e _% / 4o / " !u(q)—v(k)—&q—k)/(%) (©2)
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The second factor reads

‘ L
[[sin®#5% [Tsin® 2% Goq T
1> 1> . 2qi — gj . 9 —
= sin® ——— = sin
ﬁ ﬁ sin? 44 i>31_'£€ 2 HE L
i=1j=1 2
J#i
T\ -2e-D I ey () T
=(z)" e-ar=(7) " T
i=1 j=1 i=1 j=1
™ (-2(-1) " 7\ (1-2)(n—1)
() IIrer=() oy
1=1

™

_ (_>5(5+1) G(1—8)% (C.33)

L

We evaluate Z, in Eq. (C.31) for a ~ L and L —a ~ L. We complete Z, to the

full product Z, in Eq. (B.19) and approximate it as

> Za Za
Z, = R

ﬁ s mUmow) (cos )™

To approximate further Z, in Eq. (B.19) we notice that

LT

at+ vy, L—a+1—v, | _ (a)l/a—w (1 a)V—V«z
at+ve, L—a+1—uv_ L L

C(mr @\ (T
B 2m 2 '

Further, we can simplify F(q,) using that in the principal value

][dqqcotq;qa = 47710g‘2008%‘.

-7

So thermodynamic limit for Z, reads

™

-2 .
Z, = 4‘5|M exp | — ][ dq <1/(q) — 52i> cot L1
T

L? 2

-7
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The remaining factors in Eq. (1.10) can be evaluated with the help of Egs. (C.9)
and (C.10)

14 L n
[Tes®) [ e 9@ Eeg(ki)—g(qi) [T e 9@ [] e9(t:)

101+ Z0(k) ﬁ(1+2” (k)

=1 =1

= (-1)° _51—[69(1"1) (C.38)

Finally, the overlap (1.10) in the thermodynamic limit can be written as

n . 2 n
=] (2sin ) 1.
2
X exp ——/dq/dk [ —v(k) — 5(_qk_ k)/@w)] (C.39)
2sin 5=
with

.9 n o

Vo= —4M exp |9(qa) — ][dq <V(Q) - 5%) cot ! 2% . (C.40)

—T

C.5 Overlaps for 7

Now let us consider how overlaps defined in Eq. (1.101) scale with the system
size for 6 < 0. Similarly, to the previous sections we can present solutions of Eq.
(1.100) as

2 L+1 )
pi:fﬂ(—T—F]—w]), j=1,....4=L+6. (0.41)

We use maximally allows set for p, namely

p={p1,...pe} (C.42)

and states q are parametrized by the set of n = |§] holes as previously

Q" ={q1, . Gars Gy gL} (C.43)
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Similar to Eq. (C.30) using Lemma (B.1) the overlap (1.101) can be presented as

¢ ol T — ! 12 Pi—Dj
[T e9P:)=9(a) T e9(%ai)=9(m) T sin® =5+~
i=1 '

=1 1>
[(plg™)? = —=——— -
11 (1 + 2%w’(pi)) [] sin” 24
i=1 i>j
0 L ¢
H_ sin? —q";% H sin? & ;qz B n sin? 2 q"’“
x =2 — = X Hsm2 qa’ X lzl . (C.44)
H [] sin® 254 i>j k=L [ sin? £
i= J;l iF#ag
Jj#i

This way, using formulas from the previous subsection (C.4), we see that overlap
|(p|q®»*)|? is identical to Eqs. (C.39), (C.40), upon the identification v — w
and ¢ to be changed from by v(7) — v(—7) = w(mw) — w(—m).

Appendix D

Regularization of the prefactor and power-like

behavior

In this Appendix we describe a regularization of the divergent integral

/dq/dpu k) log

for the case of discontinuous v(k). We use the regularization described in Eqgs. (2.78)

(D.1)

sin

_]{;‘

— (2.81) and find the asymptotics of this integral for large-times.

