
UNIVERSITÉ DE NANTES
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CHAPTER

ONE

Literature review

1.1 Introduction

The idea of exploiting the laws of ideal hydrodynamics to describe the expansion
of the strongly interacting matter that is formed in high energy hadronic collisions
was first formulated by Landau [1] in 1953 as an improvement over the Fermi
statistical model [2] for the multiple particle production phenomena in high-energy
nuclear collisions. At that time, these phenomena were observed in cosmic rays.
Although the Fermi model offered an ingenious insight into the mechanism of
the high-energy nuclear collision processes and gave a prediction for the energy
dependence of the multiplicity, which was verified by the data, it was known that
it had troubles in reproducing particle spectra and relative abundance of K over
π.

These problems were solved by letting the hot and dense matter to expand
and equilibrate before particle emission takes place, reducing thus heavy-particle
multiplicities, because of the Boltzmann factor, and giving at the same time alon-
gated momentum spectra, due to a violent longitudinal expansion caused by a
large pressure gradient in the beam direction. A nice feature of this model is that,
since the entropy is conserved in the ideal case Landau studied, the energy depen-
dence of the total particle multiplicity predicted by the Fermi model, and verified
experimentally, is preserved.

When accelerator data on multiparticle production began to appear, first in pp
collisions at CERN ISR, and later in p̄p collisions at Sp̄pS collider, Carruthers [3]
revived this Heretical Model in 1974, showing that several aspects of those phenom-
ena may be well understood within Hydrodynamic Model. When laboratory study
of high-energy heavy-nucleus collisions started, Hydrodynamic Model became one
of the essential tools for these investigations.

1



2 CHAPTER 1. LITERATURE REVIEW

The original motivation for heavy ion program was not just increase the number
of secondary particles produced per event (up to several thousands at RHIC),
but to reach a qualitatively different dynamical regime, characterized by a small
microscopic scale l (e.g. mean free path) as compared to the macro scale L (the
system’s size): l � L. If this were achieved, the fireball produced in heavy ion
collisions would be treated as a macroscopic body, with thermo and (viscous)
hydrodynamics.

Statistical models do indeed work well for heavy ion collisions, in a wide range
of collision energies. They also work for pp or e+e− collisions – analysis involving
conservation laws treatment [5, 37] shows the presence of collective flow in pp or
e+e−, however less strong than in A+A collisions, desprite the fact that multi-body
excited systems produced in the former cases are not macroscopically large.

Hydrodynamic models are successfully applied for analysis of high energy nu-
clear collisions at CERN SPS and especially at BNL RHIC (for reviews see, e.g.,
Refs. [13, 14, 15]), where the utilization of ideal hydrodynamics was supported
by theoretical results: it was advocated [16] that deconfined matter behaves like a
perfect liquid. In particular, hydrodynamic models are applied for soft-physics de-
scription, with typical particle momentum below 2 GeV/c, where the most (∼ 99%)
of particles are emitted.

1.2 Particle distributions

In this section we introduce the basic observables measured in the experiments
and define the particular quantities which will be referred to in the next chapters.

Heavy ion collision at energies achieved in modern accelerators produce a va-
riety of stable and unstable hadrons (π,K, p, n, . . . ) which are detected then. The
particle number ratios for dozen of lightest hadron states produced is well described
using the simple thermal model, basically with only 2 free parameters: tempera-
ture T and baryon chemical potential µB [56]. Thermal model indeed describes
particle number ratios well for a wide range of collision energies, centralities and
collided nuclei, which is a most basic hint for the thermalized character of matter
produced in heavy ion collisions.

Unfortunately, the small size and short lifetime prohibits direct observation of
the space-time scales of the fireball in heavy-ion collisions. One measures instead
the particle distribution three-momenta and energies. Spatial information must
be extracted then indirectly using momentum correlations.

The particle momentum is convenient to represent in terms of transverse mo-
mentum ~pT and longitudinal rapidity y = 1

2
ln E+pz

E−pz
, which has a simple transfor-
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mational properties under the Lorentz transformations (boosts) in z direction.

p0d
3ni

d3~pi

=
d3ni

d2~pTdy
(1.1)

Transverse momentum distributions are obviously connected with the dynamics
of the system in transverse direction, and are important for the study within
collective models of matter evolution. The reason is that initially, just after the
collision, there are no collective flows in transverse direction, and the transverse
flow development is determined by the dynamical properties of matter at both
early pre-thermal and subsequent thermal stages of evolution.

The transverse spectrum possess the exponential behavior as a function of
transverse particle mass:

d2n

2πpTdpTdy
∝ e−

√
m2+p2

T /Teff

The inverse slope in log scale is called the effective temperature Teff of particle
spectra. In a model without transverse flow, particle spectra exhibit mT -scaling,
i.e. after appropriate rescaling of the yields all spectra collapse onto a single
curve. Transverse flow breaks this picture, and actually mass dependence of Teff

for different sorts of hadrons is generally reproduced by hydrodynamic simulations
for both SPS and RHIC heavy ion collisions and reflects the idea that all particle
species are involved in common collective flow.

Due to nonzero impact parameter most of the collisions are asymmetric in
transverse direction. Then, thermalization assumption and subsequent hydrody-
namic evolution picture tell us that due to different values of gradients in x and
y directions for initial distributions, anizotrpic flow develops in transverse plane.
Since the most probable velocity of particle emitted from fluid element coincides
with the flow velocity, this results in anizotropic distribution of transverse mo-
menta. For this analysis it is convenient to make a Fourier expansion of hadron
spectrum in the azimuthal angle ϕp of three-momentum:

dN

d2~pTdy
=

dN

2πpTdpTdy
(1 + 2v2 cos(2ϕp) + ...) (1.2)

Due to reflection symmetry with respect to the reaction plane (see definition be-
low), only cosine terms appear in the expansion. Here we also restict the expansion
to mid-rapidity region (y = 0), where all odd harmonics, in particular, directed
flow coefficient v1 vanish. The second coefficient divided by 2 is called elliptic flow
coefficient. The coefficients can be determined by e.g. :

v2 =

∫ 2π

0
dϕ cos 2(ϕ− ψR) d3N

dydϕpT dpT∫ 2π

0
dϕ d3N

dydϕpT dpT

, (1.3)
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where ψR is so-called reaction plane angle. Reaction plane is defined as the plane
built by the vectors of impact parameter of collision and z axis (collision axis)
basis vector.

The elliptic flow coefficients v2 are measured for most abundant particle species
: π±, K±, p, p̄, etc, and by the definition reflect the anisotropy of the transverse
momentum distribution. One of the most spectacular features of the RHIC data
is 50% bigger elliptic flow [81] compared to the observations at CERN SPS [17].
The development of a strong flow is well described by the hydrodynamic models
and is underestimated in transport models, which points to the essential property
of strong interaction of matter created in RHIC collisions. It was argued that
elliptic flow description requires small thermalization time τ0 less than 1 fm/c,
which defines the start of hydrodynamic expansion. Such fast thermalization is
hard to prove theoretically. However, recent developments show that whereas the
assumption of thermalization in relativistic A + A collisions is really crucial to
explain soft physics observables in general (and particularly v2), the hypotheses of
early thermalization at times less than 1 fm/c is not necessary [6, 18].

1.3 Correlation functions

Another class of measurements in A+A collisions are two-particle correlations,
measured primarily for pions, but also for kaons. The two-particle correlation
function is defined as the ratio of Lorentz-invariant two-particle distribution to
the product of the two single particle distributions :

C(~p1, ~p2) =
p0

1p
0
2d

6n/d3~p1d
3~p2

(p0
1d

3n/d3~p1) (p0
2d

3n/d3~p2)
(1.4)

First in pp̄ collisions at Bevatron, an enhancement of pion pairs at small rel-
ative momenta (the ’GGLP-effect’), was found by G. Goldhaber, S. Goldhaber,
W.Y. Lee and A. Pais [63] and explained in terms of the finite space-time extent of
the decaying pp̄-system and Bose-Einstein statistics of the detected identical pions.
Since the width of the correlation effect is related to the characteristic space-time
separation of the pion emitters, the corresponding technique acquired the name
Correlation femtoscopy. As noticed by G.I. Kopylov and M.I. Podgoretsky, a simi-
lar though orthogonal effect exists in astrophysics and is the base of intensity inter-
ferometry proposed by the radio astronomer Robert Hanbury Brown and Richard
Twiss to measure the angular radii of distant stellar objects. They demonstrated
[75] that photons in an apparently uncorrelated thermal beam tend to be detected
in close-by pairs. This photon bunching or HBT-effect, first explained theoreti-
cally by Purcell [134]. Since the width of the space-time bunching (HBT) effect is
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related to the characteristic spread of the photon wave vectors (three-momenta),
the corresponding technique acquired the name Correlation spectroscopy.

Basically, identical particles which sit nearby in phase-space experience quan-
tum statistical effects resulting from the (anti)symmetrization of the multiparticle
wave function. For bosons, therefore, the two-particle probability shows an en-
hancement at small momentum difference between the particles.

The most direct connection between the measured two-particle correlations in
momentum space and the source distribution in coordinate space can be estab-
lished if the particles are emitted independently (’chaotic source’) and propagate
freely from source to detector. Basically, particles with particular value of veloicty
are emitted most probably from the region with the same value of collective flow
velocity, which gives the connection of momentum and coordinate correlation.

The two-particle correlator yields rms widths of the effective source of particles
with momentum p. In general, these width parameters do not characterize the
total extension of the collision region. They rather measure the size of the system
through a filter of wavelength p. In the language introduced by Sinyukov [9] this
size is the local ’region of homogeneity’, the region from which particle pairs with
momentum K are most likely emitted. From the other hand, the local length of
homogenity is defined by the behavior of the Wigner function : it means the lenght
within which the deviation of Wigner function is relatively small and is about the
function value.

From the data of relativistic heavy-ion experiments, the two-particle correlator
is usually constructed as a ratio of two-particle distribution in samples of so-called
actual pairs and ’mixed’ pairs or reference pairs. One starts by selecting events
from the primary data set. Actual pairs are pairs of particles that belong to the
same event. Reference pair partners are picked randomly from different events
within the set of events that yielded the actual pairs. The correlation function is
then constructed by taking the ratio, bin by bin, of the distribution DA of these
actual pairs with the distribution DR of the reference pairs [8, 12]

DA(∆q,∆K) =
number of actual pairs in bin (∆q,∆K)

number of actual pairs in sample
, (1.5)

DR(∆q,∆K) =
number of reference pairs in bin (∆q,∆K)

number of reference pairs in sample
, (1.6)

C(∆q,∆K) =
DA(∆q,∆K)

DR(∆q,∆K)
. (1.7)

Momentum correlations between identical particles can originate not only from
quantum statistics but also from conservation laws and final state interactions.
Energy-momentum conservation constrains the momentum distribution of pro-
duced particles near the kinematical boundaries. In high multiplicity heavy-ion
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collisions its effects on two-particle correlations at low relative momenta are negligi-
ble. Similarly, constraints from the conservation of quantum numbers (e.g. charge
or isospin) become less important with increasing event multiplicity. Strong corre-
lations exist between the decay products of resonances, but since resonance decays
rarely lead to the production of identical particle pairs, they do not matter in
practice. This leaves final state interactions as the most important source of ad-
ditional femtoscopic correlations. For the small relative momenta q < 100 MeV
which are sampled in the two-particle correlator, effects of the strong interactions
are negligible for identical charged pions. For protons, however, they dominate the
two-particle correlations. On the other hand, for pions, the long-range Coulomb
interactions distort significantly the observed momentum correlations, dominating
over the Bose-Einstein effect for small relative momenta. The aim of Coulomb cor-
rections is to modify the measured two-particle correlations in such a way that the
resulting correlator contains only Bose-Einstein correlations, while the effects of fi-
nal state interactions have been subtracted. For this, several simplified procedures
have been used in the literature. The effective method of subtraction of effects from
the long-lived resonances and Coulomb final state interaction is Bowler-Sinyukov
procedure [10], now used by majority of experimental collaborations.

1.4 Evolution picture

From the dynamical point of view, a process of heavy ion collision at ultra-
relativistic energies can be divided into several stages. The matter produced during
the collision have different properties at different stages. So, one can distinguish:

• the initial conditions for the collision at τ < 0 are two nuclei approaching
each other with velocity v > 0.99999c (at RHIC).

• There are several microscopic models of initial, pre-equilibrium stage of col-
lision:

– in Color Glass Condensate (CGC) approach, the initial state of colliding
nuclei is described in terms of dense gluon walls, see Section 5.4.3;

– EPOS is a flux-tube approach, compatible with accelerator data for
proton-proton, proton-nucleus collisions, and cosmic-ray data for air
shower simulations (for more details, see Section 4.2).

In this very early pre-equilibrium stage, the primary collisions between fast
partons inside the colliding nuclei also generate “hard probes” with either
large mass or large transverse momentum, such as heavy quark pairs (cc̄ and
bb̄), pre-equilibrium real or virtual photons, and very energetic quarks and
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gluons with large transverse momentum (from which jets are formed after
hadronization).

As a result of initial stage, the matter is supposed to become locally ther-
malized, thus forming the initial conditions for the next stage of evolution.
The conventional thermalization time for v2 data reproduction is less than 1
fm/c (at RHIC), however, recent developments show that hypothesis of early
thermalization at times less than 1 fm/c is not necessary [6, 18].

• The subsequent evolution of thermalized medium can be described using the
equations of relativistic hydrodynamics. This approach allows one to account
for the complicated evolution of the system at a preconfined stage and in
the vicinity of the possible phase transitions by means of a corresponding
equation of state (EoS). The quesion concerning the viscosity coefficients is
still open.

• However, hydrodynamic picture implies the picture of continuous medium.
Thus, hydrodynamic stage continues until the picture of the continuous
medium is destroyed. Roughly, it happens when the mean free path of par-
ticles (connected with the rate of collisions) becomes comparable with the
smallest characteristic dimension of the system: its geometrical size or hy-
drodynamic length. This condition determies the space-time region, where
hydrodynamic picture is applicable.

• The further expansion makes the system to be more and more rarefied, how-
ever hadrons continue to interact, mostly via elastic scatterings. At this
(kinteic) stage of evolution, the appropriate tools are cascade models. Cas-
cade model studies show us that the tails of interactions (collisions) continue
upto 50-100 fm/c. The decays of long-lived resonances happen much later.
Finally, free particles propagate to detectors.

1.5 Dynamic models

To complete hydrodymanic model, particularly model based on ideal fluid approx-
imation, one needs the initial conditions for hydrodynamic evolution, equation of
state (which close the set of hydrodynamic equations), boundary conditions and
the criterion to stop hydrodynamic evolution (final conditions). The most clear
part is boundary conditions, which are usually taken to be non-reflective, which
corresponds to the matter, expanding into vacuum. The rest of the conditions
have to be obtained from, e.g. microscopic models, which are external to hydro-
dynamics.
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Evidently, the simplest receipt of final conditions for hydrodynamic evolution
is the Cooper-Frye prescription (CFp) [44] which ignores the post-hydrodynamic
(kinetic) stage of matter evolution and assumes that perfect fluid hydrodynamics
is valid till some 3D hypersurface, e.g., as was supposed by Landau [1], till the
isotherm T ' mπ, where sudden transition from local thermal equilibrium to free
streaming is assumed. This approach is extensively used in modern hydrodynam-
ical models of evolution for A+A collisions.

Concerning final conditions and post-hydrodynamical stage treatment, different
scenarios have been used so far.

The most simple scenariois “Blast-wave” model, first appeared in the attempt
to interpret RHIC data [11]. In such models, a parametrization of freeze-out
hypersurface and velocity distribution on it, instead of preceding hydrodynamic
evolution calculation, is used. More sophisticated blast-wave-type models are
used to fit experimental data. Successful attempts to describe simultaneously the
momentum-space measurements and the freeze-out coordinate-space data were
done in several models: “Kiev-Nantes” model [48], “Blast-Wave” parametriza-
tions [37], “Buda-Lund” hydro-inspired approach [89]. Some parametrizations,
e.g. [48] can be justified by the qualitative agreement with isotherms obtained in
hydrodynamic calculations.

More sophisticated models treat the decays of resonances created at freeze-
out hypersurface together with stable particles (e.g. THERMINATOR code in its
initial form [87, 88], or FASTMC code [79, 80]). Freeze-out can be obtained from
hydrodynamic calculations or parametrized.

However, sharp freeze-out at some 3D hypersurfaces is a rather rough approx-
imation of the spectrum formation, because the process of particle emission from
fireballs created in high energy heavy ion collisions is gradual in time. Results of
many studies based on cascade models (see below) contradict the idea of sudden
freeze-out and demonstrate that in fact particles are emitted from the 4D vol-
ume during the whole period of the system evolution, and deviations from local
equilibrium conditioned by continuous emission should take place (see, e.g., [93]).
Moreover, freeze-out hypersurfaces typically contain non-space-like parts that lead
to a problem with energy-momentum conservation law in realistic dynamical mod-
els [47].

To overcome the difficulties of Landau/Cooper-Frye prescription, one can simu-
late matter dynamics at the late stages of system evolution by the means of kinetic
codes which treat classical particle interactions with given cross-sections. The hy-
drodynamic evolution should be coupled then to kinetic code at e.g. isotherm of
sufficiently low temperature, where hydrodynamic picture is destroyed (switching
hypersurface). At this hypersurface the continuous medium converses into the set
of particles acording to the thermal distribution. Such “hybrid” scheme is imple-
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mented in a number of calculations, see e.g. [13, 14, 15]. However, the remarks
concerning non-space-like parts of switching hypersurface are applicable as well for
hybrid models. Also in hybrid picture the initial conditions for hadronic cascade
calculations, formulated also on space-like part of hypersurface where, however,
hadronic distributions deviate from the local equilibrium, in particular, because of
an opacity effect for hadrons which are created during a “mixed” stage of phase
transition. These nonequilibrium effects can seriously influence the results of hy-
brid models in their modern form [201].

Generally, the realizations of hybrid scheme, desprite of its physical superiority
over the simple Cooper-Frye prescription, did not give a good description of two-
particle correlation functions reflected in femtoscopic radii, being the measure of
space-time scales of collision process.

Most exsisting calculations with hybrid models are still done using an unre-
alistic equation-of-state with a first order phase transition, based on ideal gases
of quarks & gluons and hadrons. As shown later, it actually makes a big dif-
ference using a realistic equation-of-state, which is for µB = 0 compatible with
lattice results. In particular, HBT radii cannot be reproduced together with other
observables using the EoS with first-order phase transition.

The calculations of [115, 116] manage to reproduce both particle yields and
transverse momentum spectra of pions, kaons, and protons within 30%, for pt

values below 1.5 GeV/c. The net baryon yield cannot be reproduced, since the
calculations are done for zero baryon chemical potential, another systematic prob-
lem is due to a relatively small hadron set. A bigger hadron set will produce
essentially more pions and will thus reduce for example the pion / kaon ratio.

The calculations [7, 190] reproduce simultaneously the pion, kaon and proton
transverse momentum spectra, v2 and pion HBT radii. However, the value the
value of chemical freeze-out temperature used is not compatible with the results
from particle number ratios analysis. This also results in inability to describe the
yields for massive hadrons (Λ,Ξ).

Some sophisticated hybrid models (e.g. AMPT [86]) reproduce the elliptic flow
and the correlation radii but with different sets of model parameters. Only recently
the results obtained from hydrodynamic model connected with THERMINATOR
afterburner, qualitatively describe HBT radii together with momentum spectra
and anizotropy coefficient v2, however the parameters used are not physical.

1.6 Outline of the thesis

Thus, the aim of the present work is to construct dynamic model for A+A colli-
sions, compartible with HBT measurements.

In the thesis, the results of this research are presented in a following order. In
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Chapter 2, new class of analytic solutions of the equations of relativistic hydrody-
namics is presented, its possible applications to the dynamics of A+A collisions
are discussed. In Chapter 3, event generator, based on freeze-out hypersurface
parametrization is constructed. As a continuation of research towards construc-
tion of realistic dynamical model for A+A collisions, a hybrid dynamical model
(initial state + hydrodynamics + cascade) is presented in Chapter 4. Finally, in
Chapter 5 the hydro-kinetic model is presented, as a combination of hydrodynamic
and kinetic approaches.



CHAPTER

TWO

Hydrodyamic solutions

In this chapter, the new family of solutions of relativistic hydrodynamic equations
for ideal fluid case is presented. In particular, solutions corresponding to ellip-
soidally symmetric expansion of finite systems into vacuum are analyzed. The
properties of the solution obtained, as well as possible applications to A+A colli-
sions dynamics, are discussed.

2.1 Introduction

The equations of the relativistic hydrodynamics have highly nonlinear nature and,
therefore, only a few analytical solutions are known until now. For the first time
one-dimensional, or (1+1), analytical solution for Landau initial conditions - hot
pion gas in Lorentz contracted thin disk [1], has been obtained by Khalatnikov [19].
The equation of state (EoS) was chosen as ultrarelativistic one: p = c20ε, c

2
0 = 1/3.

It is noteworthy that according to that solution the longitudinal flows developed
to the end of hydrodynamic expansion, at freeze-out, are quasi-inertial: v ≈ xL/t.
Much later, in the papers [20] the infinite (1+1) boost-invariant solution have been
found for the same EoS. For finite systems the similar approach was developed in
Ref.[21]. The property of quasi-inertia preserves in these solutions during the
whole stage of the evolution. Bjorken [22] utilized these solutions as the basis of
the hydrodynamic model for ultra-relativistic A+A collisions.

The spherically symmetric variant of such a kind of flows with the Hubble ve-
locity distribution, v = r/t, has been considered in Ref. [23]. Some generalization
of these results was proposed in a case of the Hubble flow for EoS of massive gas
with conserved particle number in Ref.[24] and for the cylindrically symmetric
boost-invariant expansion with a constant pressure in [25].

All these solutions were used for an analysis of ultra-relativistic heavy ion col-

11
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lisions. Since the longitudinal boost-invariance in a fairly wide rapidity region is
not observed even at RHIC, as it was expected, the Hubble-like models are also
used now for a description of the experimental data [26]. It is natural, however,
that unlike to the Hubble type flows, the velocity gradients should be different in
different directions since there is an initial asymmetry between longitudinal and
transverse directions in central A+A collisions and, in addition, between in-plane
and off-plane transverse ones in non-central collisions. In this letter we make a
general analysis of the hydrodynamic equations for the quasi-inertial flows aiming
to find a new class of analytical solutions with 3D asymmetric relativistic flows.

2.2 General analysis

Let us start from the equations of relativistic hydrodynamics:

∂νT
µν = 0, (2.1)

where the energy-momentum tensor corresponds to a perfect fluid:

T µν = (ε+ p)uµuν − p · gµν (2.2)

We can attempt to find a particular class of solutions and therefore have to make
some simplifications of (2.1). We do not fix EoS at this stage.

• Let us put the condition of quasi-inertiality

uν∂νu
µ = 0 (2.3)

which means that flow is accelerationless in the rest systems of each fluid
element; this property holds for the known Bjorken (boost-invariant) and
Hubble flows.

Then, we find that uµ[(ε + p)∂νu
ν + uν∂νε] + [uµuν∂νp − ∂µp] = 0. Contracting

this equation with uµ we get

(ε+ p)∂νu
ν + uν∂νε = 0. (2.4)

Obviously, the remaining equation to satisfy is:

uµuν∂νp− ∂µp = 0 (2.5)

The task is to find solution of the system (2.3),(2.4) and (2.5). As one can see,
the number of equations exceeds the number of independent variables. So, the
equations must be self-consistent in order to have nontrivial solutions.



2.3. GRADIENT-LIKE VELOCITY ANSATZ 13

We see that Eq.(2.4) can be rewritten in the form:

uµ∂µε = −F (ε)(∂νu
ν) (2.6)

where F (ε) = ε+ p, and Eq.(2.5) as the following:

p′(ε)(uµuν∂νε− ∂µε) = 0, (2.7)

supposing EoS in the form p = p(ε). If p′(ε) 6= 0

uµF (ε)(∂νu
ν) + ∂µε = 0. (2.8)

Normally F (ε) 6= 0, and we can divide the last equation by F (ε) and introduce
the function Φ(ε) by the definition 1

ε+p(ε)
= Φ′(ε), so that

∂µΦ(ε) = −uµ(∂νu
ν) (2.9)

Then, the conditions of consistency of equations (2.4) and (2.5) can be written
as:

∂λ(uµ∂νu
ν) = ∂µ(uλ∂νu

ν) (2.10)

In general case, there are 6 independent equations.
Finally, the relativistic hydrodynamics of quasi-inertial flows is described by the

equations (2.3) and (2.10) for the hydrodynamic velocities uµ, and the equations
(2.9) for the energy density: one should use derivative 1

ε+p(ε)
= Φ′(ε) at any EoS

p = p(ε) to find function ε(x). A serious problem is, however, to find non-trivial
solutions for the field uµ(x) of hydrodynamic 4-velocities.

2.3 Gradient-like velocity ansatz

One can try to satisfy to Eqs. (2.3),(2.10) for velocity profile by a use of gradient-
like representation for it, namely,

uµ = ∂µφ. (2.11)

with condition of normalization, uµuµ = 1:

∂µφ∂
µφ = 1 (2.12)

Then one can check that (2.3) is satisfied automatically, and (2.10) leads to:

∂λ(∂µφ · �φ) = ∂µ(∂λφ · �φ) (2.13)

Thus, gradient-like velocity ansatz (2.11) reduce the problem to equations (2.12),(2.13).
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One can see that the above equation can be, in particular, reduced to:

�φ = F (φ) (2.14)

with any real function F that have to be solved together with (2.12). Note that if
F (φ) = a+ bφ then (2.14) is the linear inhomogeneous partial differential equation
(PDE) and its any solution is a partial solution φih of inhomogeneous PDE, plus
general solution φh of correspondent homogenous PDE (if b 6= 0):

φih ∼ (t2 − x2), b = 0
φih ∼ −a

b
, b 6= 0

(2.15)

and

φh =

∫
d4pδ(p2 − b)f(p)eipx (2.16)

where f(p) is arbitrary function with properties f ∗(k) = f(−k). Then the problem
is reduced to a solution of the nonlinear integral equation (2.12) for f(p). If
a = b = 0, the only potential φ = c+c0t+

∑
cixi (i = 1, 2, 3) with the constrain on

the constants cν : c20 −
∑
c2i = 1 satisfies these equations. It describes a relativistic

motion of a medium as a whole. It is an open problem whether there are analytical
solutions at a 6= 0 and/or b 6= 0.

The known quasi-inertial solutions correspond to F (φ) = n/φ in Eq.(2.14).
The value n = 1 generates gradient ansatz φ =

√
t2 − z2 that gives the (1+1)

boost-invariant Bjorken expansion along axis z, v = z/t; n = 2 leads to φ =√
t2 − x2 − y2, and, correspondingly, to the two-dimensional (1+2) Hubble-like

flow with cylindrical symmetry; at n = 3 one can get solution of (2.14) for φ in
the form φ = τ

.
=

√
t2 − x2 − y2 − z2 describing spherically symmetric Hubble

flow uµ = xµ/τ . The equation (2.9) has the form ∂µΦ(ε) = nxµ/τ 2 where number
of space coordinates is equal to n. Then the energy density is described by the
following expression

ε(τ)∫
ε(τ0)

dε

ε+ p(ε)
= ln(

τ0
τ

)n. (2.17)

2.4 Relativistic ellipsoidal solutions

One more possibility to satisfy to Eqs. (2.5) or (2.7) besides of the gradient-like
flows is to suppose a constant pressure in the EoS: p′(ε) = const. This possibility
was first used in [25] as physically corresponding to a thermodynamic state of the
system in the softest point with the velocity of sound c2s = 0. Such a state could be
associated with the first order phase transition. In A+A collisions it corresponds,
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probably, to transition between hadron and quark-gluon matter at SPS energies.
The solution proposed in [25] has the cylindrical symmetry in the transverse plane
and the longitudinal boost invariance:

uµ = γ(
t

τ
, v
x

r
, v
y

r
,
z

τ
), (2.18)

where τ =
√
t2 − z2, γ = (1 − v2)−1/2 and r is transverse radius, r =

√
x2 + y2,

v =
α

1 + ατ
r (2.19)

describes axially symmetric transverse flow.
The above solution has, however, a limited region of applicability since the

boost invariance is not expected at SPS energies and can be used only in a small
mid-rapidity interval [27], it is not reached even at RHIC energies [28]. Most
important, however, is that in non-central collisions there is no axial symmetry
and, therefore, one needs transversely asymmetric solutions to describe the elliptic
flows in these collisions, e.g., v2 coefficients. Now we propose a new class of analytic
solutions of the relativistic hydrodynamics for 3D asymmetric flows.