It is natural to divide the derivative of v into two parts,
V' (k) = vo(k) + vy (k), (D.2)

where

(k) = A'(k) + B'(k)s(k), vi(k) = Bk)s'(k). (D.3)

In the large ¢ limit v/(k) is a bounded function meanwhile /| (k) becomes propor-

tional to a d-function. The double integral A can be presented as a sum of four
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parts
A= Ao + Ao + Ao + Au, (D.4)

/dq/dpl/ k) log

Note, only A;; part is responsible for the divergence of A at large t. The parts

where

sin

(D.5)

q—k|

Ao, Ao1 and Ajp have non-singular limiting values at ¢ — oo which do not

depend on regularization of v(k). We have
A = /dq/dp (1) log

V)(k) = A'(k) + B'(k) sign @' (k). (D.7)

SlIl

(D.6)

—k ‘
with

Due to k <+ q symmetry, we have Ag; = Ajp. In the limit ¢ — oo, the function

v1(k) becomes a sum of two delta functions, and theqrefore

™

Aor = Ao = Biry /dq [V'](q) log

—T

sin

q—m'

™

—l—Ber’g/dq [V'](q) log

-7

q—q2

sin

where
B; = B(q;), r; = sign(®”(¢;)) (D.9)

To evaluate Aj;, we divide the integration region [—m, 7| into two pieces
Ay =[—7,p| and Ay = (p, 7], where point p lies between critical points ¢ <
p < q2. This way, the double integral A is divided into four parts

Al = an + a2 + a1 + as, (D.10)
where
1 —k
aj; = §/dq/dk B(q)B(k)s'(q)s'(k) log |sin d | (D.11)
A A
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The integrals as; and aqo have finite limits at ¢ — oo

a9 = a91 =~ 281327“17“2 log sin 2 ; il . (D12)

The remaining parts of A;; contain singularities. Let us show how they emerge in
an example of aj;. It is natural to present aj; as a sum of two integrals (regular

and singular)

an = af) +aly, (D.13)
where
. g—k
) _ 1 W, sin 5=
= — B(q)B 1 D.14
ofi =5 [ da [ kBB @ W)los |55 Tl (D)
A1 Al
s 1
aiy =5 / dg / dk B(g)B(k)s'(q)s' (k) log|®'(q) = @'(k).  (D.15)
Al A1
The first integral can be found using L’Hopital’s rule
(ry 27“1 . 27“1
iy = 9 dq | dk B(q)B(k)d(q — q1)o(k — q1)
A1 A1
sin &F

2

o'(q) — @' (k) = —2B?log [29"(q1)|, (D.16)

X log

where we used 72 = 1. The second integral can be presented as
al?) = uy + v log V7, (D.17)

where

w =5 [ da [ d6B@B®S @5 () los [ ViR ) - ViK' ®)], (D19

Ay Ay

o = —% / dq / dk B(q)B(k)S ()5 (k). (D.19)

A A
Performing rescaling of the integration variables one can persuade oneself that in

under the last integrals B(q) can be replaced to By, which leads to

B2
v = ——+ dq/dk: s'(¢q)s' (k) = —2B}. (D.20)

2
AN
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Here we have used (2.81), and all the traces of the regularization has disappeared.
With u; this will not be the same. Indeed, using s(k) = f(v/t®'(k)) and changing
the variables of integration ¢ and k by A = v/t®'(¢q) and pu = v/t®'(k), we get

-2 / 0\ / dyebONB() ' () F (1) log | A — ], (D.21)
S

where the function b(\) is defined as

b(vt®'(q)) = B(q) (D.22)

and region A is the segment [v1®'(—7),v/t®'(p)] which becomes the real line
when t goes to infinity. Also b(\) goes to By at t — oo. Theqrefore we get

32 /dk/duf 1) log |A — p. (D.23)

Finally, using By = —61/2, By = 62/2, 1 = —1, and 9 = 1, we obtain the
following large t asymptotics of A

.A ~ do + dl log \/E, (D24)

where the constant d; is universal, i.e. it is independent of a regularizing function

f
_ 2 2\ __ _1 2 2

and dy depends on a regularizing function f only in summands u; and us

= Ao + 2Ag1 + 2a12 + aﬁ? + agg) + Uy + us. (D.26)