First we construct the ansatz for normalized 4-velocity:

uµ = { t√
t2 −

∑
a2

i (t)x
2
i

,
ak(t)xk√

t2 −
∑
a2

i (t)x
2
i

} (2.20)

where the Latin indexes denote spatial coordinates and ai are functions of time
only. In this case a set of nonequal ai induces 3D elliptic flow with velocities
vi = ai(t)xi/t: at any time t the absolute value of velocity is constant, v2 = const,
at an ellipsoidal surface

∑
a2

ix
2
i = const. Note that this solution is not gradient-

like, so we follow in a specific way the analysis starting from (2.3).
The condition (2.3) of accelerationless in this case is reduced to the ordinary

differential equation (ODE) for the functions ai(t):

dai

dt
=
ai − a2

i

t
, (2.21)

the general solution of which is:

ai(t) =
t

t+ Ti

, (2.22)

where Ti is some set of 3 parameters (integration constants) having the dimension
of time. The different values T1, T2 and T3 result in anisotropic 3D expansion with
the ellipsoidal flows.
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The equation (2.5) is satisfied since we assume the constant pressure profile:
p = p0 = const. The next step is to find solution of Eq. (2.4) for energy density
ε. Taking into account that ∂µu

µ =
∑
ai/τ̃ , where

τ̃ =
√
t2 −

∑
a2

ix
2
i , (2.23)

one can get

(ε+ p0)
∑

i

ai(t) + t∂tε+
∑

i

ai(t)x
i∂iε = 0. (2.24)

General solution of the equation is

ε+ p0 =
Fε(

x1

t+T1
, x2

t+T2
, x3

t+T3
)

(t+ T1)(t+ T2)(t+ T3)
(2.25)

where Fε is an arbitrary function of its variables. If one fixes the parameters
Ti that define the velocity profile, then the function Fε is completely determined
by the initial conditions for the enthalpy profile, say, at the initial time t = 0:
ε(t = 0,x) + p0 = Fε(

x1

T1
, x2

T2
, x3

T3
)/T1T2T3.

If some value, associated with a quantum number or with particle number in
a case of chemically frozen evolution is conserved [27] then one should add the
corresponding equation to the basic ones. Such an equation has the standard form
[29]:

n∂νu
ν + uµ∂µn = 0 (2.26)

where n is associated with density of the correspondent conserved value, e.g., with
the baryon or particle densities. A general structure of this equation is similar to
what Eq. (2.24) has and, therefore, the solution looks like as (2.25):

n =
Fn( x1

t+T1
, x2

t+T2
, x3

t+T3
)

(t+ T1)(t+ T2)(t+ T3)
(2.27)

where the function Fn is an arbitrary function of its arguments and can be fixed by
the initial conditions for (particle) density n: n(t = 0,x)T1T2T3 = Fn(x1

T1
, x2

T2
, x3

T3
).

To establish a behavior of other thermodynamic values we use link between
different thermodynamic potentials ε = Ts−p+µn and utilize the thermodynamic
equations based on the free energy density f(n, T ) = ε − Ts = µn − p. Since
the volume is fixed (it is unit) the free energy depends on T and n only, df =
−sdT + µdn, and the chemical potential µ = f,n|T=const and the entropy density
s = −f,T |n=const.

In a case of chemically equilibrated expansion of the ultrarelativistic gas when
the particle number is uncertain and is defined by the conditions and parameters of
the thermodynamic equilibrium, e.g., by the temperature T , the chemical potential
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µ ≡ 0 (we suppose here that there are no other conserved values associated with
charges, or the corresponding chemical potentials are zero or close to zero). Then
f = −p0 = const, df = −sdT = 0 that means the temperature T = const for such
a system and the entropy s = (ε(t,x) + p0)/T where ε(t, x) is defined by (2.25).

If chemically frozen evolution takes place, the chemical potential associated
with conserved particle number is not zero and describes the deviation from
chemical equilibrium in relativistic systems. The solution of differential equation
nf,n|T=const − p0 = f(n, T ) is f(n, T ) = nc(T )− p0, where c(T ) is some function of
the temperature. Then it follows directly from the thermodynamic identities that

ε(t,x) + p0 = n(t,x)(c(T ) − Tc′(T )) (2.28)

Since the structures of general solutions for n and ε are found as (2.25) and (2.27),
the temperature profile has the form

T (t,x) = FT (
x1

t+ T1

,
x2

t+ T2

,
x3

t+ T3

) (2.29)

where FT is some function of its arguments that is defined by the initial conditions
for ε and n and also by EoS ε = ε(n, T ). The latter can be fixed by a choice of the
function c(T ) in Eq. (2.28). If the initial enthalpy density profile is proportional
to the particle density profile, Fn(x1

T1
, x2

T2
, x3

T3
) ∼ Fε(

x1

T1
, x2

T2
, x3

T3
), then T = const (and

so µ = c(T ) = const) during the system’s evolution for any function c(T ) except
the linear one: c(T ) = a − bT when T is not defined by the equation (2.28). In
the last case n = (ε+ p0)/a, s = bn. In another particular case which corresponds
to EoS ε+ p0 = anT with c(T ) = −aT ln(bT ) one can get:

T (t,x) = (ε+ p0)/(an), s(t,x) = an(ln(bT ) + 1) (2.30)

2.5 Generalization of the Hubble-like flows

Let us describe some important particular solutions of the equations for relativis-
tic ellipsoidal flows. If one defines the initial conditions on the hypersurface of
constant time, say t = 0, then t is a natural parameter of the evolution. Such a
representation of the solutions similar to the Bjorken and Hubble ones with ve-
locity field vi = aixi/t has property of an infinite velocity increase at x → ∞.
A real fluid, therefore, can occupy only the space-time region where |v| < 1, or
τ̃ 2 > 0. To guarantee the energy-momentum conservation of the system during
the evolution, all thermodynamic densities have to be zero at the boundary of the
physical region, otherwise one should consider the boundary as the massive shell
[21]. Hence in the standard hydrodynamic approach the enthalpy and particle
density must be zero at the surface defined by |v(t,x)| = 1 at any time t. A
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simple form of such a solution (for the case of particle number conservation) can

be obtained from (2.25),(2.27) choosing Fε,n ∼ exp
(
−b2ε t2

eτ2

)
:

ε(t) + p0 =
Cε∏

i(t+ Ti)
exp

(
−b2ε

t2

τ̃ 2

)
, (2.31)

n =
Cn∏

i(t+ Ti)
exp

(
−b2n

t2

τ̃ 2

)
(2.32)

where τ̃ is defined by (2.23), and the constants Cε, Cn, bε and bn are determined
by the initial conditions as described in the previous section. As one can see,
the enthalpy density tends to zero when |x| becomes fairly large approaching the
boundary surface defined by |v(t,x)| = 1, in other words, when τ̃ → 0. Thus
the physically inconsistent situation when massive fluid elements move with the
velocity of light at the surface τ̃ = 0 is avoided. Of course, in such a solution the
constant pressure should vanish, p0 = 0.

As it follows from the analysis of a behavior of the thermodynamic values in
the previous section, the temperature is constant if bε = bn, otherwise one can
choose the temperature approaching zero at the system’s boundary, e.g., for EoS
which is linear in temperature, the latter has the form

T = const bε = bn

(2.33)

T ∼ e−(b2ε−b2n) t2

τ̃2 → 0, |v(x)| → 1 bε > bn

according to (2.30).

Note that in the region of non-relativistic velocities, v2 =
∑ a2

i x2
i

t2
� 1 the space

distributions of the thermodynamical quantities (2.31),(2.32) have the Gaussian
profile:

ε+ p0 ' Cε
Q

i(t+Ti)
e−b2ε

P

a2
i

x2
i

t2 , (2.34)

n ' Cn
Q

i(t+Ti)
e−b2n

P

a2
i

x2
i

t2

The forms of solutions (2.34) are similar to what was found in Ref. [30] as the
elliptic solutions of the non-relativistic hydrodynamics equations. In this sense the
solution proposed could be considered as the generalization (at vanishing pressure)
of the corresponding non-relativistic solutions allowing one to describe relativistic
expansion of the finite system into vacuum.

One can note that the case of equal flow parameters Ti = 0 and bε = bn = 0
induces formally Hubble-like velocity profile with the behavior of the density and
enthalpy similar to (2.17) at n=3, p = p0, and with the substitution τ → t.
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The direct physical generalization of the Hubble solution for asymmetric case
should be associated with the hypersurfaces of the pseudo-proper time τ̃ rather

than with time t, that eliminates the problem of infinite velocities: v2 =
∑ a2

i x2
i

t2
< 1

at any hypersurface τ̃ 2 = const > 0. It can be reached if one chooses the functions
Fε and Fn in (2.25), (2.27) in the form

F ∼
(
t

τ̃

)3

. (2.35)

Then the generalized Hubble solution is

uµ = { t
τ̃
,
a1x

1

τ̃
,
a2x

2

τ̃
,
a3x

3

τ̃
},

ε+ p0 = Cε
a1a2a3

τ̃ 3
, (2.36)

n = Cn
a1a2a3

τ̃ 3

where τ̃ =
√
t2 −

∑
a2

ix
2
i , ai ≡ ai(t) = t/(t + Ti) and constants are: Cε =

T1T2T3(ε(0,0) + p0), Cn = T1T2T3n(0,0). Again, the proportionality between ε
and n results in the temperature to be a constant during the evolution. If all
parameters Ti are equal to each other, then ai are also equal and solution (2.36)
just corresponds to spherically symmetric Hubble flow (at constant pressure) and
τ̃ is the proper time of fluid element, τ̃ = τ . Note that comparing to the standard
representation of the Hubble solution the origin of a time scale is shifted, t→ t+Ti,
and therefore the singularity at t = 0 is absent. Thus, if this solution is applied to
a description of heavy ion collision, Ti should be interpreted as the initial proper
time of thermalization and hydrodynamic expansion to which the origin of a time
scale is shifted, typically τ0 = Ti ' 1fm/c. As to a general case of an asymmetric
expansion, the minimal parameter Ti can be considered as the initial time t (at
x = 0) of the beginning of the hydrodynamic evolution. In analogy with the
Hubble flow the initial conditions in asymmetric case (2.36) can be ascribed to the
hypersurface σ : τ̃ = const so that tσ(x = 0) = 0. Note, that such a hypersurface
at |x| → ∞ tends to the hyperbolical hypersurface τ = const since tσ(x) → ∞ in
this limit and so all ai → 1.

The boost-invariant (1+1) solutions are also contained in general ellipsoidal
solutions (2.25),(2.27) for quasi-inertial flow. To get it one has to choose functions
Fε and Fn in the form (2.35) with another power: 3 → 1; it leads to the same form
of solution as (2.36) with replacement τ̃ 3 → τ̃ 1. The next step is to suppress the
transverse flow by setting T1 → ∞, T2 → ∞ (as usual, x1 and x2 denote coordinates
in the transverse plane and x3 is the longitudinal one), while the parameter T3 is
finite. This limit approach gives us a1 = a2 = 0 and τ̃ → τ =

√
(t+ T3)2 − x2

3
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and results directly in the Bjorken solution at T3 = 0. Since Ti is a shift of a time
scale to the beginning of hydrodynamic expansion, it is natural to consider T3 6= 0
as this was discussed above for the Hubble-like solution. This value transforms as
T3 → T ′

3 = T3/γ at Lorentz boosts along axis x3.
Note, that if one does not change the power 3 → 1 in (2.35) and proceeds to the

limit directly in the equation (2.36), the particle density (and enthalpy) behavior
will differ from the boost-invariant one as the following:

n ∼ τ−1 → n ∼ τ−1

(
1 − x2

3

(t+ T3)2

)−1

(2.37)

It is also the solution of (1+1) relativistic hydrodynamics at p = const but it
obviously violates the boost-invariance: the particle and energy densities are not
constant at any hypersurface and their analytic forms are changed in new coordi-
nates after Lorentz boosts.

It is worthily to emphasize that the physical solutions with non-zero constant
pressure have a limited region of applicability in time-like direction: if one wants to
continue the solutions to asymptotically large times, then (ε + p0)t→∞ ≈ C

t3
→ 0,

and this results in non-physical asymptotical behavior ε → −p0, unless we set
p0 = 0. Therefore, it is natural to utilize such kind of solutions in a region of the
first order phase transition, characterized by the constant temperature and soft
EoS, c2s = ∂p/∂ε ≈ 0, or at the final stage of the evolution that always corresponds
to the quasi-inertial flows.

2.6 Conclusions

In this chapter, a general analysis of quasi-inertial flows in the relativistic hydro-
dynamics is done. The known analytical solutions, like the Hubble and Bjorken
ones, are reproduced based on the developed approach. A new class of analytic
solutions for 3D relativistic expansion with anisotropic flows is found. The ellip-
soidal generalization of the spherically symmetric Hubble flow is considered within
this class. These solutions can also describe the relativistic expansion of the finite
systems into vacuum.

Specific equation of state makes the application to the whole hydrodynamic
stage of evolution in heavy ion collisions to be problematic. However, the solutions
can still be applicable during deconfinement phase transition and the final stage of
evolution of hadron systems. Also, the solutions can serve as a test for numerical
codes describing 3D asymmetric flows in the relativistic hydrodynamics.



CHAPTER

THREE

Fast MC freeze-out generator

In this chapter the Monte-Carlo event generator, which simulates the final (freeze-
out) stage of heavy ion collision, is presented. For comparison with other models
and experimental data the results based on the standard parameterizations of
the hadron freeze-out hypersurface and flow velocity profile are shown. Also, the
hadron generation procedure is extended for the case of noncentral A+A collisions,
and includes different chemical and thermal freeze-outs. In this event generator,
we reach simultaneous description of single-particle pT spectra for pions, kaons
and protons and pion interferometry radii. The analysis of parameters, leading to
such description, is important for building true dynamical models, like presented
in the next chapters.

3.1 Introduction

Ongoing and planned experimental studies of relativistic heavy ion collisions in
a wide range of beam energies require a development of new event generators
and improvement of the existing ones [31]. Especially for Large Hadron Collider
(LHC) experiments, because of very high hadron multiplicities, one needs fairly
fast Monte-Carlo (MC) generators for event simulation.

A successful but oversimplified attempt of creating a fast hadron generator
motivated by hydrodynamics was done in Ref. [32, 33, 34, 35]. The present work
is an extension of this approach. We formulate a fast MC procedure to generate
hadron multiplicities, four-momenta and four-coordinates for any kind of freeze-
out hypersurface. Decays of hadronic resonances are taken into account. We
consider hadrons consisting of light u,d and s quarks only, but the extension to
heavier quarks is possible. The generator code is written in the object-oriented
C++ language under the ROOT framework [36].

21
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In this chapter we discuss both central and non-central collisions of nuclei us-
ing the Bjorken-like and Hubble-like freeze-out parameterizations used in so-called
”blast wave” [37] and ”Cracow” models [38], respectively. The same parametriza-
tions have been used in the hadron generator referred as THERMINATOR [87]
that appears however less efficient than our generator (see sections 3.2, 3.6).

This section is now organized as follows. Subsections 3.2-3.5 are devoted to
the description of the physical framework of the model. In Subsection 3.6, the
Monte Carlo simulation procedure is formulated. The validation of this procedure
is presented in Subsection 3.7. In Subsection 3.8, the example calculations are
compared with the Relativistic Heavy Ion Collider (RHIC) experimental data. The
model extensions to non-central collisions and to different chemical and thermal
freeze-outs are presented in Subsections 3.9, 3.10, with the results presented in
3.11. We summarize and conclude in Subsection 3.12.

3.2 Hadron multiplicities

We give here the basic formulae for the calculation of particle multiplicities. We
consider the hadronic matter created in heavy-ion collisions as a hydrodynamically
expanding fireball with the equation of state of an ideal hadron gas.

The mean number N̄i of particles species i crossing the space-like freeze-out
hypersurface σ(x) in Minkowski space can be computed as [39]

N̄i =

∫
σ(x)

d3σµ(x)jµ
i (x). (3.1)

Here the four-vector d3σµ(x) = nµ(x)d3σ(x) is the element of the freeze-out hy-
persurface directed along the hypersurface normal unit four-vector nµ(x) with a
positively defined zero component (n0(x) > 0) and d3σ(x) = |d3σµd

3σµ|1/2 is the
invariant measure of this element. The normal to the space-like hypersurface is
time-like, i.e. nµnµ = 1; generally, for hypersurfaces including non-space-like sec-
tors, the normal can also be a space-like so then nµnµ = −1. The four-vector jµ

i (x)
is the current of particle species i determined as:

jµ
i (x) =

∫
d3~p

p0
pµfi(x, p), (3.2)

where fi(x, p) is the Lorentz invariant distribution function of particle freeze-out
four-coordinate x = {x0, ~x} and four-momentum p = {p0, ~p}. In the case of local
equilibrium

fi(x, p) = f eq
i (p·u(x);T (x), µ(x)) =

1

(2π)3

gi

exp ([p · u(x) − µi(x)]/T (x)) ± 1
, (3.3)
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where p · u ≡ pµuµ, gi = 2Ji + 1 is the spin degeneracy factor, T (x) and µi(x)
are the local temperature and chemical potential respectively, u(x) = γ{1, ~v} is
the local collective four-velocity, γ = (1 − v2)−1/2, uµuµ = 1. The signs ± in the
denominator account for the proper quantum statistics of a fermion or a boson,
respectively.

The Lorentz scalar local particle density is defined as:

ρi(x) = uµ(x)jµ
i (x) =

∫
d3~p

p0
pµu

µ(x)fi(x, p). (3.4)

For a system in local thermal equilibrium, the particle density in the fluid element
rest frame, where u∗µ = {1, 0, 0, 0}, is solely determined by the local temperature
T (x∗) and chemical potential µi(x

∗) for each particle species i:

ρeq
i (T (x∗), µi(x

∗)) = u∗µj
eqµ
i (x∗) =

∫
d3~p ∗f eq

i (p∗0;T (x∗), µi(x
∗)); (3.5)

the four-vectors in fluid element rest frames are denoted by star.
In the case of local equilibrium, the particle current is proportional to the fluid

element four-velocity: jeqµ
i (x) = ρeq

i (T (x), µi(x))u
µ(x). So the mean number of

particles of species i is expressed directly through the equilibrated density:

N̄i =

∫
σ(x)

d3σµ(x)uµ(x)ρeq
i (T (x), µi(x)). (3.6)

In the case of constant temperature and chemical potential, T (x) = T and
µi(x) = µi, one has

N̄i = ρeq
i (T, µi)

∫
σ(x)

d3σµ(x)uµ(x) = ρeq
i (T, µi)Veff , (3.7)

i.e. the total yield of particle species i is determined by the freeze-out temperature
T , chemical potential µi and by the total co-moving volume Veff , so called effective
volume of particle production which is a functional of the field of collective veloc-
ities uµ(x) on the hypersurface σ(x). The effective volume absorbs the collective
velocity profile and the form of hypersurface and cancels out in all particle num-
ber ratios. Therefore, the particle number ratios do not depend on the freeze-out
details as long as the local thermodynamic parameters are independent of x. The
concept of the effective volume and factorization property similar to Eq. (3.7) has
been considered first in Ref. [40], repeatedly used for the analysis of particle num-
ber ratios (see, e.g., Ref. [27]) and recently generalized for a study of the averaged
phase space densities [41] and entropy [42]. One can apply this concept also in a
limited rapidity window [40, 41, 42].
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The concept of the effective volume can be applied to calculate the hadronic
composition at both chemical and thermal freeze-outs [27]. At the former one,
which happens soon after hadronization, the chemically equilibrated hadronic com-
position is assumed to be established and frozen in further evolution. The chemical
potential µi for any particle species i at the chemical freeze-out is entirely deter-
mined by chemical potentials µ̃q per a unit charge, i.e. per unit baryon number
B, strangeness S, electric charge Q, charm C, etc. It can be expressed as a scalar
product:

µi = ~qi~̃µ, (3.8)

where ~qi = {Bi, Si, Qi, Ci, ...} and ~̃µ = {µ̃B, µ̃S, µ̃Q, µ̃C , ..}. Assuming constant
temperature and chemical potentials on the chemical freeze-out hypersurface, the
total quantum numbers ~q = {B,S,Q,C, ...} of the selected thermal part of pro-
duced hadronic system (e.g., in a rapidity interval near y = 0) with corresponding
Veff can be calculated as ~q = Veff

∑
i ρ

eq
i ~qi. For example:

B = Veff

n∑
i=1

ρeq
i (T, µi)Bi, (3.9)

S = Veff

n∑
i=1

ρeq
i (T, µi)Si, (3.10)

Q = Veff

n∑
i=1

ρeq
i (T, µi)Qi. (3.11)

The potentials µ̃q are not independent. Thus, taking into account baryon, strangeness
and electrical charges only and fixing the total strangeness S and the total elec-
tric charge Q, µ̃S and µ̃Q can be expressed through baryonic potential µ̃B using
Eqs. (3.10) and (3.11). Therefore the mean numbers of each particle and reso-
nance species at chemical freeze-out are determined solely by the temperature T
and baryonic chemical potential µ̃B.

In practical calculations, we use the phenomenological observation [43] that
particle yields in central Au+Au or Pb+Pb collisions in a wide center-of-mass
energy range

√
sNN = 2.2− 200 GeV can be described within the thermal statisti-

cal approach using the following parametrizations of the temperature and baryon
chemical potential [43]:

T (µ̃B) = a− bµ̃2
B − cµ̃4

B, (3.12)

µ̃B(
√
sNN) =

d

1 + e
√
sNN

, (3.13)
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a = 0.166 ± 0.002 GeV, b = 0.139 ± 0.016 GeV−1, c = 0.053 ± 0.021 GeV−3 and
d = 1.308 ± 0.028 GeV, e = 0.273 ± 0.008 GeV−1.

In practical calculations we determine all macroscopic characteristics of a par-
ticle system with the temperature T and chemical potentials µi via a set of equi-
librium distribution functions in the fluid element rest frame:

f eq
i (p∗0;T, µi) =

1

(2π)3

gi

exp ([p∗0 − µi]/T ) ± 1
. (3.14)

Eq. (3.5) for the particle number density then reduces to

ρeq
i (T, µi) = 4π

∫ ∞

0

dp∗p∗2f eq
i (p∗0;T, µi). (3.15)

Using the expansion

f eq
i (p∗0;T, µi) =

gi

(2π)3

∞∑
k=1

(∓)k+1 exp(k
µi − p∗0i

T
), (3.16)

the density can be represented in a form of a fast converging series:

ρeq
i (T, µi) =

gi

2π2
m2

iT

∞∑
k=1

(∓)k+1

k
exp(

kµi

T
)K2(

kmi

T
), (3.17)

where K2 is the modified Bessel function of the second order.
We assume that the calculated mean particle numbers N̄i = ρeq

i Veff correspond
to a grand canonical ensemble. The probability that the ensemble consists of Ni

particles is thus given by Poisson distribution:

P (Ni) = exp (−N̄i)
(N̄i)

Ni

Ni!
. (3.18)

3.3 Hadron momentum distributions

We suppose that a hydrodynamic expansion of the fireball ends by a sudden system
breakup at given temperature and chemical potentials. In this case the momentum
distribution of the produced hadrons keeps the thermal character of the equilibrium
distribution (3.3). Similar to Eqs. (3.1), (3.2), this distribution is then calculated
according to the Cooper-Frye formula [44]:

p0d
3N̄i

d3p
=

∫
σ(x)

d3σµ(x)pµf eq
i (p · u(x);T, µi). (3.19)



26 CHAPTER 3. FAST MC FREEZE-OUT GENERATOR

The integral in Eq. (3.19) can be calculated with the help of the invariant weight

Wσ,i(x, p) ≡ p0 d6N̄i

d3σd3~p
= nµ(x)pµf eq

i (p · u(x);T, µi). (3.20)

It is convenient to transform the four-vectors into the fluid element rest frame,
e.g.,

n∗0 = nµuµ = γ(n0 − ~v~n),
~n∗ = ~n− γ(1 + γ)−1(n∗0 + n0)~v

(3.21)

and calculate the weight in this frame:

Wσ,i(x, p) = W ∗
σ,i(x

∗, p∗) = n∗
µ(x)p∗µf eq

i (p∗0;T, µi). (3.22)

Particulary, in the case when the normal four-vector nµ(x) coincides with
the fluid element flow velocity uµ(x), i.e. n∗µ = u∗µ = {1, 0, 0, 0}, the weight
W ∗

σ,i(x
∗, p∗) = p∗0f eq

i (p∗0;T, µ) is independent of x and isotropic in the three-
momentum ~p ∗. A simple and 100% efficient simulation procedure can then be
realized in this frame and the four-momenta of the generated particles transformed
back to the fireball rest frame using the velocity field ~v(x):

p0 = γ(p0∗ + ~v~p ∗),
~p = ~p ∗ + γ(1 + γ)−1(p0∗ + p0)~v.

(3.23)

There are two well-known examples of the models giving nµ(x) = uµ(x): the
Bjorken model with hypersurface τB = (t2 − z2)1/2 = const and absent transverse
flow and the model with hypersurface τH = (t2 − x2 − y2 − z2)1/2 = const and
spherically symmetric Hubble flow. In general case nµ(x) may differ from uµ(x)
and one should account for the x−p correlation and the corresponding anisotropy
due to the factor nµp

µ even in the fluid element rest frame [45].

3.4 Generalization of the Cooper-Frye prescrip-

tion

It is well known that the Cooper-Frye freeze-out prescription in Eq. (3.19) is not
valid for the part of the freeze-out hypersurface characterized by a space-like nor-
mal four-vector nµ. In this case |n0| < |~n| and so pµnµ < 0 for some particle
momenta thus leading to negative contributions to particle numbers. Usually,
the negative contributions are simply rejected [46, 47]. This procedure however
violates the continuity condition of the flow ρiu

µnµ through the freeze-out hyper-
surface. Taking into account the continuity of the particle flow, the generalization
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of Eq. (3.19) has the form [46]:

p0d
3N̄i

d3p
=

∫
σ(x)

d3σµ(x)πµ(x, p)f eq
i (T (x), µi(x)), (3.24)

where

πµ(x, p) = pµθ(1 − |λ̃(x, p)|) + uµ(x) p · u(x) θ(|λ̃(x, p)| − 1),

λ̃(x, p) = 1 − p · n(x) [p · u(x) n(x) · u(x)]−1,
(3.25)

θ(x) = 1 for x ≥ 0, θ(x) = 0 for x < 0.
Passing to the fluid element rest frames at each point x and using Lorentz

transformation properties of the quantities in Eq. (3.24), one arrives at the same
form of the four-vector of particle flow as in the case of the freeze-out hypersurface
with the time-like normal nµ(x):

jµ(x) =

∫
d3~p

p0

πµ(x, p)f eq
i (T (x), µi(x)) = ρeq

i (T (x), µi(x))u
µ(x). (3.26)

Therefore the factorization of the freeze-out details in the effective volume in
the case of constant temperature and chemical potentials, i.e. Eq. (3.7), is valid for
any type of hypersurface [41]. It follows from Eqs. (3.24), (3.25) that the invariant
weight in the fluid element rest frame has then the form:

W ∗
σ,i(x

∗, p∗) =

[
p∗µn∗

µ θ

(
1 −

∣∣∣∣~p ∗~n ∗

p∗0n∗0

∣∣∣∣) + p∗0n∗0 θ

(∣∣∣∣~p ∗~n ∗

p∗0n∗0

∣∣∣∣ − 1

)]
×

× f eq
i (p∗0;T, µi). (3.27)

For the time-like normal nµ(x), Eq. (3.27) reduces to Eq. (3.22).
It is worth noting that though the bulk of particles is likely associated with

the volume decay, the particle emission from the surface of expanding system,
or formally, from a non-space-like part of the freeze-out hypersurface enclosed in
Minkowski space, is essential for a description of hadronic spectra and like pion
correlations at relatively large pT [48].

3.5 Freeze-out surface parameterizations

In principle, one can specify the fireball initial conditions (e.g., Landau- or Bjorken-
like) and equation of state to follow the fireball dynamic evolution until the freeze-
out stage with the help of relativistic hydrodynamics. The corresponding freeze-out
four-coordinates xµ, the hypersurface normal four-vectors nµ(x) and the collective
flow four-velocities uµ(x) can then be used to calculate particle spectra according
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to generalized Cooper-Frye prescription. This possibility is forseen as an option in
our MC generator. In this work, we however do not consider the fireball evolution,
we demonstrate our fast MC procedure utilizing the simple and frequently used
parametrizations of the freeze-out.