Appendix E

Green’s function calculation

In this appendix we compute the thermodynamic limit of the Green’s function
G(x,y,t) defined as

Xk Xk ’LtEk
(x,y,t : t>0. (E.1)
Zk: Xk, Xk-
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Here summation is taken over all solution of the spectrum condition (3.35). For
a moment we focus on the case when bound states are absent in the spectrum.
Using notations for xj in (3.33), the norm (3.38) and the phase (3.35). We present
for one particular choice of the sign of the square root 1/1 + (Re b)?

Xk(@)xk(y) _ 1 Re wr(2)r(y)
(Xk> X&) 2(R+d'(k)) ay
B Re Zy(x,y)
2(R+ 6'(k))\/1 + (Reby)? (E.2)
with Reb
Zi(a,y) = D) BB o). (E3)

ag Qg
To evaluate the sum over k we first notice that the norm (3.38) can be presented

as a derivative of the spectrum condition (3.35)

2ibR+2i6(K) _ 1]

21

8k [6

(Xt X&) = (Reby + /1 + (Reb;)?)y/1 + (Reby,)? (E.4)

Further we employ the residue theorem in the following form
F(k 1 F(k
>, B L %dkﬁ, (E.5)
— OpS(k)  2mi J, o S(k)

where summation is over all solutions of the equation S(k) = 0 and the contour ~y

runs around these values only and avoids any singularities of the function F(k).

This way we identically present

G* Zr,Y, t) = % ~ ; ; Re N 7
(z,y,1) 2 2RRA25. () — ] ( aj, V14 (Reby)?

+ (60 = 0-), (E.6)

where by d+ we mean terms that are obtained by the flip of the sign \/1 + (Re b;)?,
specifically for the solutions of (3.35)

ilm by + /1 + (Re by)?

= o 200(k) E.7
- e (ED

2ik R+2i6 (k)

The contour vy encompasses all solutions of e = 1. We can present it as

two contours below and above the real axes oriented in the positive and negative
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directions correspondingly. In the thermodynamic limit (with exponential accu-
racy) we notice that only the contour above the real line contributes, theqrefore

we can present

0

Here we have taken into account that upon the summation Zj(z,y) terms cancel

out. Identically we can present

o

27T ak
—0o0

Notice that the function that we integrate can be analytically continued to the
upper half plane. This allows us to write the general answer in the case when

bound states are present in the system as

G*(a:,y,t) :/dk ztEkspk‘( >¢k( )’ <E10)

2 Qg
C

where the contour lies in the upper half above all positions of the bound states

and connects —oo and +oo.

Appendix F
Evaluation of £\ (¢)

In this appendix we demonstrate how to rigorously evaluate fq(a)(t) defined in
(3.53). We focus on fq(o), as the computation for fq(l)(t) goes similarly. Namely,

we are going to evaluate the thermodynamic limit of the discrete sum

The main formal problem is that the overlap (Ag, x&) is singular on the real line,
theqrefore the trick with the summation introduced in E requires small modifi-

cations in the part choosing the integration contours. More precisely to describe
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the singularity we assume that without loss of generality the eigenvalues of A,

and y; are different so the corresponding overlap could be found from

(B — ¢*) (Mg x) = Ay (0)xi(0) — /dx/\q(fr)(‘/o(w) —V(x))xi(@),  (F.2)
~R

where we have used boundary conditions (3.13) and (3.14). This way, we present

Im (e‘ié(k)Eg)’k)

(Aq7 in) — L2 _ C]2 ) <F3>
0
#gz%mwm»—/mmwmwuwwmmmu» (F.4)

Notice that here we have replaced the lower integration boundary from —R to
—o00, which is possible due to the finite range of the potential. Moreover, in this
expression the dependence of the momenta k and ¢ is smooth, so in particular the
limit as ¢ — k is well defined, contrary to the overall overlap, where special care
has to be taken to the numerator. In particular, one can drop the quantization

conditions for k£ and consider the limit £ — ¢

0
=)y = 400 0) - [ ded, @)@ - V)i (F9)

To evaluate this expression we use the same trick as in (3.49), (3.51), which gives

—1) — A R R) = qeiQR — _iqR b —igR
—q,q — q(_ )%(_ )__m (aqe — g€ )

q — _—2in(q
:—(I)q(o)(aqe @ —b,). (F.6)

Here at the last step we have used (3.43). For the direct proof of the result (F.6)
from the definition (F.4) see G.

With all these notations the function fq(o)(t) can be presented as

0 _ N~ m(e W= )Im(e My (0) i,
O zk: 0] eitEk, (F.7)
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We are going to evaluate the sum in (F.7) in the thermodynamic limit by pre-

senting it as a contour integral in a way similar to E

dk eitk2
fq(o)(t) — N 2ikR+2i0(k
] ) —1

) Im (e PWE, 1) Im (e~ Wy (0)) .
(k2 — @) (Re by + /1 + (Rebg)?)y/1+ (Reby)?

(F.8)

Here contour v runs only around all positive solutions of the equation e?#f+20(k) —
1 and summation over two branches of the square root in (3.35) § = 4 is as-
sumed. The contour v can be deformed into two contours above and below real
line. But contrary to E we have to subtract contribution from the point k& = g,

theqrefore we can present fq(o) (t) as

£ = 10 = 1900 + £27(), (F.9)
where
Oy Im(e‘ié(q)Eg”q)Im (e~ (0)) pitd?
fo (t) = —i o (F.10)
q(Reb, + /1 + (Reb,)?)\/1+ (Reb,)?e i(6(a)—n(9) — 1
and

00 dk 6itk2
fq(o’i)(t) = T 2i(kEi0)R12id(k)
T eBEEO Rz _
y Im(e=P®=, )Im(e 0 ®)).(0))
((k £1i0)?2 — ¢*)(Reby + /1 + (Reb)2)y/1 + (Re by)?

(F.11)

In (F.10) we have used that the point ¢ corresponds to the spectrum of the pre-
quench spectrum (3.43). So far these transformations are exact. Further we
address the large system size limit R — oo. In this limit the last term in (F.9)
vanishes fq(o’_) — 0, while fq(o’+)(t) can be computed identically to G* in E

o0 =7 0%) —1| ith?
FON(4) = _/ %Re[ 007 Vi (0)ay, ]e
0

e (i) (F.12)

To compute the residue contribution fq(o) () we first use (3.35) to present

1 _ 1+ (Reby)? +ilmb, + a,e* (F.13)

e2i(0(e)—nla)) — 1 —Qilm[aqezm(fﬂ + bq] ’
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and then perform summation over all branches of the square root to obtain

itq
FO0)py — _©
o = -5
Re [ngagwq(o)aq_l] - (aq‘f%n((l) - q) [ngaﬁbq(o)aq_l}

(F.14)

Here we have introduced
0
=7 = WSl +biEl = A 00p0) - [ dod,(@)(Vh(a) - Viz)arla), (F.15)

which coincides with =, ; in the main text (see (3.48)). The diagonal component
can be obtained from (F.6),

. F.16
—q,q @q<0)7 ( : )

which allows us to significantly simplify expression for féo). Overall, for fq(a) we

obtain the following expression
02, (0)e ™ [ dk
£ (1) = 92 g(0)e™ +/_Re
0

eitk2

(k+i0)2 —

27 054k (0)

ag

211, @, (0) - (F17)

Notice that extending the integration over £ to the negative values we can also
present

[ dRE20000) ot
2T aj (k 4140)? —

—0Q

(F.18)

Now let us discuss on how to account for the bound states. As we discussed
in Section 3.2 the bound states’ wave function can be understood as the Jost
functions analytically continued to the upper half plane and evaluated at the
purely imaginary momenta yb°"d(x) = ¢, (x). The contributions from the
bound states modify (F.18) as follows

Nb 67
O =3 (Ag, @i@)axl%%n(o) -
(Pisens Piry)

[ dk E° 00050 ith?
+/% 0Oz ¥0) (F.19)

o ap  (k+i0)2— ¢



Using the normalization (3.41) and the relation (;,, = b,4;,, we see that we can

present fq(a) in the following way

o dk £ 05 r(0) et
10 = | 5=

] or aj, k2 —q
C

- (F.20)

where the contour C runs from —oo to +00 and lies in the upper-half plane above
all zeroes of ay. In this form this expression coincides with (3.53) obtained directly

by going into the thermodynamic limit on the level of the Green’s function.