At relativistic energies, due to dominant longitudinal motion, it is convenient
to substitute the Cartesian coordinates t, z by the Bjorken ones

τ = (t2 − z2)1/2, η =
1

2
ln
t+ z

t− z
(3.28)

and introduce the the radial vector ~r ≡ {x, y} = {r cosφ, r sinφ}, i.e.:

xµ = {τ cosh η, ~r, τ sinh η} = {τ cosh η, r cosφ, r sinφ, τ sinh η}. (3.29)

Similarly, it is convenient to parameterize the fluid flow four-velocity uµ(x) =
γ(x){1, ~v(x)} ≡ γ(x){1, ~vr(x), vz(x)} at a point x in terms of the longitudinal (z)
and transverse (r) fluid flow rapidities

ηu(x) =
1

2
ln

1 + vz(x)

1 − vz(x)
, ρu(x) =

1

2
ln

1 + vr(x) cosh ηu(x)

1 − vr(x) cosh ηu(x)
, (3.30)

where vr = |~vr| is the magnitude of the transverse component of the flow three-
velocity ~v = {vr cosφu, vr sinφu, vz}, i.e.

uµ(x) = {cosh ρu cosh ηu, sinh ρu cosφu, sinh ρu sinφu, cosh ρu sinh ηu}
= {(1 + u2

r)
1/2 cosh ηu, ~ur, (1 + u2

r)
1/2 sinh ηu},

(3.31)

~ur = γ~vr = γr cosh ηu~vr, γr = cosh ρu. For the considered central collisions of sym-
metric nuclei, φu = φ. Representing the freeze-out hypersurface by the equation
τ = τ(η, r, φ), the hypersurface element in terms of the coordinates η, r, φ becomes

d3σµ = εµαβγ
dxαdxβdxγ

dηdrdφ
dηdrdφ, (3.32)

where εµαβγ is the completely antisymmetric Levy-Civita tensor in four dimensions
with ε0123 = −ε0123 = 1. Particulary, for azimuthaly symmetric hypersurface
τ = τ(η, r), Eq. (3.51) yields [27]:

d3σµ = τ(~r, η)d2~rdη× (3.33)

× {1

τ

dτ

dη
sinh η + cosh η,−dτ

dr
cosφ,−dτ

dr
sinφ,−1

τ

dτ

dη
cosh η − sinh η}.

Generally, the freeze-out hypersurface is represented by a set of equations τ =
τj(η, r, φ) and Eq. (3.51) should be substituted by the sum of the corresponding
hypersurface elements.
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To simplify the situation, besides the azimuthal symmetry, we further assume
the longitudinal boost invariance [49]. The local quantities (such as particle den-
sity) are then functions of τ and r only. The hypersurface then takes the form
τ = τ(r), the flow rapidities ηu = η (i.e. vz = z/t), ρu = ρu(r) and Eq. (3.33)
yields

d3σµ = τ(r)d2~rdη{cosh η,−dτ
dr

cosφ,−dτ
dr

sinφ,− sinh η},
d3σ = |1 − (dτ

dr
)2|1/2τ(r)d2~rdη,

nµ(x) = |1 − (dτ
dr

)2|−1/2{cosh η, dτ
dr

cosφ, dτ
dr

sinφ, sinh η}.
(3.34)

Note that the normal four-vector nµ becomes space-like (nµnµ = −1) for |dτ/dr| >
1.

For the simplest freeze-out hypersurface τ = const one has

d3σ = τd2~rdη,
nµ(x) = {cosh η, 0, 0, sinh η}. (3.35)

In this case the normal nµ(x) is time-like (nµnµ = 1) but generally different from
the flow four-velocity uµ(x) except for the case of absent transverse flow (i.e. ρu =
0). Assuming φu = φ and the linear transverse flow rapidity profile (effectively
taking into account a positive flow - radius correlation up to the radii close to
the fireball boundary as indicated by numerical solutions of (3+1)-dimensional
relativistic hydrodynamics, see, e.g., [50]):

ρu =
r

R
ρmax

u , (3.36)

where R is the fireball transverse radius, the total effective volume for particle
production at τ = const is

Veff =

∫
σ(x)

d3σµ(x)uµ(x) = τ

∫ R

0

γrrdr

∫ 2π

0

dφ

∫ ηmax

ηmin

dη =

= 2πτ∆η

(
R

ρmax
u

)2

(ρmax
u sinh ρmax

u − cosh ρmax
u + 1), (3.37)

where ∆η = ηmax − ηmin. For small values of the maximal transverse flow rapidity
ρmax

u , Eq. (3.68) reduces to Veff = πτR2∆η [27].
We shall refer the above choice of the freeze-out hyper-surface and the flow

four-velocity profile as the Bjorken-like parametrization or Bjorken model scenario
for particle freeze-out with transverse flows [49].

We also consider so called Cracow model scenario [38] corresponding to the
Hubble-like freeze-out hypersurface τH = (t2 − x2 − y2 − z2)1/2 = const and flow
four-velocity

uµ(x) = xµ/τH . (3.38)
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Introducing the longitudinal space-time rapidity η according to Eq. (3.49) and the
transverse space-time rapidity ρ = sinh−1(r/τH), one has [51]

xµ = τH{cosh η cosh ρ, sinh ρ cosφ, sinh ρ sinφ, sinh η cosh ρ}, (3.39)

τH = τB/ cosh ρ. Representing the freeze-out hypersurface by the equation τH =
τH(η, ρ, φ) = const, one finds from Eq. (3.51):

d3σ = τ 3
H sinh ρ cosh ρdηdρdφ = τHdηd

2~r,
nµ(x) = uµ(x).

(3.40)

The effective volume corresponding to r = τH sinh ρ < R and ηmin ≤ η ≤ ηmax is

Veff =

∫
σ(x)

d3σµ(x)uµ(x) = τH

∫ R

0

rdr

∫ 2π

0

dφ

∫ ηmax

ηmin

dη = πτHR
2∆η. (3.41)

3.6 Hadron generation procedure

Our MC procedure to generate the freeze-out hadron multiplicities, four-momenta
and four-coordinates is the following:

1. First, the parameters of the chosen freeze-out model are initialized. Partic-
ularly, for the models with constant freeze-out temperature T and chemical
potentials µi, the phenomenological formulae (3.12), (3.13) are implemented
as an option allowing to calculate T and µi at the chemical freeze-out in cen-
tral Au+Au or Pb+Pb collisions specifying only the center-of-mass energy√
sNN . In the scenario with the thermal freeze-out occurring at a tempera-

ture T th < T ch, the chemical potentials µth
i are no more given by Eq. (3.8).

At given thermal freeze-out temperature T th and effective volume V th
eff , they

are set according to the procedure described in section 3.2. So far, only the
stable particles and resonances consisting of u, d, s quarks are incorporated
in the model. They are taken from the ROOT particle data table [36, 52].

2. Next, the effective volume corresponding to a given freeze-out model is deter-
mined, e.g., according to Eq. (3.68) or (3.73) and particle number densities
are calculated with the help of Eq. (3.75). The mean multiplicity of each par-
ticle species is then calculated according to Eq. (3.7). A more general option
to calculate the mean multiplicities, e.g., in the case of the freeze-out hyper-
surface obtained from relativistic hydrodynamics, is the direct integration
of Eq. (3.24). The multiplicity corresponding to the mean one is simulated
according to Poisson distribution in Eq. (3.76).
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3. The particle freeze-out four-coordinates xµ = {τ cosh η, r cosφ, r sinφ, τ sinh η}
in the fireball rest frame are then simulated on each hypersurface segment τ =
τj(r) according to the element d3σµu

µ = d3σ∗
0 = n∗

0(r)|1−(dτ/dr)2|1/2τ(r)d2~rdη,
assuming n∗

0 and τ functions of r (i.e. independent of η, φ), by sampling uni-
formly distributed η in the interval [ηmin, ηmax], φ in the interval [0, 2π] and
generating r in the interval [0, R]) using a 100% efficient procedure similar
to ROOT routine GetRandom(). In the Bjorken- and Hubble-like models:
τ(r) = τB = const, n∗

0 = cosh ρu = γr and |1−(dτ/dr)2|1/2τ(r) = τH = const,
n∗

0 = 1, respectively. Note that if n∗
0 and τ were depending on two or three

variables, a generalization of the routine GetRandom() to more dimensions
is possible. A less efficient possibility is to simulate ~r, η according to the
element d2~rdη and include the factor d3σn∗

0/d
2~rdη in the residual weight in

the step 6. Also note that the particle freeze-out coordinates calculated from
relativistic hydrodynamics are distributed according to the element d3σµu

µ.

4. The corresponding collective flow four-velocities uµ(x) are calculated using,
e.g., Eqs. (3.59), (3.36) or Eq. (3.38).

5. The particle three-momenta p∗{sin θ cosφ, sin θ sinφ, cos θ} are then gener-
ated in the fluid element rest frames according to the probability f eq

i (p0∗;T, µi)p
∗2dp∗d cos θ∗pdφ

∗
p

by sampling uniformly distributed cos θ∗p in the interval [−1, 1], φ∗
p in the in-

terval [0, 2π] and generating p∗ using a 100% efficient procedure similar to
ROOT routine GetRandom().

6. Next, the standard von Neumann rejection/acceptance procedure is used to
account for the difference between the true probability W ∗

σ,id
3σd3~p ∗/p0∗ (see

Eqs. (3.20), (3.22), (3.27)) and the probability f eq
i (p0∗;T, µi)d

3σµu
µd3~p∗ =

f eq
i (p0∗;T, µi)n

0∗d3σd3~p∗ corresponding to the simulation steps 3-5. Thus the
residual weight

W res
i =

W ∗
σ,id

3σd3~p∗

n0∗p0∗f eq
i d

3σd3~p∗
(3.42)

is calculated and the simulated particle four-coordinate and four-momentum
are accepted provided that this weight is larger than a test variable randomly
simulated in the interval [0,max(W res

i )]. Otherwise, the simulation returns
to step 3. Note that for the freeze-out parametrizations considered in this
work,

W res
i =

(
1 − ~n ∗~p ∗

n0∗p0∗

)
(3.43)

and the maximal weight max(W res
i ) can be calculated analytically. Partic-

ularly, in the Bjorken-like model and ηmax � 1, W res
i is distributed in the

interval [1 − tanh ρmax
u , 1 + tanh ρmax

u ]. The step 6 can be omitted for the
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Hubble-like model or for the Bjorken model without transverse flow (ρu = 0)
when W res

i = 1. Generally, in the residual weight one should take into
account the contribution of non-space-like sectors of the freeze-out hypersur-
face:

W res
i =

[(
1 − ~n∗~p∗

n0∗p0∗

)
θ

(
1 −

∣∣∣∣ ~p∗~n∗

p∗0n∗0

∣∣∣∣) + θ

(∣∣∣∣ ~p∗~n∗

p∗0n∗0

∣∣∣∣ − 1

)]
(3.44)

7. Next, the hadron four-momentum p∗µ is boosted to the fireball rest frame
according to Eqs. (3.23).

8. The two-body, three-body and many-body decays are simulated with the
branching ratios calculated via ROOT utilities [36]. A more correct kinetic
evolution, taking into account not only resonance decays but also hadron
elastic scattering, may be included with the help of the Boltzmann equation
solver C++ code which was developed earlier [53].

It should be stressed that a high generation speed is achieved due to 100%
generation efficiency of the freeze-out four-coordinates and four-momenta in steps
3-5 as well as due to a weak non-uniformity of the residual weight W res

i in the
cases of practical interest. For example, in the Bjorken-like model, the increase
of the maximal transverse flow rapidity from zero (W res

i = const) to ρmax
u = 0.65

leads only to a few percent decrease of the generation speed. Compared, e.g., to
THERMINATOR [87], our generator appears more than one order of magnitude
faster.

3.7 Validation of the MC procedure

In the Boltzmann approximation for the equilibrium distribution function (3.14),
i.e. retaining only the first term in the expansion (3.16), the transverse momentum
(pt) spectrum in the Bjorken-like model takes the form [32, 11]:

dN̄i

ptdpt

=
1

π
giτmte

µi/T ∆η

∫ R

0

rdrK1

(
mt cosh ρu

T

)
I0

(
pt sinh ρu

T

)
(3.45)

where I0(z) and K1(z) are the modified Bessel functions and mt = (m2
i + p2

t )
1/2 is

the particle transverse mass.
To test our MC procedure, we compare in Fig. 3.1 the transverse momentum

spectrum calculated according to Eq. (3.45) with the corresponding MC result for
T = 0.165 GeV, R = 8 fm, mi = 0.14 GeV, ∆η = 10, µ = 0.0 GeV, τ = 12 fm/c,
ρmax

u = 0.65 and 2.0. One may see that the analytical and the MC calculations
practically coincide.
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Figure 3.1: The validation of the MC procedure for ρmax
u = 0.65 (left panel)

and 2.0 (right panel): the transverse momentum spectra (solid lines) calculated
according to Eq. (3.45) and the corresponding MC results (black triangles). Also
shown are the MC results obtained with a constant residual weight (black points).

To demonstrate the increasing influence of the residual weight with the in-
creasing ρmax

u , we also present in Fig. 3.1 the MC results obtained without this
weight.

3.8 Input parameters and results

We present here the results of example MC calculations performed on the assump-
tion of a common chemical and thermal freeze-out and compare them with the
experimental data on central Au + Au collisions at RHIC.

Model input parameters

First, we summarize the input parameters which control the execution of our MC
hadron generator in the case of Bjorken-like and Hubble-like parametrizations with
a common thermal and chemical freeze-out:

1. Number of events to generate.

2. Thermodynamic parameters at chemical freeze-out: temperature (T ) and
chemical potentials per a unit charge (µ̃B, µ̃S, µ̃Q). As an option, there is an
additional parameter γs ≤ 1 taking into account the strangeness suppression
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Table 3.1: The model parameters for central Au + Au collisions at
√
sNN =

200 GeV.
parameter Bjorken-like Hubble-like
T , GeV 0.165 0.165
µ̃B, GeV 0.028 0.028
µ̃S, GeV 0.007 0.007
µ̃Q, GeV -0.001 -0.001

γs 1 (0.8) 1 (0.8)
τ , fm/c 6.1 9.65
R, fm 10.0 8.2
ηmax 2 (3,5) 2 (3,5)
ρmax

u 0.65 -

according to partially equilibrated distribution [54, 55]:

fi(p
∗0;T, µi, γs) =

gi

γ
−ns

i
s exp ([p∗0 − µi]/T ) ± 1

, (3.46)

where ns
i is the number of strange quarks and anti-quarks in a hadron i.

Optionally, the parameter γs can be fixed using its phenomenological depen-
dence on the temperature and baryon chemical potential [56].

3. Volume parameters: the freeze-out proper time (τ) and firebal transverse
radius (R).

4. Maximal transverse flow rapidity (ρmax
u ) for Bjorken-like parametrization [32,

33].

5. Maximal space-time longitudinal rapidity (ηmax) which determines the rapid-
ity interval [−ηmax, ηmax] in the collision center-of-mass system. To account
for the violation of the boost invariance, we have included in the code an
option corresponding to the substitution of the uniform distribution of the
space-time longitudinal rapidity η in the interval [−ηmax, ηmax] by a Gaussian
distribution exp(−η2/2∆η2) with a width parameter ∆η (see, e.g., [57]).

The parameters used to model central Au+Au collisions at
√
sNN = 200 GeV

are given in Table 3.1.

Space-time distributions of the hadron emission points

In figures 3.2 and 3.3, we show the distributions of the π+ emission transverse
x-coordinate and time generated in the Bjorken-like and Hubble-like models with
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Figure 3.2: The π+ emission transverse x-coordinate (left) and time (right) gen-
erated in the Bjorken-like model with the parameters given in Table 3.1, ηmax = 2:
all π+’s (solid circles), direct π+’s (solid line), decay π+’s from ρ (squares), ω (open
circles), K∗(892) (up-triangles) and ∆ (down-triangles).
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Figure 3.3: The same as in Fig. 3.2 for the Hubble-like parametrization.

the parameters given in Table 3.1, ηmax = 2. Also shown are the contributions
from the primary π+’s emitted directly from the freeze-out hypersurface and the
contributions from π+’s from the decays of the most abundant resonances ρ, ω,
K∗(892) and ∆. For primary pions, x < R and τ < t < τ cosh ηmax. The tails at
|x| > R and t > τ cosh ηmax reflect the exponential law of the resonance decays.
The longest tails in figures 3.2 and 3.3 are due to pions from ω decays.

Ratios of hadron abundances

It is well known that the particle abundances in heavy-ion collisions in a large
energy range can be reasonably well described within statistical models (see, e.g.,
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Table 3.2: Particle number ratios near mid-rapidity in central Au + Au col-
lisions at

√
sNN = 130 GeV calculated with the thermodynamic parameters:

T = 0.168 GeV, µ̃B = 0.041 GeV, µ̃S = 0.010 GeV and µ̃Q = −0.001 GeV.
ratios our MC statistical model [60] experiment
π−/π+ 0.98 1.02 1.00 ± 0.02 [61], 0.99 ± 0.02 [62]
p̄/π− 0.06 0.09 0.08 ± 0.01 [63]
K−/K+ 0.90 0.92 0.91 ± 0.09 [61], 0.93 ± 0.07 [64]
K−/π− 0.22 0.16 0.15 ± 0.02 [65]
p̄/p 0.61 0.65 0.60 ± 0.07 [61], 0.64 ± 0.08 [64]
Λ̄/Λ 0.69 0.69 0.71 ± 0.04 [66]
Ξ̄/Ξ 0.79 0.77 0.83 ± 0.06 [66]
φ/K− 0.17 0.15 0.13 ± 0.03 [67]
Λ/p 0.48 0.47 0.49 ± 0.03 [68], [69]
Ξ−/π− 0.0086 0.0072 0.0088 ± 0.0020 [70]

Table 3.3: Particle number ratios near mid-rapidity in central Au + Au col-
lisions at

√
sNN = 200 GeV calculated with the thermodynamic parameters:

T = 0.165 GeV, µ̃B = 0.028 GeV, µ̃S = 0.07 GeV, and µ̃Q = −0.001 GeV.
particle number ratios our MC experiment [72]

π−/π+ 0.98 0.984 ± 0.004
K−/K+ 0.94 0.933 ± 0.008
K−/π− 0.21 0.162 ± 0.001
p̄/p 0.71 0.731 ± 0.011

[59, 54, 58]) based on the assumption that the produced hadronic matter reaches
thermal and chemical equilibrium. This is demonstrated in tables 3.2 and 3.3
for the particle number ratios near mid-rapidity in central Au +Au collisions at√
sNN = 130 and 200 GeV calculated in our MC model and the statistical model

of Ref. [60] and compared with the RHIC experimental data. Being independent
of volume and flow parameters, the particle number ratio allow one to fix the
thermodynamic parameters. We have not tuned the latter here and simply used
the same thermodynamic parameters as in Ref. [60] despite there are noticeable
differences in some particle number ratios calculated in the two models. These
differences may be related to the different numbers of resonance states taken into
account and uncertainties in the decay modes of high excited resonances.
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Figure 3.4: The pseudo-rapidity (− ln tan(θ/2), θ is the particle production angle)
distributions of charged particles in central Au + Au collisions at

√
sNN = 200 GeV

from the PHOBOS experiment [71] (solid circles) and the MC calculations within
the Bjorken-like (left panel) and Hubble-like (right panel) models. The model
results corresponding to the space-time rapidity range parameter ηmax = 5, 3 and
2 are shown by solid, dashed and dotted lines respectively.

Pseudo-rapidity distributions

In Fig. 3.4, we compare the PHOBOS data [71] on pseudo-rapidity spectrum of
charged hadrons in central Au+Au collisions at

√
sNN = 200 GeV with our MC

results obtained within the Bjorken-like and Hubble-like models for different values
of ηmax. One may see that the data are compatible with the longitudinal boost
invariance only in the mid-rapidity region in which the model is practically insen-
sitive to ηmax. In the single freeze-out scenario, the data on particle numbers at
mid-rapidity thus allows one to fix the effective volume Veff ∝ τR2.

Transverse momentum spectra

In Fig. 3.5, we compare the mid-rapidity PHENIX data [72] on π+, K+ and proton
pt spectra in Au+Au collisions at

√
sNN = 200 GeV with our MC results obtained

within the Bjorken-like and Hubble-like models. A good agreement between the
models and the data may be seen for pions while for kaons and protons the models
overestimate the spectra at pt < 1 GeV/c. For kaons, this discrepancy can be
diminished with the help of the strangeness suppression parameter γs of 0.8 (see
the right panel in Fig. 3.5). The overestimated slope of the kaon and proton
pt spectra can also be related with the oversimplified assumption of a common
thermal and chemical freeze-out or insufficient number of the accounted heavy
resonance states.

The contribution of different resonances to the pion pt spectrum calculated in
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Figure 3.5: The π+, K+ and proton transverse momentum spectra at mid-rapidity
y ≈ 0 in central Au + Au collisions at

√
sNN = 200 GeV from PHENIX experiment

[72] (solid symbols) and the MC calculations within the Bjorken-like (dashed lines)
and Hubble-like (solid lines) models. The right panel shows the model results
obtained with the strangeness suppression parameter γs = 0.8.

the Bjorken-like model is shown in Fig. 3.6.

Note that in Hubble-like model, the transverse flow is determined by the volume
parameters R, τ and so, at fixed thermodynamic parameters and the effective
volume Veff ∝ τR2, the transverse momentum spectra allow one to fix both R and
τ . In the Bjorken-like model, there is more freedom since the transverse flow is also
regulated by the parameter ρmax

u . The choice of these parameters in Table 3.1 has
been done to minimize the discrepancy of the simulated and measured correlation
radii of identical pions (see below).

Correlation functions

It is well known that, due to the effects of quantum statistics (QS) and final state
interaction (FSI), the momentum correlations of two or more particles at small
relative momenta in their center-of-mass system are sensitive to the space-time
characteristics of the production process on a level of fm = 10−15 m so serving as
a correlation femtoscopy tool (see, for example, [73]-[77]).

The momentum correlations are usually studied with the help of correlation
functions of two or more particles. Particularly, the two-particle correlation func-
tion CF (p1, p2) is defined as a ratio of the measured two-particle distribution to the
reference one which is usually constructed by mixing the particles from different
events of a given class, normalizing the correlation function to unity at sufficiently
large relative momenta.
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Figure 3.6: The contributions to the π+ transverse momentum spectrum at mid-
rapidity in central Au + Au collisions at

√
sNN = 200 GeV calculated within the

Bjorken-like model: all π+’s (solid circles), direct π+’s (stars), decay π+’s from ρ
(squares), ω (open circles), K∗(892) (up-triangles) and ∆ (down-triangles).
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Since our MC generator provides the information on particle four-momenta
pi and four-coordinates xi of the emission points, it can be used to calculate the
correlation function with the help of the weight procedure, assigning a weight to a
given particle combination accounting for the effects of QS and FSI. Here we will
consider the correlation function of two identical pions neglecting their FSI, so the
weight

w = 1 + cos(q · ∆x), (3.47)

where q = p1 − p2 and ∆x = x1 −x2. The CF is defined as a ratio of the weighted
histogram of the pair kinematic variables to the unweighted one.

Generally, the pair is characterized by six kinematic variables. In case of the
azimuthal symmetry, there are five variables that are usually chosen as the three
”out-side-long” components of the relative three-momentum vector [74, 75] q =
(qout, qside, qlong), half the pair transverse momentum kt and the pair rapidity or
pseudo-rapidity. The out and side denote the transverse, with respect to the
reaction axis, components of the vector q; the out direction is parallel to the
transverse component of the pair three–momentum.

The corresponding correlation widths are usually parameterized in terms of the
Gaussian correlation radii Ri,

CF (p1, p2) =

= 1 + λ exp(−R2
outq

2
out −R2

sideq
2
side −R2

longq
2
long − 2R2

out,longqoutqlong) (3.48)

and their dependence on pair rapidity and transverse momentum is studied. The
form of Eq. (3.81) assumes azimuthal symmetry of the production process [74].
Generally, e.g., in case of the correlation analysis with respect to the reaction
plane, all three cross terms qiqj contribute [57]. We choose as the reference frame
the longitudinal co-moving system (LCMS) [76]. In LCMS each pair is emitted
transverse to the reaction axis so that the pair rapidity vanishes. The parameter
λ measures the correlation strength. For fully chaotic Gaussian source λ = 1.
Experimentally observed values of λ < 1 are mainly due to contribution of very
long–lived sources (η, η′, K0

s , Λ, . . . ), the non-Gaussian shape of the correlation
functions and particle misidentification.

The correlation functions of two identical charged pions have been calculated
within the Bjorken-like and Hubble-like models with the parameters given in Ta-
ble 3.1, ηmax = 2, reasonably well describing single particle spectra in the mid-
rapidity region. The three-dimensional correlation functions were fitted according
to Eq. (3.81) in two kt intervals 0.1 < kt < 0.3 GeV/c and 0.3 < kt < 0.6 GeV/c.
In Fig. 3.7, the fitted correlation radii and strength parameter are compared with
those measured by STAR collaboration [77]. One may see that the Bjorken-like
model, adjusted to describe single particle spectra, describes also the decrease of
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Figure 3.7: The π±π± correlation radii and the suppression parameter λ at mid-
rapidity in central Au+Au collisions at

√
sNN = 200 GeV from the STAR exper-

iment [77] (open circles) and the MC calculations within the Bjorken-like model
(up-triangles) in different intervals of the pair transverse momentum kt.

the correlation radii with increasing kt but overestimates their values. The situa-
tion is even worth with the Hubble-like model which is more constraint than the
Bjorken-like one and yields the longitudinal radius by a factor two larger.

As for the overestimation of the correlation strength parameter λ, it is likely
related to the neglected contribution of misidentified particles and pions from weak
decays. Indeed, the new preliminary analysis of the STAR data with the improved
particle identification [78] yields the λ parameter closer to the model results.

We would like to emphasize that the high freeze-out temperature of 165 MeV
and a fixed effective volume Veff ∝ τR2 make it quite difficult to describe the cor-
relation radii within the single freeze-out model. Thus a tuning of the longitudinal
radius Rlong ≈ τ(T/mt)

1/2 requires a small proper time τ , leading to too large
values of R and Rside ∝ R. The concept of a later thermal freeze-out occurring
at a smaller temperature T th < T ch and with no multiplicity constraint on the
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thermal effective volume (see section 3.2) can help to resolve this problem (see,
e.g., [37]).

To get a valuable information from the correlation data, one should consider
more realistic models as compared with the simple Bjorken-like and Hubble-like
ones (particularly, consider a more complex form of the freeze-out hypersurface
taking into account particle emission from the surface of expanding system [48])
and study the problem of particle rescattering and resonance excitation after the
chemical and/or thermal freeze-out (only minor effect of elastic rescatterings on
particle spectra and correlations is expected [53]). For the latter, our earlier de-
veloped C++ kinetic code [53] can be coupled to the MC freeze-out generator.
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3.9 Freeze-out surface parametrizations for non-

central collisions

The extension of our MC generator to noncentral collisions demands mainly the
modifications of freeze-out hypersurface parametrizations (Sec. V of Ref. [79])
and does not practically influence the generation procedure itself (Sec. VI of
Ref. [79]). Therefore we focus on these modifications only considering the popu-
lar Bjorken-like and Hubble-like freeze-out parametrizations respectively used in
so-called blast wave [37] and Cracow [38] models as the example options in our
MC generator. Similar parametrizations have been used in the hadron generator
THERMINATOR [87].

As usual, in the Bjorken-like parametrization, we substitute the Cartesian co-
ordinates t, z by the Bjorken ones [49]

τ = (t2 − z2)1/2, η =
1

2
ln
t+ z

t− z
, (3.49)

and introduce the the radial vector ~r ≡ {x, y} = {r cosφ, r sinφ}, i.e.,

xµ = {τ cosh η, ~r, τ sinh η} = {τ cosh η, r cosφ, r sinφ, τ sinh η}. (3.50)

For a freeze-out hypersurface represented by the equation τ = τ(η, r, φ), the
hypersurface element in terms of the coordinates η, r, φ becomes

d3σµ = εµαβγ
dxαdxβdxγ

dηdrdφ
dηdrdφ, (3.51)

where εµαβγ is the completely antisymmetric Levy-Civita tensor in four dimensions
with ε0123 = −ε0123 = 1. Generally, the freeze-out hypersurface is represented by
a set of equations τ = τj(η, r, φ) and Eq. (3.51) should be substituted by the sum
of the corresponding hypersurface elements. For the simplest and frequently used
freeze-out hypersurface τ = const, one has

d3σµ = nµd
3σ = τd2~rdη{cosh η, 0, 0,− sinh η},

d3σ = τd2~rdη,
nµ = {cosh η, 0, 0, sinh η}.