Appendix G

Evaluation of Eg .

In this appendix, using definition (F.15)

0
250 = 0 = 0002 (0) — [ dedy@) (Vo) ~ VDo) (G
we prove that
= ___1
=01 = T (0) (G.2)

which is the statement (F.16). Taking into account that =, , = Z,, we obtain
(3.51). Finally, the statement (F.6) can be considered as a sequence of these two

_Q/J
—
[u—

results and the relation =, = akEgk + by, ok

We start the proof by noticing that from the integral presentation for the Jost

solutions @,

Oy(2) = e " 4 / Sm(q% — y))%(y)%(y)dy, (G.3)

—00

one can immediately obtain

B0 -1~ [ SY) ), () dy, (@.4)



0
®,(0) = —ig + / cos(qy) Vo(y),(y)dy. (G.5)

So
0
B(0) +ig,(0) = [ Vi), 5)dy (G.6)
and _ .
B,(0) — ig®,(0) + 2ig = [ MVo(y)@i(5)dy, 1)

Invoking notation for the hard-wall wave function (3.42)

Ay(z) = Imiig;, (G.8)
we see that (G.1) can be written as
— 1 q)lq(O)QOq(o) — I @;(O)goq(O) — I
T 9 < o000 9,0 ) ’ (G9)
where .
h= [ e (@) Vi(e) - Vi)(o), (G.10)
L= [ det @) (Vi) - V) o) (G11)

Using integral presentation for ¢, (z) in the first term and for ®,(z) in the second

term we obtain

0 0
I, = /dxq)q(x)%(x)e_iqx— /d:ﬁe_iqu(aj)gpq(x)
) 0 x

+ -O/O dz é dysm(Q(z — D (1) Vo()V (30 (v)

0 T

- [ o [ ay= = vV () (o). (612

150



Changing variables in the last two integrals, we arrive at

0 0
L = /da:(I)q(x)Vo(x)e_iqx— /dxe_iqu(x)gpq(x)

+4dx£dfm@%y”%ummmvwwam.mua

Presenting sine in the exponential form and substituting right hand sides of (G.6)
and (G.7) we obtain

I = ©4(0)4(0) — £ (0)24(0). (G.14)

Similarly we can compute I
Iy = 2iq + B(0)2,(0) ~ 2(0)2,(0). (€.15)

Substitution of I; and I into (G.9) finishes the proof.

Appendix H

Kernels and scattering data for specific potentials

H.1 Single delta potential

In this appendix we present explicit formulas for the scattering data and the FCS
for the quench situation that corresponds to V(z) = ¢é(x), Vo(x) = 0.

The Jost functions can easily found from the integral presernations (3.4) and
(3.5)

() = e~ %9(—:1:) sin(k), (H.1)
op(z) = e 4 %6(&7) sin(kx), (H.2)

where 6(z) is Heaviside step function. The scattering data can be immediately

read off from this presentation

b = L (H.3)



1 k2 E
T(E) = = — ) H.4
(E) lap]? K2+ g¢%/4  E+ ¢?/4 (H4)

To describe bound states we introduce » = |g|/2. If ¢ < 0 the bound state

corresponds to the zero of a; at the momentum %k = is¢. The corresponding wave

function reads

Qise(x) = e, (H.5)
The Jost and hard-wall wave functions corresponding to the initial potential
Vo(x) = 0 are