(3.52)

In noncentral collisions the shape of the emission region in the transverse (x-y)
plane can be approximated by an ellipse (as usual, the z-x plane coincides with
the reaction plane). The ellipse radii Rx(b) and Ry(b) at a given impact parameter
b are usually parametrized [37, 90, 91, 60] in terms of the spatial anisotropy ε(b) =
(R2

y −R2
x)/(R

2
x +R2

y) and the scale factor Rs(b) = [(R2
x +R2

y)/2]1/2,

Rx(b) = Rs(b)
√

1 − ε(b), Ry(b) = Rs(b)
√

1 + ε(b). (3.53)



44 CHAPTER 3. FAST MC FREEZE-OUT GENERATOR

Then from the ellipse equation,

x2

R2
x

+
y2

R2
y

= 1, (3.54)

follows the explicit dependence of the fireball transverse radius R(b, φ) on the
azimuthal angle φ:

R(b, φ) = Rs(b)

√
1 − ε2(b)√

1 + ε(b) cos 2φ
; (3.55)

particularly, R(b, 0) = Rx(b) and R(b, π/2) = Ry(b). To reduce the number of free
parameters, we assume here a simple scaling option [35]

Rs(b) = Rs(b = 0)
√

1 − εs(b), (3.56)

where Rs(b = 0) ≡ R is the fireball freeze-out transverse radius in central colli-
sions. It means that the dimensionless ratio Rs(b)/Rs(0) at the freeze-out moment
depends on the collision energy, the radius RA of the colliding (identical) nuclei
and the impact parameter b through a dimensionless εs(b) only. It should be noted
that both εs(b) and the fireball freeze-out eccentricity ε(b) are determined by the
eccentricity ε0(b) = b/(2RA) of the elliptical overlap of the colliding nuclei at the
initial moment, when

Rs(b)

Rs(b = 0)

∣∣∣
ε(b)=ε0(b)

≡ Rs(b)initial

RA

=
√

1 − ε0(b). (3.57)

Since εs(0) = ε(0) = ε0(0) = 0, one can can assume that εs(b) ' ε(b) at sufficiently
small values of the impact parameter b. It appears that the use of the simple
ansatz εs(b) = ε(b) allows one to achieve the absolute normalization of particle
spectra correct within ∼ 10% up to b ' RA (see section 3.11).

If the system evolution were driven by the pressure gradients, the expansion
would be stronger in the direction of the short ellipse x-axis (in the reaction plane),
where the pressure gradient is larger than in the direction of the long ellipse y-axis
(see, e.g., [82]). The typical hydrodynamic evolution scenario is shown in Fig. 3.8.
During the evolution, the initial system coordinate anisotropy ε0(b) is transformed
into the momentum anisotropy δ(b). According to the hydrodynamical calcula-
tions, the spatial eccentricity almost disappears and the momentum anisotropy
saturates at rather early evolution stage before freeze-out. As we do not trace the
evolution here, we will consider the spatial and momentum anisotropies ε(b) and
δ(b) as free parameters.

For central collisions the fluid flow four-velocity uµ(t, ~x) = γ(t, ~x){1, ~v(t, ~x)} ≡
γ(t, ~x){1, ~v⊥(t, ~x), vz(t, ~x)} at a point ~x and time t was parametrized [79] in terms
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Figure 3.8: The typical hydrodynamic evolution scenario.

of the longitudinal (z) and transverse (⊥) fluid flow rapidities

ηu(t, ~x) =
1

2
ln

1 + vz(t, ~x)

1 − vz(t, ~x)
, ρu(t, ~x) =

1

2
ln

1 + v⊥(t, ~x) cosh ηu(t, ~x)

1 − v⊥(t, ~x) cosh ηu(t, ~x)
, (3.58)

where v⊥ = |~v⊥| is the magnitude of the transverse component of the flow three-
velocity ~v = {v⊥ cosφu, v⊥ sinφu, vz}, i.e.,

uµ(t, ~x) = {cosh ρu cosh ηu, sinh ρu cosφu, sinh ρu sinφu, cosh ρu sinh ηu}
= {(1 + u2

⊥)1/2 cosh ηu, ~u⊥, (1 + u2
⊥)1/2 sinh ηu},

(3.59)

~u⊥ = γ~v⊥ = γ⊥ cosh ηu~v⊥, γ⊥ = cosh ρu. However, unlike the transverse isotropic
parametrization (φu = φ), now the azimuthal angle φu of the fluid velocity vector
is not necessarily identical to the spatial azimuthal angle φ, because of the nonzero
flow anisotropy parameter δ(b) [91, 60] :

uµ(t, ~x) = {γφ cosh ρ̃u cosh ηu,
√

1 + δ(b) sinh ρ̃u cosφ,√
1 − δ(b) sinh ρ̃u sinφ, γφ cosh ρ̃u sinh ηu},

(3.60)

where

γφ =

√
1 + δ(b) tanh2 ρ̃u cos 2φ, (3.61)

tanφu =

√
1 − δ(b)

1 + δ(b)
tanφ. (3.62)

The transverse flow rapidity ρu is related to ρ̃u by:

u⊥ = sinh ρu =
√

1 + δ(b) cos 2φ sinh ρ̃u. (3.63)
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Note, that for δ(b) = 0 (i.e. φu = φ), Eq. (3.60) reduces to Eq. (3.59) which
was applied in Refs. [35, 92]. In Ref. [60], δ(b) is obtained by fitting the model
prediction to the measured elliptic flow coefficient v2.

Further we assume the longitudinal boost invariance [49] ηu = η, which is a
good approximation for the highest RHIC energies at the midrapidity region. To
account for the violation of the boost invariance, we have also included in the
code an option corresponding to the substitution of the uniform distribution of
the space-time longitudinal rapidity η in the interval [−ηmax, ηmax] by a Gaussian
distribution exp(−η2/2∆η2) with a width parameter ∆η = ηmax. The presence
of the “oscillation term”

√
1 + δ(b) cos 2φ in the transverse component u⊥ of the

flow velocity in Eq. (3.63) allows us to use the simple linear profile for ρ̃u with-
out introduction of the additional parameters for each centrality (b) unlike other
models, namely:

ρ̃u =
r

Rs(b)
ρmax

u (b = 0), (3.64)

where ρmax
u (b = 0) is the maximal transverse flow rapidity for central collisions.

At such normalization and δ(b) > ε(b) the maximal transverse flow (u⊥, ρu) is
achieved at φ = 0, i.e. along x-axix as it should be according to the hydrodynamic
scenario described above (Fig. 3.8). (although ρ̃u has a maximum at φ = π/2!)

Here one should note that the “popular parametrization” of transverse flow
rapidity used in Ref. [37] (and implemented as an option in our MC generator
also):

ρu = r̃[ρ0(b) + ρ2(b) cos 2φu], (3.65)

where

r̃ ≡

√(r cosφ

Rx

)2

+
(r sinφ

Ry

)2

=
r

R(b, φ)
(3.66)

is the “normalized elliptical radius”, ρ0(b) and ρ2(b) are the two fitting parameters,
is close to our parametrization and gives the similar results for observables under
consideration. In parametrization of Ref. [37] the boost is perpendicular to the
elliptical subshell on which the source element is found: tanφu = (R2

x/R
2
y) tanφ =

(1 − ε)/(1 + ε) tanφ and δ(b) = 2ε(b)/(1 + ε2(b)). It is interesting to note that for
sufficiently weak transverse flows, ρu ≤ 1, considered here, one can put sinh ρu ' ρu

and obtain our parametrization from that of Ref. [37] by substitutions

ρ0(b)

R(b, φ)
→ ρmax

u (b = 0)

Rs(b)
1 +

ρ2(b)

ρ0(b)
cos 2φu →

√
1 + δ(b) cos 2φ. (3.67)

Thus, in the case of moderate transverse flows, one can obtain the same result
either by fixing the direction of the flow velocity vector but allowing for the az-
imuthal dependence of the flow rapidity or by allowing for arbitrary direction of
the flow velocity vector but assuming azimuthally independent flow rapidity.
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At τ = const, the total effective volume for particle production in the case of
noncentral collisions becomes

Veff =

∫
σ(t,~x)

d3σµ(t, ~x)uµ(t, ~x) = τ

∫ 2π

0

dφ

∫ R(b,φ)

0

(nµu
µ)rdr

∫ ηmax

ηmin

dη (3.68)

where (nµu
µ) = cosh ρ̃u

√
1 + δ(b) tanh2 ρ̃u cos 2φ .

We also consider the Cracow model scenario [38] corresponding to the Hubble-
like freeze-out hypersurface τH = (t2 − x2 − y2 − z2)1/2 = const. Introducing
the longitudinal space-time rapidity η according to Eq. (3.49) and the transverse
space-time rapidity ρ = sinh−1(r/τH), one has [51]

xµ = τH{cosh η cosh ρ, sinh ρ cosφ, sinh ρ sinφ, sinh η cosh ρ}, (3.69)

τH = τB/ cosh ρ. Representing the freeze-out hypersurface by the equation τH =
τH(η, ρ, φ) = const, one finds from Eq. (3.51):

d3σ = τ 3
H sinh ρ cosh ρdηdρdφ = τHdηd

2~r,
nµ(t, ~x) = xµ(t, ~x)/τH .

(3.70)

With the additional flow anisotropy parameter δ(b) the flow four-velocity is parametrized
as [60]:

uµ(t, ~x) = {γH
φ cosh ρ cosh η,

√
1 + δ(b) sinh ρ cosφ,√

1 − δ(b) sinh ρ sinφ, γH
φ cosh ρ sinh η},

(3.71)

where

γH
φ =

√
1 + δ(b) tanh2 ρ cos 2φ. (3.72)

The effective volume corresponding to r = τH sinh ρ < R(b, φ) and ηmin ≤ η ≤ ηmax

is

Veff =

∫
σ(t,~x)

d3σµ(t, ~x)uµ(t, ~x) = τH

∫ 2π

0

dφ

∫ R(b,φ)

0

(nµu
µ)rdr

∫ ηmax

ηmin

dη (3.73)

with

(nµu
µ) = cosh2 ρ

(√
1 + δ(b) tanh2 ρ cos 2φ

− tanh2 ρ(
√

1 + δ(b) cos2 φ+
√

1 − δ(b) sin2 φ)
)
' 1 + o(δ2(b)).

(3.74)

Our MC procedure to generate the freeze-out hadron multiplicities, four-momenta
and four-coordinates for central collisions has been described in detail in Ref. [79].
For noncentral collisions, only the generation of the transverse radius r is slightly
different, taking place in the azimuthally dependent interval [0, R(b, φ)].
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3.10 Different chemical and thermal freeze-outs

Since the assumption of a common chemical and thermal freeze-out can hardly
be justified (see, e.g., [27]), we consider here a more complicated scenario with
different chemical and thermal freeze-outs.

The mean particle numbers N̄ th
i at thermal freeze-out can be determined using

the following procedure [27]. Above in this chapter, the temperature and chem-
ical potentials at chemical freeze-out have been fixed by fitting the ratios of the
numbers of (quasi)stable particles. The common factor, V ch

eff , and, thus, the abso-
lute particle and resonance numbers was fixed by pion multiplicities. Within the
concept of chemically frozen evolution these numbers are assumed to be conserved
except for corrections due to decay of some part of short-lived resonances that
can be estimated from the assumed chemical to thermal freeze-out evolution time.
Then one can calculate the mean numbers of different particles and resonances
reaching a (common) thermal freeze-out hypersurface. At a given thermal freeze-
out temperature T th these mean numbers can be expressed through the thermal
effective volume V th

eff and the chemical potentials for each particle species µth
i . The

latter can no longer be expressed in the form µi = ~qi~̃µ, which is valid only for chem-
ically equilibrated systems. For a given parametrization of the thermal freeze-out
hypersurface, the thermal effective volume V th

eff (and thus all µth
i ) can be fixed with

the help of pion interferometry data.
In practical calculations the particle number density ρeq

i (T, µi) is represented
in the form of a fast converging series [79]:

ρeq
i (T, µi) =

gi

2π2
m2

iT
∞∑

k=1

(∓)k+1

k
exp(

kµi

T
)K2(

kmi

T
), (3.75)

where K2 is the modified Bessel function of the second order, mi and gi = 2Ji + 1
are the mass and the spin degeneracy factor of particle i respectively.

Using Eq. (3.75) and the assumption of the conservation of the particle num-
ber ratios from the chemical to thermal freeze-out evolution time, we obtain the
following ratios for i-particle specie to π+:

ρeq
i (T ch, µi)

ρeq
π (T ch, µch

i )
=

ρeq
i (T th, µth

i )

ρeq
π (T th, µeff th

π )
. (3.76)

The absolute values of particles densities ρeq
i (T th, µth

i ) are determined by the
choice of the free parameter of the model: effective pion chemical potential µeff th

π

at the temperature of thermal freeze-out T th. Assuming for the other particles
(heavier then pions) the Boltzmann approximation in Eq. (3.75) one deduces from
Eqs. (3.75) - (3.76) the chemical potentials of particles and resonances at thermal
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freeze-out:

µth
i = T th ln(

ρeq
i (T ch, µch

i )

ρeq
i (T th, µi = 0)

ρeq
π (T th, µeff th

π )

ρeq
π (T ch, µch

i )
). (3.77)

The correct way to determine the best set of model parameters would be
achieved by fitting all the observables together as it was suggested in Ref. [57],
but for our MC-type model it is technically impossible. For the example calcu-
lations with our model at RHIC energies we choose T ch = 0.165 GeV and the
thermal temperatures as in the analytical models which performed the success-
ful fitting of RHIC data: T th = T ch = 0.165 GeV (Cracow model [38]) and
T th = 0.100 GeV (Blast-Wave model [37]), and some arbitrary intermediate tem-
perature T th = 0.130 GeV. It is well known (see, e.g., [27]) that the pion transverse
spectra at thermal freeze-out can be described in two regimes: low temperature and
large transverse flow on the one hand, and higher temperature and non-relativistic
transverse flow on the other hand (see section 3.11). The low temperature regime
seems to be preferable because the strong transverse flow is expected to describe
the large inverse slopes of transverse spectra of the heavy hadrons (especially pro-
tons) and small correlation radii obtained at RHIC better [37, 48]. We present the
calculated correlation radii in section 3.11.

In the considered here last version of FASTMC the new table of resonances
was included. It contains 360 resonances and stable particles, instead of 85 ones
included in the previous versions. This particle table is produced from the SHARE
[94] particle table excluding not well established resonances states. The decays of
resonances are controlled by its lifetime 1/Γ, there Γ is the width of resonance spec-
ified in the particle table, and they occur with the probability density Γexp(−Γτ)
in the resonance rest frame. Then the decay products are boosted to the refer-
ence frame in which the freeze-out hypersurface was defined. Because we need to
compare our calculations with data from different experiments we made possible
to switch on/off different decays based on their lifetime (i.e. turn on/off weak
decays). Only the two- and three-body decays are considered in our model. The
branching ratios are also taken from the particle decay table produced from the
SHARE decay table [94]. The cascade decays are also possible.

3.11 Input parameters and results for non-central

collisions

Model input parameters

First, we summarize the input parameters which control the execution of our MC
hadron generator in the case of Bjorken-like and Hubble-like parametrizations, and
should be specified for different energies, ion beams and event centralities.
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1. Thermodynamic parameters at chemical freeze-out: temperature T ch and
chemical potentials per a unit charge µ̃B, µ̃S, µ̃Q. As an option, an additional
parameter γs ≤ 1 takes into account the strangeness suppression according
to the partially equilibrated distribution [54, 55]:

fi(p
∗0;T, µi, γs) =

gi

γ
−ns

i
s exp ([p∗0 − µi]/T ) ± 1

, (3.78)

where ns
i is the number of strange quarks and antiquarks in a hadron i,

p∗0 is the hadron energy in the fluid element rest frame, gi = 2Ji + 1 is
the spin degeneracy factor Optionally, the parameter γs can be fixed using
its phenomenological dependence on the temperature and baryon chemical
potential [56].

2. Volume parameters: the fireball transverse radius R(b = 0) (determined in
central collisions; in noncentral collisions we use the scaling option (3.56,3.57)
to recalculate R(b) from R(b = 0)), the freeze-out proper time τ and its
standard deviation ∆τ (emission duration) [93].

3. Maximal transverse flow rapidity ρmax
u (b = 0) for Bjorken-like parametriza-

tion in central collisions.

4. Maximal space-time longitudinal rapidity ηmax which determines the rapid-
ity interval [−ηmax, ηmax] in the collision center-of-mass system. To account
for the violation of the boost invariance, we have included in the code an
option corresponding to the substitution of the uniform distribution of the
space-time longitudinal rapidity η in the interval [−ηmax, ηmax] by a Gaussian
distribution exp(−η2/2∆η2) with a width parameter ∆η = ηmax (see, e.g.,
[57, 35]).

5. Impact parameter range: minimal bmin and maximal bmax impact parameters.

6. Flow anisotropy parameter δ(b) in Bjorken-like and Hubble-like parametriza-
tions (or ρ0(b) and ρ2(b) in the “Blast-Wave” parametrization of Ref. [37]).

7. Coordinate anisotropy parameter ε(b).

8. Thermal freeze-out temperature T th (if single freeze-out is considered, T th =
T ch).

9. Effective chemical potential of π+ at thermal freeze-out µeff th
π (0, if single

freeze-out is considered).

10. Parameter which enables/disables weak decays.
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Table 3.4: Model parameters for central Au + Au collisions at
√
sNN = 200 GeV.

Chemical freeze-out parameters: T ch=0.165 GeV, µ̃B=0.028 GeV, µ̃S=0.007 GeV,
µ̃Q= – 0.001 GeV.

T th, GeV 0.165 0.130 0.100
τ , fm/c 7.0 7.2 8.0

∆τ , fm/c 2.0 2.0 2.0
R(b = 0), fm 9.0 9.5 10.0
ρmax

u (b = 0) 0.65 0.9 1.1
µeff th

π 0. 0.10 0.11

Table 3.5: Model parameters for Au + Au collisions at
√
sNN = 200 GeV at differ-

ent centralities. Chemical freeze-out parameters: T ch=0.165 GeV, µ̃B=0.028 GeV,
µ̃S=0.007 GeV, µ̃Q= – 0.001 GeV. Thermal freeze-out parameters: T th=0.1 GeV,
µeff th

π =0.11 GeV. Volume parameters determined in the central collisions: R(b =
0) =10.0 fm, τ =8.0 fm/c, ρmax

u (b = 0) = 1.1
centrality c=0-5% c=5-10% c=10-20% c=20-30% c=30-40% c=40-60%
bmin/RA 0. 0.447 0.632 0.894 1.095 1.265
bmax/RA 0.447 0.632 0.894 1.095 1.265 1.549
ε(b) 0 0 0 0.1 0.15 0.15
δ(b) 0.05 0.08 0.12 0.25 0.34 0.36

The parameters used to simulate central collisions are given in Table 3.4. The
parameters determined in central collisions for T th=0.1 GeV: τ=8.0 fm/c, R(b =
0)=10. fm, ∆τ=2.0 fm/c; ρmax

u (b = 0) = 1.1 (3-th column in Table 3.4) were used
to simulate Au+Au collisions at

√
sNN = 200 GeV at different centralities. The

additional parameters needed only for noncentral collisions are given in Table 3.5.

mt-spectra

In Fig. 3.9 the mt-spectra measured by the STAR Collaboration [95] at 0 − 5%
centrality are shown for π+, K+ and p in comparison with the model calculations
under the assumption of the common chemical and thermal freeze-out at T th =
T ch = 0.165 GeV (Fig. 3.9(a)) and under the assumption that the thermal freeze-
out at T th = 0.100, 0.130 GeV occurs after the chemical one (Fig. 3.9(b, c)).

The correction on weak decays was introduced by the STAR Collaboration
in pion spectra only [95]. It was approximately 12% and was estimated from the
measured K0

s and Λ decays. In Ref. [95] the STAR Collaboration doesn’t introduce
the weak decay correction in proton spectra. To reproduce the STAR weak decay
correction procedure, we excluded pions from K0

s and Λ decays from pions mt-
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Figure 3.9: mt-spectra (in c4/GeV2) measured by the STAR Collaboration [95] for
π+ (circles), K+ (squares) and p (up-triangles)at 0− 5% centrality in comparison
with the model calculations at T th = 0.165(a), 0.130(b), 0.100(c) GeV , with the
parameters from Table 3.4, for protons weak decays are taken into account (solid
lines); for protons weak decays are not taken into account (dashed lines). The
direct π+ , K+ and p contributions are shown on (c) by dotted lines.
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spectra in Fig. 3.9. The contribution of weak decays in the simulated proton
spectra can be estimated from Fig. 3.9 by comparison of the solid lines (protons
from K0

s and Λ decays are included) and the dashed lines (without contribution of
protons from the weak decays). The model parameters at different temperatures
are presented in Table 3.4. The parameters were optimized this way to obtain
the good description of the pion mt-spectra and the correlation radii. The best
description of the mt-spectra was achieved at T th = 0.100 GeV (Fig. 3.9(c)).

The same set of parameters T, ρmax
u , R and τ which was determined for central

collisions (Table 3.4) was used for noncentral ones. The additional parameters of
the model for noncentral collisions were coordinate and momentum asymmetries:
ε and δ (Table 3.5). At the freeze-out moment we consider them as free parameters
because we do not trace the evolution here. The influence of the choice of ε and
δ on mt-spectra averaged over azimuthal angle ϕ is negligible. The decrease of
the effective volume in noncentral collisions (Eq. 3.68) due to nonzero values of ε
and δ allows us to obtain the correct absolute normalization of mt-spectra without
introduction of the additional parameters. In Fig. 3.10 the mt-spectra measured
by the STAR Collaboration [95] are shown for π+, K+ and p at centralities: 0 −
5%, 5−10%, 10−20%, 20−30%, 30−40%, 40−50% in comparison with the model
calculations which assume that the thermal freeze-out at T th = 0.1 GeV occurs
after the chemical one (solid lines). It appears that the procedure described in
section 3.9 allows one to achieve the absolute normalization of pion spectra correct
within ∼ 13%.

Elliptic flow

Following a standard procedure [96, 97] we make a Fourier expansion of the hadron
distribution in the azimuthal angle ϕ at mid-rapidity:

dN

d2ptdy
=

dN

2πptdptdy
(1 + 2v2 cos 2ϕ+ 2v4 cos 4ϕ+ ...). (3.79)

The elliptic flow coefficient, v2, is defined as the second order Fourier coefficient,

v2 =

∫ 2π

0
dϕ cos 2(ϕ− ψR) d3N

dydϕptdpt∫ 2π

0
dϕ d3N

dydϕptdpt

, (3.80)

where ψR is the reaction plane angle (in our generation ψR = 0), y and pt are the
rapidity and transverse momentum of particle under consideration, respectively.

The value of v2 is an important signature of the physics occurring in heavy
ion collisions. According to the typical hydrodynamic scenario shown in Fig. 3.8,
the elliptic flow is generated mainly during the high density phase of the fireball
evolution. The system driven by the internal pressure gradients expands more
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Figure 3.10: mt-spectra (in c4/GeV2) measured by the STAR Collaboration [95]
for π+ (circles), K+ (squares) and p (up-triangles) at different centralities in com-
parison with our fast MC calculations at T th = 0.100 GeV (solid lines) with the
parameters from Table 3.4 and Table 3.5.
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strongly in its short direction (into the direction of the impact parameter x in
Fig. 3.8, which is chosen as a “positive” direction) than in the perpendicular one
(“negative” direction, y in Fig. 3.8) where the pressure gradients are smaller.
Figure 3.8 illustrates qualitatively that the initial spacial anisotropy of the system
disappears during the evolution, while the momentum anisotropy grows. The
developing of strong flow observed at RHIC requires a short time scale and large
pressure gradients, which are characteristics of a strongly interacting system. The
reason for the generation of v2 at the early times is that the system should be
hot and dense, when the system cools and become less dense the developing of
the large pressure gradients becomes impossible. The elliptic flow coefficient, v2,
depends on the transverse momentum pt, the impact parameter b or centrality,
as well as, the type of the considered particle. All these dependencies have been
measured at RHIC [98].

The pt-dependence of v2 measured by the STAR Collaboration [98] for charged
particles at centralities: 0− 5%, 5− 10%, 10− 20%, 20− 30%, 30− 40%, 40− 60%
is shown in Fig. 3.11 in comparison with our MC calculations obtained with the
optimal model parameters from Table 3.5. The calculations were performed under
the assumption that thermal freeze-out at T th = 0.1 GeV occurs after the chemical
one at T th = 0.165 GeV.

The calculations under the assumption of the common chemical and thermal
freeze-out at T th = T ch = 0.165 GeV demonstrate not so good agreement with the
experimental data at small pt < 0.4 GeV/c for the centralities larger than 20%;
irrespective of the choice of ε and δ one cannot get a satisfactory description in
the whole pt-range (see e.g. Fig. 3.12).

Correlation radii

The parameters of the model presented in Table 3.4 were optimized to obtain the
best description of the pion mt-spectra and the correlation radii in the following
cases: under the assumption of the common chemical and thermal freeze-out at
T th = T ch = 0.165 GeV and under the assumption that the thermal freeze-out
at T th = 0.100, 0.130 GeV occurs after the chemical one. In Fig. 3.13 the fitted
correlation radii Rout, Rside and Rlong are compared with those measured by the
STAR Collaboration [77]. The three-dimensional correlation function was fitted
with the standard Gaussian formula:

CF (p1, p2) = 1 + λ exp(−R2
outq

2
out −R2

sideq
2
side −R2

longq
2
long), (3.81)

where ~q = ~p1 − ~p2 = (qout, qside, qlong) is the relative three-momentum of two iden-
tical particles with four-momenta p1 and p2. The form of Eq. (3.81) assumes
azimuthal symmetry of the production process [74]. Generally, e.g., in the case of
the correlation analysis with respect to the reaction plane, all three cross terms
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Figure 3.11: The pt-dependence of v2 measured by the STAR Collaboration [98]
(points) for charged particles at different centralities in comparison with our fast
MC calculations at T th = 0.100 GeV (solid line) with the parameters from Table
3.4 and Table 3.5.
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ε = 0.1, δ = 0.3 (solid line), ε = 0.2, δ = 0.4 (dotted line), ε = 0.1, δ = 0.4 (solid
line), ε = 0.2, δ = 0.5 (dotted line), ε = 0.15, δ = 0.4 (dashed line)
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qiqj can be significant [57]. We will consider this case below. We choose the lon-
gitudinal co-moving system (LCMS) as the reference frame [76]. In LCMS each
pair is emitted transverse to the reaction axis so that the pair rapidity vanishes.
The parameter λ measures the correlation strength.

The regime with the large temperature T th = T ch = 0.165 GeV was tested in
Ref. [79]. We have repeated this test here with the new resonances table and the
additional parameter ∆τ (Fig. 3.13(a), dashed line). We have found that these
modifications lead to a better description of the correlation radii. In Fig. 3.13(a,
bottom) (dashed line) the intercept λ is larger than the experimental one, but
taking into account the secondary pions from the weak decays essentially improves
the description of the λ (Fig. 3.13(a, bottom), solid line).

In Fig. 3.13(b, c) we consider the lower thermal freeze-out temperatures: 0.130, 0.100 GeV.
The secondary pions coming from the weak decays were taken into account.

It is worth to note a good description of the correlation radii (within ∼ 10%
accuracy) altogether with the absolute value of the mt spectra in the scenario
with a low temperature thermal freeze-out of chemically frozen hadron-resonance
gas. There are three important reasons for this success. First, a relatively small
(compared with dynamic models) effective volume of the system ∼ τR2 that re-
duces the correlation radii. Second, relatively large transverse flow in the model
that further reduces the radii. Third, rather large effective pion chemical potential
which is needed to describe the absolute value of the pion spectra at relatively
small effective volumes; it reduces correlation radii at small pt and so makes their
mt behavior flatter. This reduction happens due to vanishing of the homogeneity
length of Bose-Einstein distribution for low-pt pions when the pion chemical po-
tential approaches the pion mass (see also Ref. [99] for the analysis of the reduction
of the pion correlation radii near the point of the Bose-Einstein condensation in
static systems). We do not consider here the question whether such conditions
could be realized in realistic dynamical models.