D, (1) = e 1", Ay(z) =Im ®y(x) = —singz. (H.6)
This leads to 2,1 = A (0)¢r(0) = —¢. Using presentation (3.55) we obtain
1 2
1
F(E) = Sae (17
1 6itq2 %e—it%2
O = =9 _g—g4 E 1.8
0=t o G rab). (1Y
where
I dp pleitr’ sch,,(t) iqhy(t)
E%(Q):/_Q 2 N2 — 2)  9(a2 + 22) -y (H9)
(P +)((p+i0)? = ¢?)  2(¢*+57)  2(¢° + )
and
ho(t) = €' {1 — Erf <qem/4\/z_f>} : (H.10)
The FCS can be written as
A — / 6)\ —1 /
F(At) =det { 1+ p(0)Xo(q,q) + pl)Xi(q,q) ),  (HI11)
where
q ¢\ sin[t(e® —q¢?)/2]
Xolq,q) = q¢ <%2 g + - q’2> R : (H.12)

ity 0 €(q) —e(d
X1(g,¢') = ~2q¢'Im (e i = Ar) )>

qq’ )
TP ) {Re (00

—% cos [t(q® — ¢")/2] —20(—g)scos [t(q* + ¢ + 25¢%) /2] }  (H13)
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and o)
__ an(t
)= Sy
In the notations of (3.61) Ky = p(e* — 1) Xy and 6K = p(e* — 1) X.
The propagation emerging from a step initial distribution formally corresponds
to Vo(x) = 0 for z < 0 and V(x) = 0. The corresponding FCS can be obtained

from the above formulas by simply sending ¢ — 0. The corresponding kernels

(H.14)

simplify as follows

sin [t(¢? — ¢%)/2]

Xo(g,q") = (¢ +4') DY R (H.15)
¢ —q
doa oy e q Ry (t) — qhy (T
X1(q,(]/) — —_Im <e—lt(q +q )/Qq Q(qQ) — qq,2q ( )) . (H16)

H.2 Reflectionless potential

In this appendix we consider an example of perfect lead attachment, i.e. Vy(x) =

V(x), x < 0, for the reflectionless potential

2
Vir) = — ) H.17
(z) cosh? z ( )
The corresponding Jost solutions are
: 21 1
—ikx
= 1 H.18
o) = e (14 2. (13
_ ‘ 21 1 k—1
—ikx
o) = n(oa) = e (1- 2 ) =), )
which lead to the following scattering data
k—1
= b, = 0. H.20

This potential has one bound state corresponding to the zero of a; at k = ¢:

1
b
K@) = prila) = g (H.21)
The hard-wall wave functions defined in (3.42) are given by
Ay(z) = _gsingr + tanh x cos q:z:' (1.22)

q
153



Theqrefore =, in (3.48) becomes

1+¢* &k
E.x = A (0 0) =— . : H.23
= 0p0) =~ (1.23)
Using definitions (3.55) we arrive at
1 + C]2 2
1 _ 1t

) = e, (H24)

e it eitq2 1+ 2
100 =5+ 5~ = Ea) (H.25)

2q 24 q
where E, is defined in (H.9). Substituting these expression into (3.79) we arrive
at (3.86).

H.3 Double delta barrier
The double delta barrier potential is given by
V(z) = g10(x — dy) + g20(x — do), (H.26)

where we assume that dy > 0 > dy. The Jost solutions for this potential can be

found via the integral presentations (3.4) and (3.5)

sin(k(z — dy))

Yi(x) = e = 0(dy — x) k g1 (d)
— o0y — )P ), (r107)
or(w) = e + 0z — dl)sm(k(i;_ LUPRPS
R

where

Dp(dy) = e~ ihs (1 X 2%_2) _ %eik(dl—wg)? Dp(dy) = e=he, (H.29)

2} — ik 4 — o—ikds (1 _ ﬂ) L ik(dy—2d) H.30
pr(d) =0, puldy) =e 2ik) T 2k’ (H.30)
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The scattering data follows from (3.6)