It should be noted that the description of the kt-dependence of the correla-
tion radii has been achieved within ∼ 10% accuracy for all three considered ther-
mal temperatures: T th = 0.165, 0.130, 0.100 GeV. However, at lower temperatures
there is more flexibility in the simultaneous description of particle spectra and
correlations because the effective volume isn’t strictly fixed as it is in the case of
the single freeeze-out (T th = T ch = 0.165 GeV). In present work, we have not
attempted to fit the model parameters (T th, R, τ , µeff th

π ) since it is rather com-
plicated task requiring a lot of computer time. We have performed only example
calculations with several sets of the parameters.

In noncentral collisions the measurement of azimuthally sensitive correlation
radii provides the additional information about the source shape. For the corre-
sponding femtoscopy formalism with respect to the reaction plane see, e.g., [91, 57].
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Figure 3.13: The π+ correlation radii at mid-rapidity in central Au+Au colli-
sions at

√
sNN = 200 GeV from the STAR experiment [77] (open circles) and

MC calculations within the Bjorken-like model with the parameters presented in
Table 3.4 in different intervals of the pair transverse momentum kt. The full cal-
culation with resonances (a), (b). (a) single freeze-out T ch = T th = 0.165 GeV, no
weak decays (dashed line), with weak decays (solid line); (b) thermal freeze-out at
T th = 0.130 GeV occurs after the chemical one, weak decays are taken into account
(solid line); (c) the full calculation with resonances, weak decays are taken into
account at T th = 0.100 GeV (solid line), the direct pions only (dotted lines).
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In the absence of azimuthal symmetry, the three additional cross terms contribute
to the Gaussian parametrization of the correlation function in Eq. (3.81):

CF (p1, p2) = 1 + λ exp( −R2
oq

2
out −R2

sq
2
side −R2

l q
2
long − 2R2

osqoutqside−
− 2R2

olqoutqlong − 2R2
slqsideqlong). (3.82)

In the boost-invariant case, the transverse-longitudinal cross terms R2
ol and R2

sl

vanish in the LCMS frame, while the important out-side R2
os cross term is present.

In the Gaussian approximation, the radii in the Eq. (3.82) are related to space-
time variances via the set of equations [91, 57]:

R2
s = 1/2(〈x̃2〉 + 〈ỹ2〉) − 1/2(〈x̃2〉 − 〈ỹ2〉) cos(2Φ) − 〈x̃ỹ〉 sin(2Φ),

R2
o = 1/2(〈x̃2〉 + 〈ỹ2〉) + 1/2(〈x̃2〉 − 〈ỹ2〉) cos(2Φ) + 〈x̃ỹ〉 sin(2Φ))

−2β⊥(〈t̃x̃〉 cos(Φ) + 〈t̃ỹ〉 sin(Φ)) + β2
⊥〈t̃2〉,

R2
l = 〈z̃2〉 − 2βl〈t̃z̃〉 + β2

l 〈t̃2〉,
R2

os = 〈x̃ỹ〉 cos(2Φ) − 1/2(〈x̃2〉 − 〈ỹ2〉) sin(2Φ)

+β⊥(〈t̃x̃〉 sin(Φ) − 〈t̃ỹ〉 cos(Φ)),

(3.83)

where βl = kz/k
0, β⊥ = k⊥/k

0 and Φ = ∠( ~k⊥,~b) is the azimuthal angle of the

pair three-momentum ~k with respect to the reaction plane z-x determined by
the longitudinal direction and the direction of the impact parameter vector ~b =
(x, 0, 0); the space-time coordinates x̃µ are defined relative to the effective source
center 〈xµ〉: x̃µ = xµ − 〈xµ〉. The averages are taken with the source emission
function S(t, ~x, k), [91]:

〈f(t, ~x)〉 =

∫
d4xf(t, ~x)S(t, ~x, k)∫

d4xS(t, ~x, k)
. (3.84)

The illustrative calculations of the correlation radii as a function of the az-
imuthal angle Φ were done with the following fast MC parameters: T th = 0.1 GeV,
ρmax

u (b = 0) = 1.0; R(b = 0) =11.5 fm, τ =7.5 fm/c, ∆τ =0. fm/c, ε = 0.1 and
δ = 0.25. The azimuthal dependence of the correlation radii in different kt intervals
is shown in Fig. 3.14.

The R2
s oscillates downward, in the same phase as ”RHIC” source extended

out of plane [100], which means the larger sideward radius viewed from the x-
direction (in the reaction plane), than from y-direction (out-of plane). The source
has small coordinate asymmetry ε = 0.1, it is almost round (as in Fig. 3.8 step 3),
however the emission zone, or “homogeneity region”, varies with Φ because of the
non-isotropic flow.
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Figure 3.14: Simulated with FASTMC squared correlation radii versus the az-
imuthal angle Φ of the π+π+ pair with respect to the reaction plane, 20-30
% centrality events in kT (GeV/c) intervals: 0.15 < kT < 0.25 (solid line),
0.25 < kT < 0.35 (dashed line), 0.35 < kT < 0.45 (dotted line), 0.45 < kT < 0.60
(dotted-dashed line). simulation was done with the special set of parameters:
T th = 0.1 GeV, ρmax

u (b = 0) = 1.0; R(b = 0) =11.5 fm, τ =7.5 fm/c, ∆τ =0. fm/c,
ε = 0.1 and δ = 0.25, weak decays were not taken into account.
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3.12 Conclusions

A MC simulation procedure is developed as well as corresponding C++ code, that
allows a fast realistic description of multiple hadron production both in central and
noncentral relativistic heavy ion collisions. A high generation speed and an easy
control through input parameters make our MC generator code particularly useful
for detector studies. As options, we have implemented two freeze-out scenarios
with coinciding and with different chemical and thermal freeze-outs. We have
compared the RHIC experimental data with our MC generation results obtained
within the single and separated freeze-out scenarios with Bjorken-like freeze-out
surface parameterization.

Fixing the temperatures of the chemical and thermal freeze-out at 0.165 GeV
and 0.100 GeV respectively, and, using the same set of the model parameters
as for the central collisions, we have described single particle spectra at different
centralities with the absolute normalization correct within ∼ 13%.

The comparison of the RHIC v2 measurements with our MC generation results
shows that the scenario with two separated freeze-outs is more favorable for the
description of the pt-dependence of the elliptic flow.

The description of the kt-dependence of the correlation radii has been achieved
within ∼ 10% accuracy. The experimentally observed values of the correlation
strength parameter λ has been reproduced due to the account of the weak decays.

The analysis of the azimutal dependence of the correlation radii indicates that
the source considered in the model oscillates downward, in the same phase as
”RHIC” source extended out of plane.

The achieved understanding of the reasons leading to a good simultaneous de-
scription of particle spectra, elliptic flow and femtoscopic correlations within the
considered simple model could be useful for building of the complete dynamic pic-
ture of the matter evolution in A+A collisions, like presented in the next chapters.



CHAPTER

FOUR

Hybrid model

The material presented in this chapter is a continuation of studies towards building
realistic dynamical models for matter evolution in ultrarelativistic A+A collisions.
The model presented here is a truly dynamical model, based on numerical solution
of equations of relativistic hydrodynamics, together with microscopic initial state
model and UrQMD code for final stage. The realistic features of ultrarelativistic
heavy ion collisions are included in the model, and lead to a good description of
wide range of experimental data collected in 200A GeV Au+Au collisions at RHIC.

4.1 Introduction

In this chapter, we present a realistic treatment of the hydrodynamic evolution of
ultrarelativistic heavy ion collisions. The present model has several inprovements
compared to existing ones:

• initial conditions obtained from a flux tube approach (EPOS) [141], compat-
ible with the string model used since many years for elementary collisions
(electron-positron, proton proton), and the color glass condensate picture;

• consideration of the possibility to have a (moderate) initial collective trans-
verse flow;

• event-by-event procedure, taking into the account the highly irregular space
structure of single events.

• core-corona separation [149], considering the fact that only a part of the
matter thermalizes;

63
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• use of an efficient code for solving the hydrodynamic equations in 3+1 di-
mensions, including the conservation of baryon number, strangeness, and
electric charge;

• employment of a realistic equation-of-state, compatible with lattice gauge
results – with a cross-over transition from the hadronic to the plasma phase;

• use of a complete hadron resonance table, making our calculations compatible
with the results from statistical models;

• hadronic cascade procedure (UrQMD) [155] after hadronization from the
thermal system at an early stage.

All the above mentioned features are not new, what is new is the attempt to put
all these elements into a single approach, bringing together topics like statistical
hadronization, flow features, saturation, the string model, and so on, which are
often discussed independently. For any quantitative analysis of heavy ion results
we have to admit that there is just one common mechanism, which accounts for the
whole soft physics. We therefore test our approach by comparing to all essential
observables in Au-Au scatterings at RHIC.

Starting from the flux-tube initial condition from EPOS [141], the system ex-
pands very rapidly, thanks to the realistic cross-over equation-of-state, flow (also
elliptical one) develops earlier compared to the case of a strong first order equation-
of-state as in [115, 116], temperatures corresponding to the cross-over (around 170
MeV) are reached in less than 10 fm/c. The system hadronizes in the cross-over re-
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Figure 4.1: The energy density over T 4 as a function of the temperature T . The
dotted line indicates the “hadronization temperature”, i.e. end of the thermal
phase, when “matter” is transformed into hadrons.

gion, where here “hadronization” is meant to be the end of the completely thermal
phase: matter is transformed into hadrons. We stop the hydrodynamical evolution



4.1. INTRODUCTION 65

at this point, but particles are not yet free. Our favorite hadronization temper-
ature is 166 MeV, shown as the dotted line in fig. 4.1, which is indeed right in
the transition region, where the energy density varies strongly with temperature.
At this point we employ statistical hadronization, which should be understood as
hadronization of the quark-gluon plasma state into a hadronic system, at an early
stage, not the decay of a resonance gas in equilibrium.

Particle production seems to be governed by statistical hadronization in the
framework of an ideal resonance gas, with a hadronization temperatures TH close
to 170 MeV [108, 109, 110, 223, 111, 112, 113], which corresponds to the critical
temperature of the (cross-over) transition between the resonance gas and the quark
gluon plasma. Such a high temperature is in particular necessary to accommodate
the yields of heavy particles like baryons and antibaryons. Thus, we consider an
early “chemical freeze-out” Tch ≈ TH , and then force the particle yields to stay
constant till the final “thermal freeze-out” Tth [114].

After this hadronization –although no longer thermal– the system still interacts
via hadronic scatterings, still building up (elliptical) flow, but much less compared
to an idealized thermal resonance gas evolution, which does not exist in reality.
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Figure 4.2: Particle ratios (hadron yields to π+ yields) from our model calculations
(thick horizontal line) as compared to the statistical model [108](thin horizontal
line), and to data [138, 139, 140] (points).

Despite the non-equilibrium behavior in the finale stage of the collision, our
sophisticated procedure gives particle yields close to what has been predicted in
statistical models, see fig. 4.2.

This is because the final hadronic cascade does not change particle yields too
much (with some exceptions to be discussed later), but it affects slopes and –as
mentioned– azimuthal asymmetry observables.
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In the following, we will present the details of our realistic approach to the
hydrodynamic evolution in heavy ion collisions. In the present thesis, the hydro-
dynamic evolution is brought to a focus, for more details see [102].

4.2 Initial state model : EPOS

The initial state approach is called EPOS, which stands for

• Energy conserving quantum mechanical multiple scattering approach,
based on

• Partons (parton ladders)

• Off-shell remnants

• Splitting of parton ladders

We are going to explain the different items in the following.
One may consider the simple parton model to be the basis of hadron-hadron

interaction models at high energies. It is well known that the inclusive cross
section is given as a convolution of two parton distribution functions with an
elementary parton-parton interaction cross section. The latter one is obtained
from perturbative QCD, the parton distributions are deduced from deep inelastic
scattering. Although these distributions are taken as black boxes, one should not
forget that they represent a dynamical process, namely the successive emission of
partons (initial state space-like cascade), which have to be considered in a complete
picture. In addition, the produced partons are generally off-shell, giving rise again
to parton emissions (final state time-like cascade). All this is sketched in fig. 4.3,
where we also indicate that we refer to this whole structure as “parton ladder”,
with a corresponding simple symbol, to simplify further discussion.

For practical calculations, each parton ladder is finally translated into two color
strings, which fragment into hadrons. This is a purely phenomenological procedure
for the non-perturbative hadronization process.

Actually our “parton ladder” is meant to contain two parts: the hard one,
as discussed above, and a soft one, which is a purely phenomenological object,
parametrized in Regge pole fashion.

Still the picture is not complete, since so far we just considered two interacting
partons, one from the projectile and one from the target. These partons leave
behind a projectile and target remnant, colored, so it is more complicated than
simply projectile/target deceleration. One may simply consider the remnants to
be diquarks, providing a string end, but this simple picture seems to be excluded
from strange antibaryon results at the SPS [101].
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Figure 4.3: Elementary parton-parton scattering: the hard scattering in the mid-
dle is preceded by parton emissions (initial state space-like cascade); these partons
being usually off-shell, they emit further partons (final state time-like cascade).
For all this we use a symbolic parton ladder.
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Figure 4.4: The complete picture, including remnants. The remnants are an
important source of particle production at RHIC energies.
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Figure 4.5: Inner contributions, from the parton ladder (full lines), and “outer”
contributions, from the remnants (dashed lines), to the rapidity distribution of
hadrons. (Artists view)

We therefore adopt the following picture, as indicated in fig. 4.4: not only a
quark, but a two-fold object takes directly part in the interaction, being a quark-
antiquark, or a quark-diquark, leaving behind a colorless remnant, which is, how-
ever, in general excited (off-shell). So we have finally three “objects”, all being
white: the two off-shell remnants, and the parton ladders between the two active
“partons” on either side (by “parton” we mean quark, antiquark, diquark, or an-
tidiquark). We also refer to “inner contributions” (from parton ladders) and “outer
contributions” (from remnants), reflecting the fact that the remnants produce par-
ticles mainly at large rapidities and the parton ladders at central rapidities, see fig.
4.5. Whereas the outer contributions are essentially energy independent, apart of a
shift in rapidity, the inner contributions grows with energy, to eventually dominate
completely central rapidities. But at RHIC, there is still a substantial remnant
contribution at mid-rapidity.

Even inclusive measurements require often more information than just inclu-
sive cross sections, for example via trigger conditions. Anyhow, for detailed com-
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Figure 4.6: The two elements of the multiple scattering theory: open ladders,
representing inelastic interactions, and closed ladders, representing elastic interac-
tions.

parisons we need an event generator, which obviously requires information about
exclusive cross sections (the widely used pQCD generators are not event generators
in this sense, they are generators of inclusive spectra, and a Monte Carlo event
is not a physical event). This problem is known since many years, the solution is
Gribov’s multiple scattering theory, employed since by many authors. This formu-
lation is equivalent to using the eikonal formula to obtain exclusive cross sections
from the knowledge of the inclusive one.

We indicated recently inconsistencies in this approach, proposing an “energy
conserving multiple scattering treatment”. The main idea is simple: in case of
multiple scattering, when it comes to calculating partial cross sections for double,
triple ... scattering, one has to explicitly care about the fact that the total energy
has to be shared among the individual elementary interactions.

A consistent quantum mechanical formulation requires not only the consider-
ation of the (open) parton ladders, discussed so far, but also of closed ladders,
representing elastic scattering, see fig. 4.6. The closed ladders do not contribute
to particle production, but they are crucial since they affect substantially the cal-
culations of partial cross sections. Actually, the closed ladders simply lead to large
numbers of interfering contributions for the same final state, all of which have to
be summed up to obtain the corresponding partial cross sections.

We can do the complicated calculations, since we fit for example the result of
a numerical calculation of a squared amplitude corresponding to a (open) parton
ladder of energy

√
s, using a simple form αsβ, which allows then to perform an-

alytical calculations. Furthermore, we employ very sophisticated Markov chain
techniques to generate configurations according to multidimensional probability
distributions.
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Important concerning numerical results: There are a couple of parameters
which determine the parameterization of the soft elementary interaction (soft
Pomeron), which are essentially fixed to get the pp cross sections right. The pQCD
parameters (soft virtuality cutoff, K-factor, parton emission cutoff, parton-hadron
coupling) are fixed to provide a reasonable parton distribution function (which we
calculate, it is not input!).

We assume the remnants to be off-shell with probability pO, a mass distribution
given as

prob ∝M−2αO , (4.1)

with parameter values which are not necessarily the same for diffractive and non-
diffractive interactions (the latter ones being defined to be those without parton
ladders). We use currently for pO 0.75 (dif) and 0.95 (nondif), and for αO 0.75
(dif) and 1.1 (nondif). Those excitation exponents may give rise to quite high mass
remnants, RHIC and also SPS data seem to support this. High mass remnants
will be treated as strings.

There are four important fragmentation parameters: the break probability (per
unit space-time area) pB, which determines whether a string breaks earlier or later,
the diquark break probability pD, the strange break probability pS, and the mean
transverse momentum p̄t of a break, with obvious consequences for baryon and
strangeness production, and the pt of the produced hadrons. We use three sets
of these parameters, for the three types of strings: soft-, kinky(hard)-, remnant-
strings. We do not really use the full freedom of these parameters, but one single
set would not work – if we are interested in high precision. Somewhat surprising:
pS is 0.14 for soft and 0.06 for kinky strings. Maybe this reflects the fact that soft
strings may have low masses, where strangeness is suppressed, and which needs
some compensation. The parameter pD is as well bigger for soft compared to kinky
strings.

4.3 Hydrodynamic evolution, realistic equation-

of-state

Having fixed the initial conditions, the core evolves according to the equations of
ideal hydrodynamics, namely the local energy-momentum conservation

∂µT
µν = 0, ν = 0, ..., 3 , (4.2)

and the conservation of net charges,

∂Nµ
k = 0, k = B, S,Q , (4.3)
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with B, S, and Q referring to respectively baryon number, strangeness, and electric
charge. In this thesis we treat ideal hydrodynamic, so we use the decomposition

T µν = (ε+ p)uµuν − p gµν , (4.4)

Nµ
k = nku

µ, (4.5)

where u is the four-velocity of the local rest frame. Solving the equations, as dis-
cussed above, provides the evolution of the space-time dependence of the macro-
scopic quantities energy density ε(x), collective flow velocity ~v(x), and the net
flavor densities nk(x). Here, the crucial ingredient is the equation of state, which
closes the set of equations by providing the ε-dependence of the pressure p. The
equation-of-state should fulfill the following requirements:

• flavor conservation, using chemical potentials µB, µS, µQ;

• compatibility with lattice gauge results in case of µB =µS =µQ = 0.

The starting point for constructing this “realistic” equation-of-state is the pres-
sure pH of a resonance gas, and the pressure pQ of an ideal quark gluon plasma,
including bag pressure. Be Tc the temperature where pH and pQ cross. The correct
pressure is assumed to be of the form

p = pQ + λ (pH − pQ), (4.6)

where the temperature dependence of λ is given as

λ = exp

(
−T − Tc

δ

)
Θ(T − Tc) + Θ(Tc − T ), (4.7)

with

δ = δ0 exp
(
−(µB/µc)

2
) (

1 +
T − Tc

2Tc

)
. (4.8)

From the pressure one obtains the entropy density S as

S =
∂p

∂T
= SQ + λ (SH − SQ) +

∂λ

∂T
(pH − pQ), (4.9)

and the flavor densities ni as

ni =
∂p

∂µi
= ni

Q + λ (ni
H − ni

Q) +
∂λ

∂µi
(pH − pQ). (4.10)
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The energy density is finally given as

ε = TS +
∑

i

µini − p, (4.11)

or

ε = εQ + λ (εH − εQ) +

(
T
∂λ

∂T
+ µi ∂λ

∂µi

)
(pH − pQ). (4.12)

Our favorite equation-of-state, referred to as “X3F”, is obtained for δ0 = 0.15,
which reproduces lattice gauge results for µB =µS =µQ = 0, as shown in figs. 4.7
and 4.8.
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Figure 4.7: Energy density versus temperature, for our equation-of-state X3F
(full line), compared to lattice data [154] (points), and some other EoS choices,
see text.
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Figure 4.8: Pressure versus temperature, for our equation-of-state X3F (full line),
compared to lattice data [154] (points), and some other EoS choices, see text.

The symbol X3F stands for “cross-over” and “3 flavor conservation”. Also
shown in the figures is the EoS Q1F, referring to a simple first order equation-
of-state, with baryon number conservation, which we will use as a reference to
compare with. Many current calculations are still based on this simple choice, as
for example the one in [115, 116], shown as dotted lines in figs. 4.7 and 4.8.

In the next subsections, the details of the equation of state are described.

4.3.1 Hydrodynamic algorithm

The algorithm is based on the Godunov method: one introduces finite cells and
computes fluxes between cells using the (approximate) Riemann problem solution
for each cell boundary. A relativistic HLLE solver is used to solve the Riemann
problem. To achieve more accuracy in time, a predictor-corrector scheme is used
for the second order of accuracy in time, i.e. the numerical error is O(dt3), instead
of O(dt2). To achieve more accuracy in space, namely a second order scheme, the
linear distributions of quantities (conservative variables) inside cells are used. The
conservative quantities are (e+ p ∗ v2)/(1 − v2), (e+ p) ∗ v/(1 − v2) .

We rewrite equations in hyperbolic coordinates. These coordinates are suitable
for the dynamical description at ultrarelativistic energies. It is convenient to write
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the equations in conservative form, the conservative variables are

~Q =



Qτ

Qx

Qy

Qη

QB

QS

QQ


=



γ2(ε+ p) − p
γ2(ε+ p)vx

γ2(ε+ p)vy

γ2(ε+ p)vη

γnB

γnS

γnQ


, (4.13)

where nB, nS, nQ are the densities of the conserved quantities B, S, and Q. The
components Qm are conservative variables in the sense that the integral (discrete
sum over all cells) of Qm gives the total energy, momentum, and the total B, S,
and Q, which are conserved up to the fluxes at the grid boundaries. The velocities
in these expressions are defined in the “Bjorken frame” related to velocities in
laboratory frame as

vx = vlab
x · cosh y

cosh(y − ηs)

vy = vlab
y · cosh y

cosh(y − ηs)

vη = tanh(y − ηs) (4.14)

where y = 1
2
ln[(1+vlab

z )/(1−vlab
z )] is the longitudinal rapidity of the fluid element,

ηs = 1
2
ln[(t+z)/(t−z)] is space-time rapidity. The full hydrodynamical equations

are then

∂τ



Qτ

Qx

Qy

Qη

QB

QS

QQ


︸ ︷︷ ︸
quantities

+~∇ ·



Qτ

Qx

Qy

Qη

QB

QS

QQ


~v +



~∇(p · ~v)
∂xp
∂yp
1
τ
∂ηp
0
0
0


︸ ︷︷ ︸

fluxes

+



(Qτ + p)(1 + v2
η)/τ

Qx/τ
Qy/τ
2Qη/τ
QB/τ
QS/τ
QQ/τ


︸ ︷︷ ︸

sources

= 0

(4.15)

with ~∇ =
(
∂x, ∂y,

1
τ
∂η

)
.

We base our calculations on the finite-volume approach : we discretize the
system on a fixed grid in the calculational frame and interpret Qn

m,ijk as average
value over some space interval ∆Vijk, which is called a cell. The index n refers to
the discretized time.
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The values of Qn
m,ijk are then updated after each time-step according to the

fluxes on the cell interface during the time-step ∆tn. One has the following update
formula :

Qn+1
m,ijk =Qn

m,ijk −
∆t

∆x1

(F(i+1/2),jk + F(i−1/2),jk)

− ∆t

∆x2

(Fi(,j+1/2),k + Fi,(j−1/2),k) (4.16)

− ∆t

∆x3

(Fij,(k+1/2) + Fij,(k−1/2)),

where F is the average flux over the cell boundary, the indexes +1/2 and −1/2
correspond to the right and the left cell boundary in each direction. This is the base
of the Godunov method [192], which also implies that the distributions of variables
inside a cell are piecewise linear (or piecewise parabolic etc, depending on the order
of the numerical scheme), which forms a Riemann problem at each cell interface.
Then the flux through each cell interface depends only on the solution of a single
Riemann problem, supposing that the waves from the neighboring discontinuities
do not intersect. The latter is satisfied with the Courant-Friedrichs-Lewy (CFL)
condition [193].

To solve the Riemann problems at each cell interface, we use the relativistic
HLLE solver [194], which approximates the wave profile in the Riemann problem
by a single intermediate state between two shock waves propagating away from
the initial discontinuity. Together with the shock wave velocity estimate, in this
approximation one can obtain an analytical dependence of the flux on the initial
conditions for the Riemann problem, which makes the algorithm explicit.

We proceed then to construct a higher-order numerical scheme:

• in time: the predictor-corrector scheme is used for the second order accuracy
in time, i.e. the numerical error is O(dt3), instead of O(dt2)

• in space: in the same way, to achieve the second order scheme, the linear
distributions of quantities (conservative variables) inside cells are used.

Some final remarks:
At each time-step, we compute and sum the fluxes for each cell with all its

neighbors and update the value of conservative variables with the total flux. Thus,
we do not use operator splitting (dimensional splitting) and thus avoid the numer-
ical artifacts introduced by this method, e.g. artificial spatial asymmetry.

To treat grid boundaries, we use the method of ghost cells. We include 2
additional cells on either end of grid in each direction, and set the quantities in
these cells at the beginning of each time-step. For simplicity, we set the quantities



76 CHAPTER 4. HYBRID MODEL

in ghost cells to be equal to these in the nearest ”real” cell, thus implementing non-
reflecting boundary conditions (outflow boundary). This physically correspond to
boundary which does not reflect any wave, which is consistent with expansion into
vacuum.

In our simulations we deal with spatially finite systems expanding into vacuum.
Thus the computational grid in Eulerian algorithm must initially contain both
system and surrounding vacuum. To account for the finite velocity of the expansion
into the vacuum, which equals c for an infinitesimal slice of matter on the boundary,
we introduce additional (floating-point) variables in each cell which keep the extent
of matter expansion within a cell, having the value unity for the complete cell, zero
for a cell with vacuum only. The matter is allowed to expand in the next vacuum
cell only if the current cell is filled with matter.

4.3.2 Resonance gas

Whereas for hadronization we employ the correct quantum statistics, we use the
Boltzmann approximation for the calculation of the equation of state. This is rea-
sonable even for pions at zero chemical potential, the excluded volume correction
at nonzero chemical potentials is considerably bigger than the difference coming
from quantum statistical treatment. We account for all well known hadrons made
from u, d, s quarks from the PDG table For energy density, pressure and net
charges we get :

ε =
∑

i

gi

2π2
m2

iT
[
3TK2(

mi

T
) +

mi

2
K1(

mi

T
)
]
exp(µi/T )

· (4.17)

p =
∑

i

gi

2π2
m2

iT
2 ·K2(

mi

T
) · exp(µi/T ) (4.18)

nB =
∑

i

Bi
gi

2π2
m2

iT ·K2(
mi

T
) · exp(µi/T ) (4.19)

nQ =
∑

i

Qi
gi

2π2
m2

iT ·K2(
mi

T
) · exp(µi/T ) (4.20)

nS =
∑

i

Si
gi

2π2
m2

iT ·K2(
mi

T
) · exp(µi/T ) (4.21)

with
µi = BiµB +QiµQ + SiµS, (4.22)

where µB, µS, µQ are the chemical potentials associated to B, S, Q, and Bi, Si,
Qi are the baryon charge, strangeness, and the electric charge of i-th hadron state,
gi = (2Ji + 1) is degeneracy factor.
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For large baryon chemical potential the EoS correction for the deviations from
ideal gas due to particle interactions becomes more important. We employ this
correction in a form of an excluded volume effect, like a Van der Waals hard core
correction. According to this prescription,

p(T, µB, µQ, µS) =
∑

i

pboltz
i (T, µ̃i), (4.23)

µ̃i = µi − vi · p . (4.24)

If one supposes equal volume vi = v for all particle species, then the correction
can be computed as a solution p(T, µB, µQ, µS) of a fairly simple, however tran-
scendental equation,

p(T, µB, µQ, µS) = pboltz(T, µB, µQ, µS)e−vp(T,µB ,µQ,µS)/T (4.25)

We take the value v ≈ 1.44 fm3, which corresponds to the hard core radius
r = 0.7fm.

4.3.3 Ideal QGP

In this ideal phase, matter is made from massless u, d quarks and massive s-
quark (+antiquarks). Due to the possibility of a large strange quark chemical
potential, comparable to its massms = 120 MeV which is taken in our calculations,
we perform the integration of the strange quark contribution to thermodynamic
quantities exactly, without Boltzmann or zero-mass approximation. So we have

p =
gl

6π2

[
1

4
µ4

u +
π2

2
µ2

uT
2 +

7π4T 4

60

]
(4.26)

+
gl

6π2

[
1

4
µ4

d +
π2

2
µ2

dT
2 +

7π4T 4

60

]
+

+ ps(T, µs) + ps̄(T, µs) +
ggπ

2

90
T 4 −B,

with ps̄(T, µs) = ps(T,−µs), and

ps(T, µs) =
glT

2π2

∫ ∞

0

p2 ln

[
1+exp

(
1

T

√
p2 +m2

s +
µs

T

)]
dp, (4.27)
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where we use the degeneracy factors gl = 6 for light quarks, gg = 16 for gluons,
and a bag constant B = 0.38 GeV/fm3. Quark chemical potentials are

µu =
1

3
µB +

2

3
µQ , (4.28)

µd =
1

3
µB − 1

3
µQ , (4.29)

µs =
1

3
µB − 1

3
µQ − µS . (4.30)

Using the relations ni = ∂p/∂µi, s = ∂p/∂T , ε = Ts+
∑
µini − p, we get

ε = 3(p− ps − ps̄ +B) + εs + εs̄ +B (4.31)

nB =
1

3

gl

6π2

[
µ3

u + π2µuT
2 + µ3

d + π2µdT
2
]
+ (4.32)

+
1

3
[ns(T, µs) − ns̄(T,−µs)]

nQ =
1

3

gl

6π2

[
2µ3

u + 2π2µuT
2 − µ3

d − π2µdT
2
]
− (4.33)

− 1

3
[ns(T, µs) − ns̄(T,−µs)]

nS = − [ns(T, µs) − ns̄(T,−µs)] (4.34)

with εs̄(T, µs) = εs(T,−µs), and

εs(T, µs) =
gl

2π2

∞∫
0

p2
√
p2 +m2

s

exp
(

1
T

√
p2 +m2

s −
µs

T

)
+ 1

dp, (4.35)

ns(T, µs) =
gl

2π2

∞∫
0

p2

exp
(

1
T

√
p2 +m2

s −
µs

T

)
+ 1

dp. (4.36)

4.4 Freeze-out

When the evolution reaches the hadronization hypersurface, defined by a given
temperature TH, we switch from “matter” description to particles, using the Cooper-
Frye description. Particles may still interact, as discussed below, so hadronization
here means an intermediate stage, particles are not yet free streaming, but they
are not thermalized any more.

We parametrize the hadronization hyper-surface xµ = xµ(τ, ϕ, η) as

x0 = τ cosh η, x1 = r cosϕ, x2 = r sinϕ, x3 = τ sinh η, (4.37)
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with r = r(τ, ϕ, η) being some function of the three parameters τ, ϕ, η. The
hypersurface element is

dΣµ = εµνκλ
∂xν

∂τ

∂xκ

∂ϕ

∂xλ

∂η
dτdϕdη, (4.38)

with εµνκλ = −εµνκλ = 1. Computing the partial derivatives ∂xµ/dα, with α = τ,
ϕ, η, one gets

dΣ0 =

{
−r ∂r

∂τ
τ cosh η + r

∂r

∂η
sinh η

}
dτdϕdη, (4.39)

dΣ1 =

{
∂r

∂ϕ
τ sinϕ+ r τ cosϕ

}
dτdϕdη, (4.40)

dΣ2 =

{
− ∂r

∂ϕ
τ cosϕ+ r τ sinϕ

}
dτdϕdη, (4.41)

dΣ3 =

{
r
∂r

∂τ
τ sinh η − r

∂r

∂η
cosh η

}
dτdϕdη. (4.42)

Cooper-Frye hadronization amounts to calculating

E
dn

d3p
=

∫
dΣµp

µf(up),

with u being the flow four-velocity in the global frame, which can be expressed in
terms of the four-velocity ũ in the “Bjorken frame” as

u0 = ũ 0 cosh η + ũ 3 sinh η , (4.43)

u1 = ũ 1 , (4.44)

u2 = ũ 2 , (4.45)

u3 = ũ 0 sinh η + ũ 3 cosh η . (4.46)

In a similar way one may express p in terms of p̃ in the Bjorken frame. Using
γ = ũ 0 and the flow velocity vµ = ũ µ/γ, we get

dn

dydφdp⊥
= (4.47)

p⊥

∫ {
−r ∂r

∂τ
τ p̃ 0 + r τ p̃ r +

∂r

∂ϕ
τ p̃ t − r

∂r

∂η
p̃ 3

}
f(x, p),

with p̃ r = p̃ 1 cosϕ + p̃ 2 sinϕ and p̃ t = p̃ 1 sinϕ − p̃ 2 cosϕ being the radial and
the tangential transverse momentum components. Our Monte Carlo generation
procedure is based on the invariant volume element moving through the FO surface,

dV ∗ = dΣµu
µ = w dτdϕdη, (4.48)
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with

w = γ

{
−r ∂r

∂τ
τ + r τ vr +

∂r

∂ϕ
τvt − r

∂r

∂η
v3

}
, (4.49)

and with vr = v1 cosϕ + v2 sinϕ and vt = v1 sinϕ − v2 cosϕ being the radial
and the tangential transverse flow. Freeze out is the done as follows (equivalent
to Cooper-Frye): the proposal of isotropic particles production in the local rest
frame as

dni = α d3p∗ dV ∗ fi(E
∗), (4.50)

is accepted with probability

κ =
dΣµ p

µ

α dV ∗E∗ . (4.51)

In case of acceptance, the momenta are boosted to the global frame.
After the “intermediate” hadronization, the particles at their hadronization

positions (on the corresponding hypersurface) are fed into the hadronic cascade
model UrQMD [155, 156], performing hadronic interaction until the system is
so dilute that no interaction occur any more. The “final” freeze out position of
the particles is the last interaction point of the cascade process, or the hydro
hadronization position, if no hadronic interactions occurs.

4.5 UrQMD afterburner

The UrQMD-model [155] is a microscopic transport theory based on the covariant
propagation of all hadrons on classical trajectories in combination with stochastic
binary scatterings, color string formation and resonance decay. It represents a
Monte Carlo solution of a large set of coupled partial integro-differential equations
for the time evolution of the various phase space densities fi(x, p) of particle species
i = N,∆,Λ, etc., which non-relativistically assumes the Boltzmann form:

dfi(x, p)

dt
≡ ∂p

∂t

∂fi(x, p)

∂p
+
∂x

∂t

∂fi(x, p)

∂x
+
∂fi(x, p)

∂t
= Stfi(x, p) , (4.52)

where x and p are the position and momentum of the particle, respectively, and
Stfi(x, p) denotes the collision (or rather source-) term of these particle species,
which are connected to any other particle species fk.

The exchange of electric and baryonic charge, strangeness and four momentum
in the t-channel is considered for baryon-baryon (BB) collisions at low energies,
while meson-baryon (MB) and meson-meson (MM) interactions are treated via
the formation and decay of resonances, i.e. the s-channel reactions. t-channel
reactions for MB and MM collisions are taken into account from

√
s > 3 GeV on

increasing to the only MB, MM interaction type above
√
s = 6 GeV. For nucleus-

nucleus collisions the soft binary and ternary interactions between nucleons can
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be described by the real part of the in-medium G-Matrix, which is approximated
by a non-relativistic density-dependent Skyrme potential of the form

V Sk =
1

2!
t1

∑
i 6=j

δ(~xi − ~xj) +
1

3!
t2

∑
i6=j 6=k

δ(~xi − ~xj)δ(~xj − ~xk) , (4.53)

where ~xα denotes the coordinate variable in the quantum phase space. The first
term simulates the attractive potential of the NN-interaction, and the second one
yields the saturation. In addition, Yukawa and Coulomb potentials are imple-
mented in the model. The potentials allow to calculate the equation of state of the
interacting many body system, as long as it is dominated by nucleons. Note that
these potential interactions are only used in the model for baryons/nucleons with
relative momenta ∆p of less than 2 GeV/c. For the hadronic collisions discussed
here, the potential interactions are omitted. Further details of the application of
the UrQMD model to heavy-ion reactions may be found in [155].

This framework allows to bridge with one concise model the entire available
range of energies from the SIS energy region (

√
s ≈ 2 GeV) to the RHIC en-

ergy (
√
s = 200 GeV). At the highest energies, a huge number of different particle

species can be produced. The model should allow for subsequent rescatterings. The
collision term in the UrQMD model includes more than fifty baryon species and five
meson nonetts (45 mesons). In addition, their antiparticles have been implemented
using charge-conjugation to assure full baryon-antibaryon symmetry. The imple-
mented meson multiplets are: pseudo-scalar, vector, scalar, pseudo-vector and the
tensor mesons as well as the heavy vector meson resonances ρ(1450), ρ(1700),
ω(1420), and ω(1600). Extremely heavy meson resonances (m > 2 GeV) are not
explicitly implemented, however they may be important when investigating, e.g.
the dynamics of ΦΦ correlations in future experiments.

All particles can be produced in hadron-hadron collisions and can interact
further with each other. The different decay channels all nucleon-, ∆- and hyperon-
resonances up to 2.25 GeV/c2 mass as well as the meson (e.g. K∗) decays etc. are
implemented. At higher energies we take advantage of the hadron universality
and use a string model for the decay of intermediate states. The cross-sections
of various hadronic processes as well as the formation and fragmentation of the
strings are described in details in [155]

4.6 Results: Elliptical flow

In this and the next sections, the results for the model application to 200A GeV
RHIC data description are presented. As it was already said, important informa-
tion about the space-time evolution of the system is provided by the study of the
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azimuthal distribution of particle production. One usually expands

dn

dφ
∝ 1 + 2 v2 cos 2φ+ ... , (4.54)

where a non-zero coefficient v2 is referred to as elliptical flow [160]. It is usually
claimed that the elliptical flow is proportional to the initial space eccentricity

ε =
〈y2 − x2〉
〈y2 + x2〉

. (4.55)

We therefore plot in fig. 4.9 the ratio of v2 over eccentricity. The points are data;
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Figure 4.9: Centrality dependence of the ratio of v2 over eccentricity. Points
are data [161], the different curves refer to the full calculation – hydro & cascade
(full line), only elastic hadronic scatterings (dotted), and no hadronic cascade at
all (dashed). The thin solid line –above all others– refers to the hydrodynamic
calculation till final freeze-out at 130 MeV.

the full line is the full calculation: hydrodynamical evolution with subsequent
hadronic cascade, from flux tube initial conditions, in event-by-event treatment.
The dotted line refers to a simplified hadronic cascade, allowing only elastic scat-
terings, the dashed line is the calculation without hadronic cascade. In all cases,
hadronization from the thermal phase occurs at TH = 166 MeV. We also show as
thin solid line the hydrodynamic calculation till final freeze-out at 130 MeV. We
use an energy density weighted average for the computation of the eccentricity.
For both v2 and ε, we take into account the fact that the principle axes of the
initial matter distribution are tilted with respect to the reaction plane. So we get
non-zero values even for very central collisions, due to the random fluctuations.

For all theoretical curves, the ratio v2/ε is not constant, but increases substan-
tially from peripheral towards central collisions – in agreement with the data. In
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our case, this increase is a core-corona effect [162]. Adding final state hadronic
rescattering leads to the full curve (full cascade) or the dotted one (only elas-
tic scattering), adding some more 20 % to v2. The difference between the two
rescattering scenarios is small, which means the effect is essentially due to elastic
scatterings. Continuing the hydrodynamic expansion through the hadronic phase
till freeze out at a low temperature (130MeV), instead of employing a hadronic
cascade, we obtain a even higher elliptic flow, as shown by the thin line in fig. 4.9,
and as discussed already in[115, 116, 163].

We now discuss the effect of the equation of state (see also [164]). Using a
(non-realistic) first-order equations of state (curve Q1F from fig. 4.7), one obtains
considerably less elliptical flow compared to the calculation using the the cross-
over equation of state X3F, as seen in fig. 4.10. Taking a wrong equation-of-state
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Figure 4.10: Centrality dependence of the ratio of v2 over eccentricity, for a full
calculation, hydro & hadronic cascae, for a (non-realistic) first-order transition
equations of state (dashed-dotted line) compared to the cross-over equations of
state, the default case (full line, same as the one in fig. 4.9). Points are data [161].

and a wrong treatment of the hadronic phase (thermally equilibrated rather than
hadronic cascade) compensate each other, concerning the elliptical flow results.

In fig. 4.11, the (pseudo)rapidity dependence of the elliptical flow, for different
centralities, is shown for Au-Au collisions at 200 GeV. Again, several scenarios
are compared: the full treatment, namely hydrodynamic evolution from flux tube
initial conditions with early hadronization (at 166 MeV) and subsequent hadronic
cascade, and the calculations with only elastic rescattering, or no hadron scattering
at all. Also shown as thin line is the case where the hydrodynamic expansion is con-
tinued through the hadronic phase till freeze out at a low temperature (130MeV),
instead of employing a hadronic cascade.
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Figure 4.11: Pseudorapidity distributions of the elliptical flow v2 for minimum
bias events (upper left) and different centrality classes, in Au-Au collisions at 200
GeV. Points are data [166], the different curves refer to the full calculation – hydro
& cascade (full thick line), only elastic hadronic scatterings (dotted), no hadronic
cascade at all (dashed), and hydrodynamic calculation till final freeze-out at 130
MeV (thin line).

4.7 Transverse momentum spectra and yields

The next results show that the model created actually reproduces more elemen-
tary observables like simple transverse momentum (pt) spectra and the integrated
particle yields, for identified hadrons. We will restrict the following pt spectra
to values less than 1.5 GeV (2 GeV in some cases), mainly in order to limit the
ordinate to three or at most four orders of magnitude, which allows still to see
10% differences between calculations and data.

In the upper panel of fig. 4.12, we show the pt spectra of π+(left) and π− (right)
in central Au-Au collisions, for rapidities (from top to bottom) of 0, 2, and 3. The
middle panels show the transverse momentum / transverse mass spectra of π+ and
π−, for different centralities, and the lower panel the centrality dependence of the
integrated particle yields per participant for charged particles and π− mesons. In
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Figure 4.12: Production of pions in Au-Au collisions at 200 GeV. Upper panel:
transverse momentum spectra for central collisions at different rapidities (from
top to bottom: 0, 2, 3). The lower curves are scaled by factors of 1/2 and 1/4,
for better visibility. Middle panels: transverse momentum (mass) distributions
at rapidity zero for different centrality classes: from top to bottom: the 0-5%,
the 20-30%, and the 40-50% most central collisions. Lower panel: the centrality
dependence of the integrated yields for charged particles and pions. The symbols
refer to data [173, 95, 72, 174], the full lines to our full calculations, the dotted
lines to the calculations without hadronic cascade.
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Figure 4.13: Production of lambdas (left) and antilambdas (right) in Au-Au
collisions at 200 GeV. Upper panel: transverse momentum distributions at rapidity
zero for different centrality classes: from top to bottom: the 0-5%, the 20-30%,
and the 40-50% most central collisions. The lower curves are scaled by factors of
1/2, 1/4, and 1/8, for better visibility. Lower panel: the centrality dependence
of the integrated yields. The symbols refer to data [140], the full lines to our full
calculations, the dotted lines to the calculations without hadronic cascade. The
thin line refers to a hydrodynamic calculation till final freeze-out at 130 MeV.

the upper panels, for the y = 2 and y = 3 curves, we apply scaling factors of 1/2
and 1/4, for better visibility, all other curves are unscaled. We present always two
calculations: the full one (full lines), namely hydrodynamic evolution plus final
state hadronic cascade, and the calculation without cascade (dotted lines). There
is a slight increase of pion production in particular at low pt during the hadronic
rescattering phase, but the difference between the two scenarios is not very big.
We see almost no difference between between the calculation with and without
hadronic rescattering in case of kaons. For both, pions and kaons, we observe a
change of slope of the pt distributions with rapidity. Concerning the centrality
dependence, we observe an increase of the yields per participant.

In fig. 4.13 we show pt spectra and centrality dependence of particle yields
per participant, for the (multi)strange baryons Λ, Λ̄, Ξ, and Ξ̄. Same conventions
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as for the previous plots. Here we see a big effect due to rescattering: for the
lambdas, the yields are not affected too much, but the pt spectra get much softer,
when comparing the full calculation with the one without rescattering. Similarly
the slopes for the Ξ, and Ξ̄ get softer due to rescattering.

To summarize the above discussion on yields and pt spectra: an early hadroniza-
tion at 166 MeV gives a reasonable description of the particle yields, which are not
much affected by the hadronic final state rescattering, except for the protons. The
main effect of the hadronic cascade is a softening of the pt spectra of the baryons.

4.8 Femtoscopy

All the observables discussed so-far are strongly affected by the space-time evo-
lution of the system, nevertheless we investigate the momentum space, and con-
clusions about space-time are indirect, as for example our conclusions about early
hadronization based on particle yields and elliptical flow results. A direct insight
into the space-time structure at hadronization is obtained from using femtoscopical
methods [175, 176, 75, 177, 178].

In this section, π+– π+ correlations are investigated. Here, we only consider
quantum statistics for Ψ, no final state interactions, to compare with Coulomb cor-
rected data. To compute the discretized correlation function Cij = C(Pi,qj), we
do our event-by-event simulations, and compute for each event C ′

ij =
∑

pairs |Ψ(q′, r′)|2,
where the sum extends over all π+ pairs with P and q within elementary momentum-
space-volumes at respectively Pi and qj. Then we compute the number of pairs
Nij for the corresponding pairs from mixed events, being used to obtain the prop-
erly normalized correlation function Cij = C ′

ij/Nij. The correlation function will
be parametrized as

C(P,q) = (4.56)

1 + λ exp
(
−R2

out q
2
out −R2

side q
2
side −R2

long q
2
long

)
,

where ”long” refers to the beam direction, ”out” is parallel to projection of P
perpendicular to the beam, and ”side” is the direction orthogonal to ”long” and
”out” [180, 181, 182]. In fig. 4.14, we show the results for the fit parameters λ,
Rout, Rside, and Rlong, for five different centrality classes and for four kT intervals
defined as (in MeV): KT1= [150, 250], KT2= [250, 350], KT3= [350, 450], KT4=
[450, 600], where kT of the pair is defined as

kT =
1

2
(|~pT (pion 1) + ~pT (pion 2)|) . (4.57)

Despite what appears in [77], this is the correct definition of kT used by STAR in
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Figure 4.14: Femtoscopic radii Rout, Rside, and Rlong, as well as λ as a function of
mT for different centralities (0-5% most central, 5-10% most central, and so on).
The full lines are the full calculations (including hadronic cascade), the stars data
[77]

their analysis in[183]. The results are plotted as a function of mT =
√
k2

T +m2
π.

The model describes well the radii, the experimental lambda values are sightly
below the calculations, maybe due to particle misidentification. Both data and
theory provide lambda values well below unity, maybe due to pions from long-lived
resonances, which is compartible with the results of previous section. Concerning
the mT dependence of the radii, we observe the same trend as seen in the data
[77]: all radii decrease with increasing mT , and the radii decrease as well with
decreasing centrality.

The reason for the decrease of radii with mT is the strong space–momentum
correlation. In fig. 4.15, we show the average px of produced π+ mesons as a
function of the x coordinate of their formation positions, for different centralities.
Clearly visible is the strong x− px correlation, being typical for radial flow. Also
visible in the figure is the smaller spatial extension for peripheral compared to
central collisions.

We now consider two other scenarios: the calculation without hadronic cascade
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Figure 4.15: The mean transverse momentum component px of π+ as a function
of the x coordinate of the emission point. Also shown is the number of produced
π+ as a function of x. The different curves refer to different centralities: 0-5% =
full line, 10-20% = dashed, 30-50% = dotted.

(final freeze out at 166 MeV), and the fully thermal scenario, where we continue
the hydrodynamical evolution till a late freeze-out at 130 MeV (and no cascade
afterwards either). In figs. 4.16 and 4.17, we see a similar space–momentum corre-
lation as for the complete calculation in fig. 4.15: the mean transverse momentum
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Figure 4.16: Same as fig. 4.15, but for the calculation without hadronic cascade.

components px is roughly a linear function of the transverse coordinate x, in the
region where the particle density is non-zero. The maximum mean px is smaller in
the no-cascade case, and bigger in the fully thermal case, as compared to the com-
plete calculation. Interesting are the dn/dx distributions: the no-cascade results
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Figure 4.17: Same as fig. 4.15, but for the full thermal scenario (freeze-out at 130
MeV).

(with early hadronization) are much narrower than the full thermal ones. The
complete calculation of fig. 4.15 is in-between, in the sense that the plateau of the
dn/dxdistribution is similar to the no-cascade case, but the tails are much wider.
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Figure 4.18: Same as fig. 4.14, but the calculations are done without hadronic
cascade (full line) or with a hydrodynamic evolution through the hadronic phase
with freeze-out at 130 MeV (dashed).

Although the Gaussian parameterizations represent only an incomplete infor-
mation about the source functions, the centrality and transverse momentum de-
pendence of the radii is nevertheless very useful. As it is stated above, it is a
necessary requirement for all models of soft physics to describe these radii cor-
rectly. There has been for many years an inconsistency, referred to as “HBT
puzzle” [153]. Although hydrodynamics descibes very successfully elliptical flow
and to some extent particle spectra, one cannot get the femtoscopic radii correctly,
when one uses “simple” hydrodynamics. Using transport models (and an event-
by-event treatment) may help [177]. In [153], it has been shown that the puzzle
can actually be solved by adding pre-equilibrium flow, taking a realistic equation
of state, adding viscosity, using a more compact or more Gaussian initial energy
density profile, and treating the two-pion wave function more accuratly. It has also
been shown [7, 190, 191] that using a Gaussian initial energy density profile, an
early starting time (equivalent to initial flow), and a cross-over equation of state,
and a late sudden freeze-out (at 145 MeV) helps to descibe the femtoscopic radii,
and to some extent the spectra.
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The scenario in [7, 190, 191] is compatible with our scenario “hydrodynamical
evolution till final freeze-out at 130MeV”, which allows us to get the femtoscopic
radii correctly (see fig. 4.18), as well as some v2 results and some spectra. One
cannot describe, however, yields and spectra of lambdas and xis.

4.9 Summary and conclusions

In this chapter, the new hybrid dynamical model for matter evolution in ultrarela-
tivistic heavy ion collisions is presented. It has many improvements, as compared
to existing ones: flux-tube initial conditions (EPOS), event-by-event treatment,
use of an efficient (3+1)D hydro code including flavor conservation, employment
of a realistic equation-of-state, use of a complete hadron resonance table, and a
hadronic cascade procedure after an hadronization from thermal matter at an early
time.

The approach is able to describe simultaneously different soft observables:
transverse spectra for pions, kaons, protons, lambdas, xis; v2-coefficients for pi-
ons, protons and kaons; interferometry (HBT)-radii for pions.

An agreement with experimental data supports the dynamical picture, realized
in this model: a hydrodynamic evolution starting from EPOS initial conditions,
till hadronization at an early time in the cross-over region of the phase transition,
with subsequent hadronic rescatterings.



CHAPTER

FIVE

Hydro-kinetic model

In this chapter, the hydrokinetic approach, which incorporates hydrodynamic ex-
pansion of the systems formed in A+A collisions and their dynamical decoupling,
is presented. The approach provides the alternative way of connection between
the dense hydrodynamic stage and kinetic stage, and allows to account for the
deviations from local equilibrium at hydrodynamic stage. It is demonstrated how
the approximation of sudden freeze-out can be obtained within this dynamical
picture of continuous emission. The approach is extended to include realistic fea-
tures of A+A collisions and applied then to describe pion and kaon HBT data
at RHIC collisions. Finally, a study of energy behavior of the pion spectra and
interferometry scales is carried out for the top SPS, RHIC and LHC energies.

5.1 Introduction

It has been known for a long time that CFp leads to inconsistencies [46, 47],
if the freeze-out hypersurface contains the non-space-like sectors, and should be
modified to exclude formally negative contributions to the particle number at the
corresponding momenta. The simplest prescription is to present the distribution
function as a product of a local thermal distribution and the step function like
θ(pµn

µ(x)) [47], nµnµ = ±1, where nµ is a time-like or space-like outward normal
to a freeze-out hypersurface σ. Thereby freeze-out is restricted to those particles
for which pµn

µ(x) is positive. This receipt was used in Ref. [48] to describe particle
emission from enclosed freeze-out hypersurface with non-space-like sectors and it
was found that a satisfactory description of central Au+Au collisions at RHIC
can be reached for a physically reasonable set of parameters. The main features
of the experimental data were reproduced: in particular, the obtained ratio of
the outward to sideward interferometry radii is less than unity and decreases with

93
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increasing transverse momenta of pion pairs. Thereby, the results of Ref. [48]
clearly indicate that early particle emission off the surface of the hydrodynamically
expanding fireball could be essential for proper description of matter evolution in
A+A collisions.

However, sharp freeze-out at some 3D hypersurfaces is a rather rough ap-
proximation of the spectrum formation, because the particle emission process of
fireballs created in high energy heavy ion collisions is gradual in time. Results of
many studies based on cascade models contradict the idea of sudden freeze-out and
demonstrate that in fact particles are emitted from the 4D volume during the whole
period of the system evolution, and deviations from local equilibrium conditioned
by continuous emission should take place (see, e.g., [93]). Moreover, freeze-out
hypersurfaces typically contain non-space-like parts that lead to a problem with
energy-momentum conservation law in realistic dynamical models [47]. This con-
cerns also hybrid models [201] where the transport model matches hydrodynamics
on such a kind of isothermal hypersurface of hadronization [198].1

An attempt to introduce 4D continuous emission in hydrodynamic framework
has been done in Ref. [200] within a simple ideal hydrodynamics, and also sup-
ported by numerical transport codes calculations.It was found in these papers that
the transport freeze-out process is similar to evaporation: high-pT particles freeze
out early from the surface, while low-pT ones decouple later from the system’s
center.

The idea of continuous decoupling was further developed based on Boltzmann
equations in Ref. [199] where, in particular, an approximate method that accounts
for the back reaction of the emission on the fluid dynamics was proposed. It is
worth noting that the back reaction is not reduced just to an energy-momentum
recoiling of emitted particles on the expanding thermal medium, but also leads
to a rearrangement of the medium, producing a deviation of its state from the
local equilibrium, accompanied by changing of the local temperature, densities
and collective velocity field. This complex effect is mainly a consequence of the
impossibility to split the evolution of the single finite system of hadrons into the
two components: expansion of the interacting locally equilibrated medium and
free streaming of emitted particles, which the system consists of. Such a splitting,
accounting only for the momentum-energy conservation law, contradicts the un-
derlying dynamical equations such as a Boltzmann one [199]. In view of this, the
ideas proposed and results obtained in the quasiclassical approach should be a clue
for a quantum treatment of the problem which recently started to to be developed

1Note that in this hybrid picture the initial conditions for hadronic cascade calculations
could be formulated also on some (arbitrary) space-like hypersurface where, however, hadronic
distributions deviate from the local equilibrium, in particular, because of an opacity effect for
hadrons which are created during a “mixed” stage of phase transition. These nonequilibrium
effects could seriously influence the results of hybrid models in its modern form [201].
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[196].Note, however, that the estimates of the influence of the quantum effects, such
as the distortion of the wave function, on the spectra and Bose-Einstein correla-
tions testify to be relatively small corrections to the quasiclassical approximation
[197].

5.2 General formalism

It was proposed in Ref. [199] to describe the hadronic momentum spectra in A+A
collisions based on the escape function of particles which are gradually liberated
from hydrodynamically expanding systems. The escape function, introduced in
[200], is calculated within the Boltzmann equations in a specific approximation
based on a hydrodynamic approach. It was shown that such a picture corresponds
to a relativistic kinetic equation with the relaxation time approximation for the
collision term, where the relaxation time tends to infinity, τrel → ∞, when t→ ∞,
indicating a transition to the free streaming regime. For one component system
the equation has the form:

pµ

p0

∂f(x, p)

∂xµ
= −f(x, p) − f l eq(x, p)

τrel(x, p)
. (5.1)

Here f(x, p) is the phase-space distribution function, f l eq(x, p) is the local equi-
librium distribution with local velocities, temperatures, and chemical potentials
that should be found from Eq. (5.1) and the initial f0(x, p), and τrel(x, p) is the
relaxation time (inverse rate of collisions in gases),

τrel(x, p) =
p0τ

∗
rel(x, p)

pµuµ

. (5.2)

Here τ ∗rel(x, p) is related to the local fluid rest frame (local rest frame of the energy
flow) where the collective four-velocity is uµ = (1,0). The relaxation time depends
on the cross section and is a functional of f l eq(x, p).