_ grgoe” 2Hdi=d) L (9 4 ig1)(2k + igo)
B 4k2 ’
—Qidgk y —2id1]€ y
gae (g1 — 2tk) — gre (g2 + 2ik)
b = : H.32
" 452 (H:32)
If we were interested only in the scattering data we could easily found them using

ay (H.31)

results of H.1. Indeed, for any potential that can be presented as a disjoint sum
ie. V(x) = Vi(z) + Vo(z) with Vi(x) = 0 for & > x; and Va(z) = 0 for & < z9,

where 1 < x9, the transfer matrix reads

where 7; is the transfer matrix for V;. This statement follows immediately from

the relation of 7; to the corresponding Jost solutions ¢; and ¢;, namely,

) e) (2 )

Further, taking into account that the transfer matrix T for the shifted potential
V(z) = V(z — d) is related to T by conjugation with a diagonal matrix

. ( a bke%kd)
T=T7(d) = , (H.35)

Bkemkd ag

the scattering data (H.31) and (H.32) for the potential (H.26) is recovered from

1-L L
T ="T5(d1)Tp,(d2),  Ty(0) = ( o . u ) : (H.36)
R
where for 7,(0) we used (H.3). The bound states correspond to zeroes of a; in
the upper half plane of k. For negative coupling constants g; and g» we have two
bound states if
1 1

dy —dy > — + — <H37)
1] g2

and one otherwise.
The symmetric potential corresponds to g1 = g2 = ¢, do = —d; = d/2. We

introduce notations

k =iz, u=2x/|g| >0, D = |g|d, (H.38)
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so that the quantity ¢ describes the “momentum" of the bound state. The con-
dition (H.37) now reads D > 2 (see also discussion around equation (3.89)). The
current and the kernel in this case are obtained by the numerical integration of

the corresponding expressions constructed via fq(a)(t) in (3.55). For the case when
Vo(z) = 0 we have (H.6). Hence

0

2= 000 + [ @)V @)
kd qd
o tkd/2 v s 17
q— ge <k sin 5 sl > , (H.39)
and
1) —its3 itq?
fél)(t) _ Béq) it F(l) itg* 4 ](51 (1), (H.40)
0 = B 0,
Bl@) _ i2q,i22,0% Vise, (0) plo) _ _,&-a:?@b—q(o) (H.42)
MG =
, _ da _ 2 (u; — 1)(D(u; — 1) +2) (H.43)
i dk k:’t%j ‘g| u? ’
zﬁi}q (0) — 2 - 2/“’17 &Z’J{Q (O) - 8:6&2'%1 (O) = 07 <H44)
The integrals are given by
7 dk ztk‘2
[9(t) = / —l°) H.46
o (1) T T (k4i0)2 — ¢2’ (H.46)
0
with 5 :
00 _ 2k*(—q + g cos kd/2sin qd/2) (F1.47)
@ g2 4 2k2 + g2 cos kd — 2gk sin kd’
NUN 2gk3 sin kd /2 sin qd /2 (H.48)
ok g% + 2k% — g? cos kd + 2gk sin kd '

The asymptotic behavior of the integrals L§0‘> () at large t is governed by expan-
sions of the integrands at k£ = 0

0 _ K

2k%gd sin gd /2
Y g( q+gsingd/2) + O(k*), U gdsin qd/

1 _
9k (2 + gd)?

+O(k*). (H.49)
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1)

The formula for Q(% is valid for D = —gd # 2. The asymptotic behavior of ngk

for D = 2 and small k is

1 4 qd k* . qd
Q((],li = ESIH? + ESln? + O(]f4) (H50)

Theqrefore, the integrals have the following decaying behavior for large ¢
e’ -2 « —34a _
Ié J(t) ~t™2 for D+#2, and I(g (t) ~t73 for D=2 (H.J51)

This demonstrates that they do not affect the leading contribution in the asymp-
totic current (3.85). If the potential has two bound states than there is an oscil-

latory part of the current with the amplitude of oscillations given by (3.84)

4 o
Ap=—2 / dap(q) BB, (H.52)
0

Finally, the leading contribution to the current for large ¢ consists of constant
Landauer—Biittiker current and an oscillating current (if there are two bound

states).
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