As it is well known , such kinds of equations at τrel � τexp (inverse of expansion
rate) describe in the first approximation the viscosity effects in gases with a coeffi-
cient of shear viscosity η ∝ τrelnT . Therefore the method explained below catches
in the first approximation also the viscosity effects in an expanding hadronic gas,
characterized by fields of temperatures T and particle densities n. The viscosity
effects in the quark-gluon plasma (QGP) evolution cannot be described in this way
because strongly interacting QGP is not a gas, but almost an ideal liquid [16].
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The formal solution of Eq. (5.1) can be presented in the following form:

f(t, r, p) = f(t0, r −
p

p0

(t− t0), p) exp

−
t∫
t0

1

τrel(s, r − p
p0

(t− s), p)
ds

 +

+

t∫
t0

f l eq(t′, r − p
p0

(t− t′), p)

τrel(t′, r − p
p0

(t− t′), p)
exp

−
t∫
t′

1

τrel(s, r − p
p0

(t− s), p)
ds

 dt′, (5.3)

where f(t0, r, p) is the initial distribution at t = t0. The relaxation time τ ∗rel as
well as the local equilibrium distribution function f l eq are functionals of hydrody-
namic variables: temperature T , chemical potential µ, and collective four-velocity
uµ. The space-time dependence of the corresponding variables is determined by
demanding the local conservation of the energy-momentum, with tensor T µν(x)
and, if necessary, net particle number, with current nµ(x) (assuming no particle
production)

∂µT
µν(x) = 0, (5.4)

∂µn
µ(x) = 0, (5.5)

where (see, e.g., Ref. [39])

T µν(x) =

∫
d3k

k0

kµνf(x, k), (5.6)

nµ(x) =

∫
d3k

k0

kµf(x, k). (5.7)

These conservation laws lead to rather complicated equations for hydrodynamic
variables. It is worth noting that for an expanding system the relaxation time
τ ∗rel(x, p) increases with time and, therefore, the deviations from local equilibrium
increase too, thereby preventing a use of the widely applied approximate methods
based on the expansion of the distribution function in the vicinity of the local
equilibrium.

Then to solve the kinetic equation (5.1), in accordance with the conservation
laws (5.4) and (5.5), we need an approximate method that could be applied even
for strong deviations from local equilibrium. It is not our aim here to suggest an
exclusive solution of the problem. Rather some arguments are presented below by
the example of the relativistic one component Boltzmann gas with particle number
conservation,

f l eq(x, p) = (2π)−3 exp

(
−p

µuµ + µ

T

)
, (5.8)
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to show that such a method could be developed based on the following procedure.
To take into account nonequilibrium effects accompanying the particle emission

in inhomogeneous violently expanding systems, we utilize the integral representa-
tion (5.3) of kinetic equation (5.1). Then, performing a partial integration of the
second term in Eq. (5.3) and, assuming that f(t0, r, p) = f l eq(t0, r, p), one can
decompose the distribution function to a local equilibrium part, f l eq, and a part
describing a deviation from the local equilibrium behavior, g:

f = f l eq(x, p) + g(x, p), (5.9)

where

g(x, p) = −
t∫
t0

df l eq(t′, r − p
p0

(t− t′), p)

dt′
×

× exp

−
t∫
t′

1

τrel(s, r − p
p0

(t− s), p)
ds

 dt′. (5.10)

Note that both functions, f l eq and g, are functionals of hydrodynamic variables,
g depends also on the relaxation time τrel that defines the mean time interval
between collisions, and τrel depends in its turn on the distribution function f l eq

and the cross section. The evolution of the distribution function f(x, p) should
satisfy the energy-momentum conservation and, because T µν [f ] = T µν [f l eq + g] =
T µν [f l eq] + T µν [g] for systems where the interaction energy can be neglected, it
takes the form of hydrodynamic equations for the perfect fluid with “source”,

∂νT
νβ[f l eq] = Gβ[g], (5.11)

where

Gβ[g] = −∂νT
νβ[g]. (5.12)

The equation that takes into account the conservation of particle number has a
similar form:

∂νn
ν [f l eq] = S[g], (5.13)

where

S[g] = −∂νn
ν [g]. (5.14)

To find an approximate solution of Eqs. (5.11)-(5.14), one can solve the equa-
tions

∂νT
νµ[f l eq] = 0, (5.15)

∂νn
ν [f l eq] = 0, (5.16)
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and, thereby, utilize the hydrodynamic variables in the perfect fluid approxima-
tion. Namely, the hydrodynamic variables in this approximation can be used to
calculate the deviation from local equilibrium g(x, p) according to Eq. (5.10) and,
then, “source” terms Gβ[g] and S[g] on the right-hand sides of Eqs. (5.11) and
(5.13). Then the left-hand sides of these equations are functionals of local equi-
librium functions and have the simple ideal fluid forms, while the right-hand sides
associated with a “source” are explicit functions which describe a deviation from
the local equilibrium and depend on hydrodynamic variables in the perfect fluid
approximation:

∂νT
νβ[f l eq(T, uµ, µ)] = Gβ[Tid, u

id
µ , µid, τ

id
rel], (5.17)

∂νn
ν [f l eq(T, uµ, µ)] = S[Tid, u

id
µ , µid, τ

id
rel], (5.18)

where, for one component Boltzmann gas with elastic collisions only, the relaxation
time τ id

rel is the inverse of collision rate in ideal fluid, Rid(x, p), and has the following
form (in the co-moving frame):

1

τ id∗
rel (x, p)

= Rid(x, p) =

=

∫
d3k

(2π)3
exp

(
−Ek − µid(x)

Tid(x)

)
σ(s)

√
s(s− 4m2)

2EpEk

. (5.19)

Here Ep =
√

p2 +m2, Ek =
√

k2 +m2, s = (p+ k)2 is the squared c.m. energy of
the pair, and σ(s) is the corresponding cross section. A solution (T (x), uµ(x), µ(x))
of Eqs. (5.17), (5.18) accounts for the back reaction of the emission process on
hydro-evolution and provides us with the hydrodynamic parameters which finally
should be used to calculate the locally equilibrated part f l eq(x, p) of the complete
distribution function f(x, p). Then, the distribution function obtained in this way,
f(x, p) = f l eq[T, uµ, µ] + g[Tid, u

id
µ , µid, τ

id
rel], satisfies the conservation laws, takes

into account the nonequilibrium peculiarities of the evolution and is constructed in
agreement with the corresponding EoS. Of course, this scheme allows us to make
the next iterations in solving Eq. (5.1). Note also that because the “source” term
on the right-hand side of Eq. (5.17) is a known function, the causality is preserved
in this description of dissipative systems.

5.3 Cooper-Frye prescription

In this section, we will try to derive the Cooper-Frye approximation within the
approach. Let us start from Boltzmann equation in general form:

pµ

p0

∂fi(x, p)

∂xµ
= Gi(x, p) − Li(x, p). (5.20)
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The expressions Gi(x, p) and Li(x, p) = Ri(x, p)fi(x, p) are so-called (G)ain
and (L)oss terms for the particle of species i. Typically, Ri is a rate of collisions
of i-th particle. Below we will omit index i, the corresponding expression can be
related then, e.g., to pions.

The probability Pt→t′(x, p) for a particle to reach the point x′ = (t′, r′) starting
from the point x = (t, r) without collisions is

Pt→t′(x, p) = exp

−
t′∫

t

dtR(xt, p)

 , (5.21)

where

xt = (t, r +
p

p0
(t− t)).

In terms of this probability, the Boltzmann equation can be rewritten in the fol-
lowing integral form

f(t, r, p) = f(t0, r −
p

p0
(t− t0), p)Pt0→t(t0, r −

p

p0
(t− t0), p)

+

t∫
t0

G(τ, r − p

p0
(t− τ), p)Pτ→t(τ, r −

p

p0
(t− τ), p)dτ. (5.22)

Let us integrate the distribution (5.22) over the space variables to represent
the particle momentum density at large enough time, t → ∞, when particles
in the system stop to interact. To simplify notation let us introduce the escape
probability for the particle with momentum p in the point x = (t, r) to leave
system without collisions: P(t, r, p) ≡ Pt→(τ→∞)(t, r, p). Then the result can be
presented in the general form found in Ref. [199]:

n(t→ ∞, p) ≡ n(p) =

∫
d3rf(t0, r, p)P(t0, r, p)

+

∫
d3r

∞∫
t0

dt′G(t′, r, p)P(t′, r, p). (5.23)

The first term in Eq. (5.23) describes the contribution to the momentum
spectrum from particles that are emitted from the very initial time, while the
second one describes the continuous emission with emission density S(x, p) =
G(t, r, p)P(t, r, p) from 4D volume delimited by the initial and final (where parti-
cles stop to interact) 3D hypersurfaces.
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In what follows we will use the (generalized) relaxation time approximation
proposed in [199], which is the basis of the hydro-kinetic approach, described in
detail in [202]. Namely, it was argued [199] that there is such a local equilibrium
distribution function fl.eq.(T (x), uν(x), µ(x)) that, in the region of not very small
densities where term G ∼ S gives noticeable contribution to particle spectra,
the function f is approximately equal to that one which would be obtained if all
functions in r.h.s. of Eq. (5.22) calculated by means of that function fl.eq.. The
function fl.eq. is determined from the local energy-momentum conservation laws
based on the non-equilibrium function f in the way specified in [202]. Then, in
accordance with this approach we use

R(x, p) ≈ Rl.eq.(x, p), G ≈ Rl.eq.(x, p)fl.eq.(x, p). (5.24)

The “relaxation time” τrel = 1/Rl.eq. grows with time in this method.
Let us generalize now the Landau/Cooper-Frye prescription (CFp) of sudden

freeze-out. For this aim we apply the saddle point method to calculate the integral
in the expression for spectra (5.23) with account of (5.24). To simplify notation
we neglect the contribution to the spectra from hadrons which are already free at
the initial thermalization time t0 ∼ 1 fm/c and thus omit the first term in (5.22).

To provide straightforward calculations leading to the Cooper-Frye form let us
shift the spacial variables, r′ = r + p

p0
(t0 − t′), in (5.23) aiming to eliminate the

variable t′ in the argument of the function R which is the integrand in P(t′, r, p).
Then

n(p) ≈
∫
d3r′

∞∫
t0

dt′fl.eq.(t
′, r′ +

p

p0

(t′ − t0), p)Q(t′, r′,p), (5.25)

where

Q(t′, r′, p) = R(t′, r′ +
p

p0

(t′ − t0), p)×

× exp

−
∞∫
t′

R(s, r′ +
p

p0

(s− t0), p)ds

 (5.26)

Note that

Q(t′, r′, p) =
d

dt′
P (t′, r′,p), (5.27)

where P (t′, r′, p) is connected with the escape probability P :

P (t′, r′, p) = P(t′, r′ +
p

p0

(t′ − t0), p). (5.28)
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Therefore
∞∫
t0

dt′Q(t′, r′, p) = 1 −P(t0, r
′, p) ≈ 1. (5.29)

The saddle point tσ(r, p) is defined by the standard conditions:

dQ(t′, r′, p)

dt′
|t′=t′σ = 0,

d2Q(t′, r′, p)

dt′2
|t′=t′σ < 0. (5.30)

Then one can get from (5.27), (5.28) the condition of the maximum of emission:

−p
µ∂µR(t′, r, p)

R(t′σ, r, p)
|t′=t′σ,r=r′+ p

p0
(t′σ−t0) = p0R(t′σ, r

′ +
p

p0

(t′σ − t0), p) . (5.31)

If one neglects terms p∗∂r∗R in l.h.s. and supposes that in the rest frame
(marked be asterisk) of the fluid element with four-velocity u(x) the collision rate,

R∗(x, p) = p0R(x,p)
pµuµ

, does not depend on particle momentum: R∗(x) ≈ 〈v∗σ〉(x)n∗(x)

(here n(x) is particle density, σ is the particle cross-section, v is the relative ve-
locity, < ... > means the average over all momenta), then the conditions (5.31)
are equivalent to the requirement that at the temporal point of maximum of the
emission function the rate of collisions is equal to the rate of system expansion
[202]. This is the heuristic freeze-out criterion for sudden freeze-out [204]. How-
ever, as we will demonstrate, the neglect of momentum dependence leads to quite
significant errors.

To pass to the Cooper-Frye representation we use the variables which include
the saddle point:

r = r′ +
p

p0

(t′σ(r′, p) − t0). (5.32)

Then the expression for the spectrum takes the form:

n(p) ≈
∫
d3r

∣∣∣∣1 − p

p0

∂tσ
∂r

∣∣∣∣
∞∫
t0

dt′S(t′, r, p), (5.33)

where the emission density in saddle point representation is (tσ ≡ (tσ(r, p))

S(t′, r, p) = fl.eq.(t
′, r +

p

p0

(t′ − tσ), p)

×R(tσ, r, p)P(tσ, r, p) exp(−(t′ − tσ)2/2D2(tσ, r, p)). (5.34)
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According to Eq. (5.21) P(tσ, r, p) = e−1, since the freeze-out zone is the region
of the last collision for the particle. Then the normalization condition for Q (Q
is presented by the bottom line in (5.34)) allows one to determine the temporal
width of the emission at the point (tσ(r, p), r, p):

D(tσ, r, p) =
e√
2π

1

R(tσ, r, p)
≈ τrel(tσ, r, p). (5.35)

Therefore if the temporal homogeneity length λ(t, r, p) of the distribution func-
tion fl.eq. near the 4-point (tσ(r, p), r) is much larger than the width of the emission
zone, λ(tσ, r, p) � τrel(tσ, r, p), then one can approximate fl.eq.(t

′, r+ p
p0

(t′−tσ), p)

by fl.eq.(tσ, r, p) in Eq. (5.33) and perform integration over t′ accounting for nor-
malization condition (5.29). As a result we get from (5.33) and (5.34) the momen-
tum spectrum in a form similar to the Cooper-Frye one (3.19):

p0n(p) = p0d
3N

d3p
≈

∫
σ(p)

dσµp
µfl.eq.(x, p). (5.36)

It is worthy to note that the representation of the spectrum through emission
function (5.23) is the result of the integration of the total non-equilibrium distri-
bution function f(x, p), Eqs. (5.22), (5.24), over the asymptotical hypersurface in
time, while the approximate representation of the spectrum, Eq. (5.36), uses only
the local equilibrium part fl.eq. of the total function f(x, p) at the set of points of
maximal emission - at hypersurface (tσ(r, p), r).

Generalized Cooper-Frye prescription
Now let us summarize the conditions when the Landau/Cooper-Frye form for

sudden freeze-out can be used. They are the following:

i) For each momentum p, there is a region of r where the emission function as
well as the function Q, Eq. (5.26), have a clear maximum. The temporal width of
the emission D, defined by Eq. (5.34), which is found to be equal to the relaxation
time (inverse of collision rate), should be smaller than the corresponding tempo-
ral homogeneity length of the distribution function: λ(tσ, r, p) � D(tσ, r, p) '
τrel(tσ, r, p).

ii) The contribution to the spectrum from the residual region of r, where the
saddle point method (Gaussian approximation (5.34) and/or condition τrel � λ)
is violated, does not affect essentially the particle momentum density.

If these conditions are satisfied, then the momentum spectra can be presented
in the Cooper-Frye form despite the fact that actually it is not sudden freeze-out
and the decoupling region has a finite temporal width τrel(tσ, r, p).

The analytical results as for the temporal width of the spectra agree remarkably
with the numerical calculations of pion emission function within hydro-kinetic
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Figure 5.1: The pion emission function for different pT in hydro-kinetic model
(HKM) [202]. The isotherms of 80 MeV (left) and 135 MeV (right) are superim-
posed.

model (HKM) [202]. For example, near the point of maximum, τ = 16.5 fm/c,
r = 0, pT = 0.2 GeV, the “experimental” temporal width DHKM obtained by
numerical solution of the complete hydro-kinetic equations is DHKM ≈ 4.95 fm
(see Fig. 5.3, left). Our theoretical estimate is D = e√

2πR
≈ 5.00 fm, since the

rate of collisions in this phase-space point is R(τσ(r, p) = 16.5 fm/c, r = 0, pT =
0.2 GeV, pL = 0) ≈ 0.217 c/fm.

It is worthy to emphasize that such a generalized Cooper-Frye representation is
related to freeze-out hypersurfaces that depend on the momentum p and typically
do not enclose the initially dense matter. In Fig. 5.3, one can see the structure
of the emission domains for different pT in HKM [202] for initially (at τ=1 fm/c)
Gaussian energy density profile with εmax= 6 GeV/fm3. The maximal emission
regions for different pT are crossed by isotherms with different temperatures: 80
MeV for low momenta and 135 MeV for high ones. This is completely reflected
in the concave structure of the transverse momentum spectrum as one can see in
Fig. 5.3.

If a part of the hypersurface tσ(r, p) is non-space-like and corresponds to the
maximum of the emission of particles with momentum p, directed outward the
system, the same part of the hypersurface cannot correspond to the maximal
emission for particles with momentum directed inward the system. It is clear that
the emission function at these points is close to zero for such particles. Even
formally, in the Gaussian approximation (5.34) for Q, validated in the region of its

maximal value, the integral
∞∫
tσ

dsR(s, r + p
p0 (s − tσ(r, p), p) � 1, if particle world

line crosses almost the whole system. The latter results in Q → 0 and, therefore,
completely destroys the saddle-point approximation (5.30) for Q and then the
Cooper-Frye form (5.36) for spectra. Recall that if a particle crosses some non-
space-like part of the hypersurface σ moving inward the system, this corresponds
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Figure 5.2: Transverse momentum spectrum of π− in HKM, compared with the
sudden freeze-out ones at temperatures of 80 and 160 MeV with arbitrary normal-
ization.

to the condition pµdσµ < 0 [46]. Hence the value pµdσµ(p) in the generalized
Cooper-Frye formula (5.36) should be always positive: pµdσµ(p) > 0 across the
hypersurface where fairly sharp maximum of emission of particles with momentum
p is situated; and so requirement pµdσµ(p) > 0 is a necessary condition for tσ(r, p)
to be a true hypersurface of the maximal emission. It means that hypersurfaces
of maximal emission for a given momentum p may be open in the space-time, not
enclosing the high-density matter at the initial time t0, and different for different p.
All this is illustrated in Fig. 5.3, where the structure of particle emission domain
is shown for two groups of particles. In the first one, the momentum is directed
as the radius vector to the point of particle localization (they move outward the
system), in the second one - in opposite direction (they move inward). The points
of maximum for different pT , where Cooper-Frye form can be applied, do not
overlap. The calculations have been done in HKM [202].

Therefore, there are no negative contributions to the particle momentum den-
sity from non-space-like sectors of the freeze-out hypersurface, that is a well known
shortcoming of the Cooper-Frye prescription [46, 47]; the negative contributions
could appear only as a result of utilization of improper freeze-out hypersurface
that roughly ignores its momentum dependence and so is common for all p. If,
anyhow, such a common hypersurface will be used, e.g. as the hypersurface of the
maximal particle number emission (integrated over p), there is no possibility to
justify the approximate expression for momentum spectra similar to Eq. (5.36).
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Figure 5.3: The emission function in HKM for particles with momentum directed
along the radius vector at the emission points (left) and for those ones in the
opposite direction to the radius vector (right).

5.4 Initial conditions for hydro-evolution of ther-

mal matter

Starting from this section, the hydro-kinetic model (HKM) application to dynamics
of A+A collisions is described. The basic hydrokinetic code, described above,
is modified now to include realistic features of nucleus-nucleus collisions: initial
conditions from initial state models, realistic equation of state, resonance decays,
collision rates. Essentially, the model is applied to central A+A collisions.

Our results are all related to the central rapidity slice where we use the boost-
invariant Bjorken-like initial condition in longitudinal direction. We consider the
proper time of thermalization of quark-gluon matter as the minimal one discussed
in the literature, τ0 = 1 fm/c [209].

We start the whole model description from initial conditions.

5.4.1 Pre-thermal flows

If one starts the hydrodynamic evolution at the ”conventional time” τi =1 fm/c
without transverse flow - since no pressure is established before thermalization -
the resulting radial flow will not be developed enough to describe simultaneously
the absolute values of pion, kaon and proton spectra, as well as the anisotropy
of elliptic flow in non-cental collisions. To describe the observables one needs to
start the hydro-evolution at very small initial time, τ ∼ 0.5 fm/c [13], where it
is difficult to expect the thermalization. This controversial situation is overcome
due to the results of Ref. [210] where is shown that the initial transverse flows in
thermal matter as well as their anisotropy, leading to asymmetry of the transverse
momentum spectra in non-central collisions, could be developed at the pre-thermal,
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either classical field (Glasma) [211], string [141] or partonic stages, with even more
efficiency than in the case of very early hydrodynamics. So, the hypothesis of early
thermalization at times less than 1 fm/c is not necessary: the radial and elliptic
flows develop no matter whether a pressure already established. The general reason
for them is an essential finiteness of the system in transverse direction. Then
the flows of particle number or energy directed outward the system cannot be
compensated by the inward directed (from periphery to the center) flows. This
difference means the non-zero net flows no matter how the collective velocity is
defined: according to Ekkart or to Landau-Lifshitz. The further development and
exploitation of these results were done in Refs. [212, 6, 213].

The initial transverse rapidity profile is supposed to be linear in radius rT :

yT = α
rT

RT

, where RT =
√
< r2

T >, (5.37)

here α is the second fitting parameter. Note that the fitting parameter α should
include also a positive correction for underestimated resulting transverse flow since
in this work we did not account in direct way for the viscosity effects [208] neither at
QGP stage nor at hadronic one. In formalism of HKM [202] the viscosity effects at
hadronic stage are incorporated in the mechanisms of the back reaction of particle
emission on hydrodynamic evolution which we ignore in current calculations. Since
the corrections to transverse flows which depend on unknown viscosity coefficients
are unknown, we use fitting parameter α to describe the ”additional unknown
portions” of flows, caused by both factors: by a developing of the pre-thermal
flows and the viscosity effects in quark-gluon plasma.

5.4.2 Glauber-like initial transverse profile

A simple Glauber model initialization assumes that the initial energy density in
the transverse plane is proportional to the participant nucleon density [214],

ε(b,xT ) = ε0
ρ(b,xT )

ρ0

(5.38)

with ρ0 ≡ ρ(0, 0) and

ρ(b,xT ) = (T (xT + b/2)S(xT − b/2) + T (xT − b/2)S(xT + b/2)),

S(xT ) =

[
1 −

(
1 − σNN

T (xT )

A

)A
]
, (5.39)

whereA is atomic number, equal to 197 for Au+Au collision, and σNN = 51 mb(=5.1 fm2)
is the nucleon-nucleon cross-section at

√
sNN = 200 AGeV. The impact parameter
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b = (b, 0) is equal to zero, b=0, in the considered case of central collision. The pa-
rameter ε0 ≡ ε(b = 0,xT = 0) is the maximal energy density at the initial moment
of thermalization. The thickness T (xT ) is expressed through the Woods-Saxon
distribution profile:

T (xT ) =

∞∫
−∞

FWS(x)dxL, (5.40)

where

FWS(x) =
a

exp
[(√

x2
L + x2

T −RA

)/
δ
]

+ 1
. (5.41)

Here we use that RA = 1.12A1/3 − 0.86A−1/3 ≈ 6.37 fm, δ = 0.54 fm. Constant a
is obtained from normalization condition:∫

T (xT )d2xT = A. (5.42)

One can think that transversal Glauber-like ε-profile has been formed to some
initial time τ0 ≈ 0.1 − 0.3 fm/c (see below) when the system is not thermal
yet. However, the form of the profile is, practically, not modified to supposed
thermalization time τ0 ∼ 1 fm/c because the transverse velocities reached to this
time are relatively small. At the same time, the absolute values of energy density
can change significantly because of the strong longitudinal expansion. We use the
maximal energy density ε0 at time τi = 1 fm/c as the second fitting parameter.

5.4.3 Initial conditions motivated by Color Glass Conden-
sate model

Within CGC effective field theory some important physical properties of the field
are defined by the parameter Λs = g2µ where g2 = 4παs and µ2 is dimensionless
parameter, which is the variance of the Gaussian weight over the color charges ρ
of partons. The value of Λs0 is approximately equal to the saturation scale value,
Qs, and for the RHIC energies one can use Λs0 ≈ Qs ≈ 2 GeV2 [215]. According
to the results of Refs. [216, 217], (proper) time τ0 ≈ 3/Λs is an appropriate scale
controlling the formation of gluons with a physically well-defined energy. At later
times the dynamics of the classical Yang-Mills fields produced in nucleus-nucleus
collisions can be linearized and approximated by that of a system of weakly coupled
harmonic oscillators. Then one can compute the field amplitudes squared in mo-
mentum space and find corresponding distribution for the gluon number [217, 218]
for cylindrically homogeneous transverse profile. It has the form at pT < 1.5Λs
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and η = 1
2
ln t+xL

t−xL
' 0,

dN

d2pTd2xTdη
≡ f(Teff)

=
a1

g2

[
exp

(√
p2

T +m2
eff

/
Teff

)
− 1

]−1

, (5.43)

where meff = a2Λs0, Teff = a3Λs; a2 = 0.0358, a3 = 0.465. The constant a1/g
2 will

be absorb into factor ε0 which is our fitting parameter.
The dependence of the distribution (5.43) on transverse coordinates xT is con-

structed as follows [217]:

Λ2
s(xT ) = Λ2

s0

ρ(b,xT )

ρ0

. (5.44)

where the participant density at a particular position in the transverse plane is
defined by (5.39).

To define the initial energy density profile we need the partonic phase-space
distribution f 0(x, p) = dN/d3xd3p. Note, that it is associated with the hypersur-
faces t = const. To express the phase-space density through the values dN

d2xT d2pdη

defined at
√
t2 − x2

L = τ0, one should take into account that the density of partons
with momentum p crossing element d3σ(x) of this hypersurface is

p0 dN

d3p

∣∣∣∣
dσ(x)

= pµdσµ(x)f0(x, p)

= f0(x, p)τ0pT cosh θd2xTdη, (5.45)

where θ = y − η, y is rapidity of partons (in momentum space). Therefore

f0(x, p) =
1

τ0mT cosh θ

dN

d2xTd2pTdηdy
. (5.46)

One can formally get the d6N distribution from (5.43) by multiplying it by
δ–function:

dN

d2pTd2xTdηdy
= f(Teff)δ(y − η). (5.47)

Such a phase-space distribution, corresponding the CGC asymptotic results [219],
is widely used for a description of the initial state in A+A collisions [220]. However,
a presence of the delta-function in the phase-space density contradicts evidently
to the basic principle of the quantum mechanics. Indeed, the classical phase-
space density has to follow from the quantum mechanical one in some limit. The
Wigner function fW(x, p) [221], that is the quantum mechanical analog of the
classical phase-space density f(x, p), satisfies the restriction

∫
f2

W(x, p)d3pd3x ≤
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(2π~)−3 (see e.g. [222], note that the equality takes place for a pure state only),
here the normalization condition

∫
fW(x, p)d3pd3x = 1 is supposed. It evidently

excludes utilization of the delta-function as factor in the structure of the Wigner
function. Therefore, in order to escape contradiction with quantum mechanics,
another prescription, instead of utilization of delta function, should be used for
the longitudinal part of distribution f(x, p); it can be, for example, the boost-
invariant prescriptions used in Ref. [213]. Following to this recept we smear the
δ-function at hypersurface τ0 in (5.47) as follows

dN

d2pTd2xTdηdy
= f

(
Teff

cosh (η − y)

)
. (5.48)

In this way we fix the phase-space density (5.46). This may correspond to quasi-
thermal averaged partonic distribution which can be reached at moment τ0 due to
quantum effects (uncertainly principle), different kind of turbulences and Schwinger-
like mechanism of pair production in the pulse of strong color field. It does not
mean that the true thermalization which should be supported by a permanent
mechanism of partonic interactions is reached at τ0 ≈ 3/Λs ≈ 3 fm/c.

As a result we use the following form of boost-invariant phase-space distribution
for gluons at the initial hypersurface τ0:

f0 = g−2 a1(τ0mT cosh θ)−1

exp
(√

m2
eff(xT ) + p2

T cosh θ
/
Teff(xT )

)
− 1

, (5.49)

here θ = η − y, xT = (X,Y ) = (xT cosϕ, xT sinϕ) and we consider gluons as
massless particles, mT = pT . Such a distribution depends on the effective mass
meff(xT ) = a2Λs(xT ) and the temperature Teff(xT ) = a3Λs(xT ) (numerical values
for a2 and a3 are the same as in Eq. (5.43)), which, in accordance with Ref. [217],
are determined by the local scale Λs(xT ) (5.44).

The components of the energy-momentum tensor in the pseudo-Cartesian co-
ordinates reads

T µν(x) =

∫
pµpνf(x, p)pTdpTdydφ, (5.50)

where the Lorentz-invariant integration measure d3p/p0 in the Cartesian variables
is already re-written in Björken variables as pTdpTdydφ.

We numerically calculate the components of the energy-momentum tensor with
the distribution function, following from Eq. (5.49), at η = 0.

Note that, at τ = τ0, the energy-momentum tensor takes the form

T µν
0 (xT , xL = 0) =

a1

g2τ0
Λ3

s(xT )tµν , (5.51)



110 CHAPTER 5. HYDRO-KINETIC MODEL

where tµν are the constant coefficients fixed by the constants a2 and a3. Therefore,
the energy profile in transverse plane at τ0 in central collisions can be presented
in the form (see (5.44))

ε(xT ) = ε0
ρ3/2(0, xT )

ρ
3/2
0

, (5.52)

where the number of participants is defined by (5.39). Under the same reason as for
the Glauber-like IC we use the form of this profile to build the IC for hydrokinetic
evolution at the thermalization time τi = 1 fm/c. The maximal energy density ε0
at (proper) time τi is the fitting parameter as in the case of the Glauber IC.

5.5 The thermal matter in A+A collision and

equation of state

Here we describe the matter properties and its thermodynamic characteristics,
e.g. equation of state, that are necessary components of the hydrokinetic model.
We suppose that soon after thermalization the matter created in A+A collision
at RHIC energies is in the quark gluon plasma (QGP) state. Also at time τi,
there is a peripheral region with relatively small initial energy densities: ε(r) <
0.5 GeV/fm3. This part of the matter (”corona”) does not transform into QGP
and has no chance to be involved in thermalization process [149]. By itself the
corona gives no essential contribution to the hadron spectra [149]. One should
consider it separately from the thermal bulk of the matter and should not include
in hydrodynamic evolution. Therefore we cut the initial Glauber or CGC-like
profiles at ε(r) ≤ 0.5 GeV/fm3 when consider IC for hydrodynamic evolution of
the system.

During the system evolution the QGP is cooling and finally transforms into
hadron phase, most probably, according to the crossover scenario. Such a trans-
formation may occur in the interval of the temperatures 170-190 MeV. At the
temperature T = Tch ≈ 165 MeV the chemical freeze-out happens, as demon-
strates an analysis of the particle number ratios [223, 110]. The conception of the
chemical freeze-out means that at the temperatures T ≥ Tch the bulk of the ex-
panding matter is in the local thermal and chemical equilibrium while at T < Tch

the chemical composition becomes in some sense frozen: one can neglect the ma-
jority of inelastic reactions except for decays of resonances and recombination
processes. The hadronic matter in the later thermodynamic region is not in the
chemical equilibrium, moreover, the hadronic medium gradually emits particles
being in this zone and, so, loose, in addition, also the local thermal equilibrium.
Therefore, one should consider in different ways the matter evolution in the two 4D
space-time zones separated by the 3D hypersurface corresponding to the isotherm
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T = Tch ≈ 165 MeV. Let us describe the thermodynamic properties of matter in
both these regions.

5.5.1 The EoS in the equilibrated space-time domain.

At high temperatures corresponding to the QGP phase and crossover transition
to hadron phase we use a realistic EoS [225] adjusted to the lattice QCD results
for zero baryonic chemical potential so that it is matched with an ideal chemically
equilibrated multicomponent hadron resonance gas at Tc = 175 MeV. To take into
account a conservation of the net baryon number, electric charge and strangeness
in the QGP phase, one has first to make corrections to thermodynamic quantities
for nonzero chemical potentials. As it is proposed in [226], a modification of the
EoS can be evaluated by using of the Taylor series expansion in terms of the
light and strange quark chemical potentials, or analogously in baryon and strange
hadronic chemical potentials:

p(T, µB, µS)

T 4
=
p(T, 0, 0)

T 4
+

1

2

χB

T 2

(µB

T

)2

+
1

2

χS

T 2

(µS

T

)2

+
χBS

T 2

µB

T

µS

T
(5.53)

The expansion coefficients χB and χS are the baryon number and strangeness
susceptibilities which are related to thermal fluctuations of baryon number and
strangeness in a thermal medium at zero chemical potentials.

To obtain the EoS in the equilibrium zone we use the numerical results for χB

and χS as a function of the temperature given in [226]. The values for the ratios
µq/T in (5.53) during the system evolution can be determined approximately. If at
some hypersurface corresponding to an isotherm, like as at the chemical freeze-out
hypersurface, the chemical potentials are uniform, then the following ratios remain
constant

µq

T
= constq, where q = B, S,E

during the chemically equilibrated isoentropic evolution of the Boltzmann massless
gas. In our approximation we use these constraints and find the corresponding
constants from the chemical potentials obtained together with Tch from an analysis
of the particle number ratios. In concrete calculations we use the chemical freeze-
out temperature Tch = 165 MeV, corresponding chemical potentials µB =29 MeV,
µS =7 MeV, µE =-1 MeV and also the strangeness suppression factor γS = 0.935
which are dictated by 200A GeV RHIC particle number ratios analysis done in
the statistical model [223, 110].

5.5.2 The EoS in the chemically non-equilibrated domain.

At the chemical freeze-out temperature Tch the ”lattice” EoS taken from [225]
and corrected for non-zero chemical potentials is matched with good accuracy
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with ideal Boltzmann hadronic resonance gas which includes N = 359 hadron
states made of u, d, s quarks with masses up to 2.6 GeV. Essentially, we use
the same particle set in the FASTMC event generator [227]. Technically, in the
numerical code, we input the corresponding N functions - the densities ni of each
hadron i and the equations for ni already at the very beginning of the system
evolution; however, these densities are meaningless in the QGP phase and their
evaluation does not influence the system evolution in the equilibrated zone. These
functions are brought into play at T < Tch. If this thermodynamic region would
correspond to the complete conservation of the particle numbers then, in addition
to the energy-momentum conservation, one would account for the conservation
equations for particle number flows in the form:

∂µ(niu
µ) = 0, i = 1 . . . N (5.54)

In our problem, however, during the system evolution in the non-equilibrated
zone T < Tch the resonance decays have to be taken into account. The decay law
in a homogeneous medium with T � mi (mi is the resonances mass) implies a
summing up of a decrease of unstable ith particle number due to decays and an
increase because of decays of heavier jth resonance into ith particle:

dNi

dt
= −ΓiNi +

∑
j

bijΓjNj (5.55)

where Γi is the total width of resonance i, bij = BijMij denote the average number
of ith particles coming from arbitrary decay of jth resonance, Bij = Γij/Γj,tot is
branching ratio, Mij is a number of ith particles produced in j → i decay channel.
The set on N equations (5.55), solved together, takes into account all possible
cascade decays i → j → k → . . . . This also conserves net charges, e.g. baryon,
electric charge and strangeness, since the charges are conserved in resonance decay
process. If one relates the Eq. (5.55) to the fluid element of some volume ∆V
moving with four-velocity uµ, then a covariant relativistic extension of the decay
law for a hydrodynamic medium leads to the equation (5.54):

∂µ(ni(x)u
µ(x)) = −Γini(x) +

∑
j

bijΓjnj(x) (5.56)

when one neglects a thermal motion of the resonance j, that can be justified
because post (chemical) freeze-out temperatures are much less than the mass of
the lightest known resonance. Also, Eq. (5.56) for the hydrodynamic evolution
is written under supposition of an instant thermalization of the decay products,
that is consistent with the ideal fluid approximation (mean free path is zero). In
the kinetic part of the HKM we consider the next approximation when the non-
equilibrium character of the distribution functions and the kinetics of resonance



5.5. EQUATION OF STATE 113

decays are taken into account. We also can approximately account for a recombina-
tion in the processes of resonance decays into expanding medium just by utilizing
the effective decay width Γi,eff = γΓi in Eq. (5.56). We use γ = 0.75 [228] for
the resonances containing u and d quarks supposing thus that about 30% of such
resonances are recombining during the evolution.

The equations (5.56) together with the hydrodynamic equations and the equa-
tion of state should give one the energy density and composition of the gas in
each space-time points. To find the EoS p = p(ε, {ni}) for the mixture of hadron
gases we start with the expressions for energy density and particle density for ith
component of multicomponent Boltzmann gas :

εi =
gi

2π2
m2

iT (3TK2(mi/T ) +mK1(mi/T )) exp(µi/T )

ni =
gi

2π2
m2

iTK2(mi/T ) exp(µi/T ). (5.57)

Then, the equation for the temperature is:

ε = 3nT +
∑

i

nimi
K1(mi/T )

K2(mi/T )
, (5.58)

where n =
∑

i ni. Having solved this equation numerically for given ε and {ni},
we get the temperature and then find the pressure using simple relation for mul-
ticomponent Boltzmann gas:

p = nT (5.59)

The equations (5.58), (5.59) define p = p(ε, {ni}).
Thus, we follow the evolution of all N densities of hadron species in hydro

calculation, and compute EoS dynamically for each chemical composition of N
sorts of hadrons in every hydrodynamic cell in the system during the evolution.
Using this method, we do not limit ourselves in chemically frozen or equilibrated
evolution, keeping nevertheless thermodynamically consistent scheme.

As it was mentioned before, we use the Boltzmann approximation in the EoS
calculation to decrease computational time. However, for emission function and
spectra calculation we use quantum Bose-Einstein/Fermi-Dirac distribution func-
tions with chemical potentials calculated to give the same particle densities as in
the Boltzmann case. We checked that the measure of relative divergence in the
energy density if one uses the quantum distribution functions instead of the Boltz-
mann one, is not bigger than 3% in the thermodynamic region which is actually
contributing to formation of hadronic spectra.
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5.6 Kinetics in the non-equilibrium hadronic zone

To describe the non-equilibrium evolution and decay of hadronic system we start
from the Boltzmann equations for the mixture of hadrons, most of which have
finite lifetimes and decay widths compatible with particle masses. The set of such
equations for i-components of the hadron resonance gas which account for the only
binary interactions (elastic scattering) and resonance decays are:

pµ
i

p0
i

∂fi(x, p)

∂xµ
= Gscatt

i (x, p) − Lscatt
i (x, p) +Gdecay

i (x, p) − Ldecay
i (x, p) ≡

≡ Gi(x, p) − Li(x, p). (5.60)

Here we ignore the processes of resonance recombination which is simpler to
account phenomenologically (see the previous Section). The term gain (G) de-
scribes an income of the particles into phase-space point (x, p) due to scatters and
resonance decays. The term loss (L) is related to a decrease of particles in the
vicinity of the phase space point (x, p) due to re-scattering and decays of reso-
nances. The loss term is proportional to the particle number density in the point
x and so Lscatt

i (x, p) = fiRi, L
decay
i (x, p) = fiDi where R is scattering rate, and

D is decay rate. If one considers the equations for stable or quasi-stable particles,
then Ldecay

i (x, p) = 0 (Di ≡ 0).
The method allowing to find the emission function of the hadrons based on

the Boltzmann equations in the (generalized) relaxation time approximation was
proposed in Refs. [199, 202]. Following this method we put: Ji(x, p) ≈ Ri,l.eq.(x, p),

Gi ≈ Ri,l.eq.(x, p)fi,l.eq.(x, p) +Gdecay
i (x, p). The quantity R(x, p) = τ−1

rel (x, p) is the
inverse relaxation time, or collision rate in global reference frame. Then,

pµ

p0
∂µfi(x, p) = (f l.eq.

i (x, p) − fi(x, p))Ri(x, p)+

+Gdecay
i (x, p) − Ldecay

i (x, p) (5.61)

The explicit form of Gdecay
i (x, p) term will be derived later. In the first approxi-

mation to hydro-kinetic evolution the parameters of the locally equilibrium distri-
bution function fi,l.eq.(x, p), e.g. the temperature T (x), chemical potentials µi(x)
are determined by the hydrodynamic evolution. The details of hydrodynamic ap-
proach used in the model are described in the next section.

5.6.1 Emission functions in hyperbolic coordinates and spec-
tra formation

All our results are related to the very central rapidity interval, y ≈ 0, and we will
use the boost-invariant approach to describe strong longitudinal matter expansion
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observed at RHIC. For such an approach the hyperbolic coordinates in (t, xL)
directions are more suitable than the Cartesian ones. Then the kinetic equations
take a form

1

mT cosh y

(
mT cosh θ

∂

∂τ
− mT sinh θ

τ

∂

∂η
+ ~pT

∂

∂~rT

)
fi(τ, θ, rT ,pT ) =[

f l.eq.
i (τ, θ, rT ,pT ) − fi(τ, θ, rT ,pT )

]
Ri(τ, θ, rT ,pT ) +Gdecay

i (τ, θ, rT ,pT ) (5.62)

where τ =
√
t2 − x2

L is a proper time, mT =
√
m2 + p2

T is a transverse mass,
θ = η − y, η is a space-time rapidity, defined above Eq. (5.43), and y is a particle
rapidity.

The formal solutions of (5.62) correspond to the non-equilibrium distribution
functions in expanding and decaying multi-hadronic system:

fi(τ, θ, rT ,pT ) = f l.eq.
i (τ0, θ

(τ0)(τ), r
(τ0)
T (τ),pT )×

× exp

−
τ∫

τ0

R̃i(s, θ
(s)(τ), r

(s)
T (τ),pT )ds

+ (5.63)

+

τ∫
τ0

dλ
[
f l.eq.

i (λ, θ(λ)(τ), r
(λ)
T (τ),pT )R̃i(λ, θ

(λ)(τ), r
(λ)
T (τ),pT )+

+G̃decay
i (λ, θ(λ)(τ), r

(λ)
T (τ),pT )

]
exp

−
τ∫

λ

R̃i(s, θ
(s)(τ), r

(s)
T (τ),pT )ds


here R̃i(λ, θ, rT ,pT ) = cosh y

cosh θ
Ri(λ, θ, rT ,pT ),

G̃decay
i (λ, θ, rT ,pT ) =

cosh y

cosh θ
Gdecay

i (λ, θ, rT ,pT ).

Here we use the notation{
sinh θ(τ0)(τ) = τ

τ0
sinh θ

r
(τ0)
T (τ) = rT − pT

mT
(τ cosh θ −

√
τ 2
0 + τ 2 sinh2 θ)

(5.64)

The invariant value is p0Ri(x, p) = p∗0R∗
i (x, p), where the asterisk ∗ denotes a

value in the local rest frame of the fluid element in point x, so

R̃i(x, p) =
cosh y

cosh θ
Ri(x, p) =

cosh y

cosh θ

pµuµ

p0
R∗

i (p, T ) =
pµuµ

mT cosh θ
R∗

i (p, T ) (5.65)
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To connect the formal solution (5.63) with observables, e.g. particle spectrum,
we use the equality

p0d
3n

d3p
=

d2n

2πpTdpTdy
=

∫
σout

dσµp
µf(x, p) (5.66)

where σout is a ”distant” hypersurface of large τ = const, where all the interactions
among hadrons are ceased.

In what follows we use the variable substitution in the first term of (5.63)
describing the ”initial emission” :{

sinh θ = τ0
τ

sinh θ′

rT = r′T + pT

mT
(τ cosh θ −

√
τ 2
0 + τ 2 sinh2 θ)

(5.67)

and the substitution :{
sinh θ = λ

τ
sinh θ′

rT = r′T + pT

mT
(τ cosh θ −

√
λ2 + τ 2 sinh2 θ)

(5.68)

in the second term of (5.63) related to the ”4-volume emission”. After transfor-
mation to new variables {τ, θ′, ~r′} we arrive at the result:∫

σout

dσµp
µf(x, p) =

∫
σ0

dσµ
0 pµf

l.eq.
i (τ0, θ

′, r′T , p)×

× exp

−
∞∫

τ0

R̃i(s, θ
(s)(τ0), r

(s)
T (τ0),pT )ds

+

τ∫
τ0

dλ

∫
σ(λ)

dσµ(λ)pµ
[
f l.eq.

i (λ, θ′, r′T ,pT )R̃i(λ, θ
′, r′T ,pT )+

G̃decay
i (λ, θ′, r′T ,pT )

]
exp

−
∞∫

λ

R̃i(s, θ
(s)(λ), r

(s)
T (λ),pT )ds

 = p0d
3N

d3p

where σ(λ) is τ = λ = const hypersurface, so dσµ(λ)pµ = λmT cosh θ′dθ′d2~r′T . The
exponential values in these expressions are the escape probabilities

P(τ, rT , θ,pT ) = exp

−
∞∫

τ

R̃i(s, θ
(s)(τ), r

(s)
T (τ),pT )ds

 (5.69)
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for particles with momentum p at space-time point (τ, rT , η = θ+y) (in hyperbolic
coordinates) to become free without any collision [199, 202].

In the expression above we can separate the 4-volume emission function

Si(λ, θ, rT ,pT ) = (5.70)

=
[
f l.eq.

i (λ, θ, rT , p)R̃i(λ, θ, rT , p) + G̃decay
i (λ, θ, rT ,pT )

]
P(λ, rT , θ,pT )

and the initial emission function:

Si,0(θ, rT ,pT ) = f l.eq.
i (τ0, θ, rT ,pT )P(τ0, rT , θ,pT ) (5.71)

These expressions demonstrate obviously that the particle emission is formed
by the particles which undergo their last interaction or are already free initially.
These expressions for the hadron emission function are the basic functions for
calculations of the single- and multi- particle spectra [199]. To evaluate these
quantities for observed (quasi) stable particles one needs to find the term gain
Gdecay

i for resonance decays and the collision rates Ri.

5.6.2 Resonance decays in multi-component gas

We suppose that in the first (hydrodynamic) approximation the products of reso-
nance decays which interact with medium are thermalized and they become free
later, after the last collision with one of other particles. However, at the late
stages of matter evolution the system becomes fairly dilute, so that some of these
produced particles get a possibility to escape without any collisions: P > 0. To
describe this we use the following form for Ldecay

i and Gdecay
i terms (for 2-particle

resonance decay) [229]:

p0
iL

decay
i (x, pi) =

∑
k

∑
l

∫
d3pk

p0
k

∫
d3pl

p0
l

Γi→klfi(x, pi)×

× mi

Fi→kl

δ(4)(pi − pk − pl) = miΓifi(x, pi) (5.72)

where resonance i decays into particles or resonances k and l.

p0
iG

decay
i (x, pi) =

∑
j

∑
k

∫
d3pj

p0
j

∫
d3pk

p0
k

Γj→ikfj(x, pj)
mj

Fj→ik

δ(4)(pj − pk − pi)

(5.73)
where the resonance j decays into particles i and k with partial width Γj→ik for
this decay channel, and

Fj→ik =

∫
d3pk

p0
k

∫
d3pi

p0
i

δ(4)(pj−pk−pi) =
2π

m2
j

((m2
j−m2

k−m2
i )

2−4m2
im

2
k)

1/2 (5.74)
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To escape the complicated problem of satisfying the thermodynamic identities
in hadron resonance gas we utilize in what follows the mass shell approximation
for resonances, supposing that mi = 〈mi〉. Also, as it was already discussed, we
take into account that the resonance mass in hadron resonance gas is much larger
than the temperature, mi >> Tc. Then the most probable velocity of resonance

in the rest system of a fluid element is small, vi ≈
√

2T
mi

, and one can use the

approximation
pµ

i ≈ miu
µ. (5.75)

So the resonance distribution function takes the form

fj(x, pi) ≈
p0

j

mj

nj(x)δ
3(pj −mju(x)), (5.76)

It allows us to perform integrations in (5.73) over pj, pk analytically and get :

Gdecay
i (x, pi) =

∑
j

∑
k

Γj→ik
nj(x)

p0
i p

0
kFj→ik

δ(mju
0(x) − p0

k − p0
i ) (5.77)

where p0
k =

√
m2

k + (mju(x) − pi)2.
Just this form of gain term is used when spectra are evaluated according to

Eq. (5.6.1). Note that in practical calculations we substitute δ-function by its
Gaussian representation:

δ(x) =
1

R
√
π
e−x2/R2

and take a finite parameter value R = 50MeV .

5.6.3 Collision rates

The collision rate R(x, p) = 1
τrel(x,p)

is one of the basic value for calculation of
the intensity of the interactions in the expanding system and its decoupling. The
latter is described through the escape probability P(x, p) (5.69) - the integral value
of R along the possible trajectory of a particle with momentum p running freely
through the whole expanding system. The rate of collisions in the rest frame of
some fluid element that accounts for scatters of given particle with any other ith
hadronic species in the thermal Boltzmann system depends only on particle energy
E∗

p = pµuµ and the thermodynamic parameters of this fluid element [230]:

R∗(E∗
p , T, {µi}) =

∑
i

∫
d3ki

gi

(2π)3
exp

(
−Ek,i − µi(x)

T (x)

)
×

× σi(si)

√
(si − (m−mi)2)(si − (m+mi)2)

2E∗
pEk,i

(5.78)
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Here gi = (2ji + 1), Ep =
√

p∗2 +m2, Ek,i =
√

k2
i +m2

i , si = (p∗ + ki)
2 is the

squared c.m. energy of the pair, and σi(s) is the total cross section of selected
particle with particle i in the corresponding binary collision. One can change the
integration variable to squared center of mass energy s, energy of scattering partner
Ek and momentum angle φ, and perform Ek and φ-integration analytically, which
gives the expression for remaining integral:

R∗(E∗
p , T, {µi}) =

∑
i

giTe
µi/T

8π2p∗E∗
p

∞∫
(m+mi)2

dsσi(s)
√

(s−m2 −m2
i )

2 − 4m2
im

2×

× sinh

(
p∗

2Tm2

√
(s−m2 −m2

i )
2 − 4m2

im
2

)
exp

(
−

(s−m2 −m2
i )E

∗
p

2Tm2

)
(5.79)

We calculate σi(s) in a way similar to UrQMD code [231]:

• Breit-Wigner formula is applied for meson-meson and meson-baryon scatter-
ing:

σMB
total(

√
s) =

∑
R=∆,N∗

〈jB,mB, jM ,mM‖JR,MR〉
2SR + 1

(2SB + 1)(2SM + 1)

× π

p2
cm

ΓR→MBΓtotal

(MR −
√
s)2 + Γ2

tot/4
,

where Γtotal =
∑

(channels)

ΓR→MB, with
√
s-dependent parametrization of partial

decay widths:

ΓR→MB(M) = ΓR
MR

M

(
pCMS(M)

pCMS(MR)

)2l+1
1.2

1 + 0.2
(

pCMS(M)
pCMS(MR)

)2l

chosen to depend on absolute value of particle momentum in two-particle
rest frame:

pCMS(
√
s) =

1

2
√
s

√
(s−m2

1 −m2
2)

2 − 4m2
1m

2
2

In the case of meson-meson scattering a constant elastic cross section of 5
mb is added in order to fully reproduce the measured cross section.

• PDG table data for p− p, p− n, p− p̄, etc. scattering

• other baryon-baryon scattering: additive quark model:

σtotal = 40

(
2

3

)m1+m2
(

1 − 0.4
s1

3 −m1

)(
1 − 0.4

s2

3 −m2

)
[mb] ,
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mi = 1(0) corresponds to meson(baryon), si - number of strange quarks in
hadron i.

Note that all relevant resonance states (see above), 359 different species - are taken
into account for the calculation of σi(s).

5.7 Hydrodynamics

We describe the system evolution in the equilibrium zone at T > Tch by the perfect
hydrodynamics. The small shear viscosity effect, which leads to an increase of the
transverse flows [208], is taken into account phenomenologically in the parameter
α of initial velocity as described above.

The matter evolution in this zone is described by the relativistic hydrody-
namical equations related to the conservation of energy-momentum, ∂νT

µν = 0,
together with the equations for particle number densities (5.56).

At T < Tch the equations for the system evolution in the first approximation
(fi = f l.eq

i ) can be derived from the basic equation (5.61). Namely, integrating
the left and right hand sides of Eq.(5.61) over d3p one arrives at equation (5.56)
for particle number flow in the non-equilibrium zone, and also to hydrodynamic
equation by integrating Eq. (5.61) over pν

i d
3pi and summing over index i.

Note that in this work we limit ourselves by the first approximation when the
matter evolution is described by the equations of ideal hydrodynamics while the
distribution function (5.63) in decaying system is non-equilibrium.

For the resolution of hydrodynamic equations we use essentially the same nu-
merical algorithm as described in Section 4.3.1.

However, here for hydrodynamic calculations related to midrapidity region on
central A+A collisions we impose longitudinal symmetry and cylindrical symmetry
in transverse direction. This actually means that tangential (in transverse direc-
tion) and longitudinal velocities in LCMS vanish, so Qφ = Qη = 0, as well as the
fluxes in φ and η directions. Then, one has to solve the following set of equations
:

∂τ

 Qτ

Qr

{Qni
}


︸ ︷︷ ︸

quantities

+∂r·

 (Qτ + p)vr

Qrvr + p
{Qni

vr}


︸ ︷︷ ︸

fluxes

+

 (Qτ + p)(1 + v2
η)/τ − (Qτ + p)vr/r

Qr/τ −Qrvr/r
{Qni

/τ −Qni
vr/r}


︸ ︷︷ ︸

sources

= 0

(5.80)
Practically vr/r is ambiguous at r = 0, so we put vr/r = α there and use α value
interpolated from the neighboring points.

Here the expression in curly brackets denote N variables associated with the
particle densities for each sort of hadrons, as in (5.54).
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Thus, hydrodynamic algorithm (Section 4.3.1) is modified to solve equations
5.80 instead of 4.15, and to account for additional N particle number densities.

5.8 Results: pion and kaon femtoscopy at top

RHIC energy

Our goal here is to apply the hydrokinetic model for an analysis of the space-
time picture of Au+Au collisions at the top RHIC energies. Such an analysis
provided in the evolutionary models of heavy ion collisions should be based on
a detailed description of the pion and kaon femtoscopic scales as well as on the
description of the absolute values of the spectra (not only spectra slopes) of the
particles. As it was noted in Ref. [202], the following factors are favored by the
simultaneous description of the mentioned data: a relatively hard EoS (crossover
transition between hadronic and quark-gluon matters, not the first order phase
transition), the pre-thermal transverse flows developed prior the thermalization
time, an account for an ”additional portion” of the transverse flows due to the
shear viscosity effect [208], a correct description of the gradual decay of the system
at the late stage of the expansion. All these factors are included in the present
version of the HKM.

We use both the Glauber-like (Section 5.4.2) and CGC-like (Section 5.4.3)
initial conditions. In the former case the mean transverse radius, defined by (5.37)
is RT = 4.137 fm for the top RHIC energy. The best fit for the Glauber IC is
reached at the following values of the two fitting parameters related to the proper
time τ = 1 fm/c: ε0 = 16.5 GeV/fm3 (〈ε〉 = 11.69 GeV/fm3) and parameter of
the initial velocity defined by (5.37), α = 0.248 (〈vT 〉 = 0.224). In the case of the
CGC-like initial conditions RT = 3.88 fm, the fitting parameters leading to the
best data description are ε0 = 19.5 GeV/fm3 (〈ε〉 = 13.22 GeV/fm3) and α = 0.23
(〈vT 〉 = 0.208). The parameters α for the initial transverse flows are somewhat
larger than they are for the free streaming approximation of the pre-thermal stage
[213]. The reason is, as it is explained in Section 5.4, that the fitting parameter
α is related to the ”unknown portions” of flows, caused by the two factors: a
developing of the pre-thermal flows and the viscosity effects in the quark-gluon
plasma. In addition, an account of the event-by-event fluctuations of the initial
conditions also leads to an increase of the ”effective” transverse flows, obtained
by averaging at the final stage, as compared with the results based on the initial
conditions averaged over initial fluctuations [232]. Since we use the later kind of
IC, it should lead also to an increase of the effective parameter α.

As it was discussed in Section 5.5, the chemically non-equilibrated evolution
at the late stage, T < Tch = 165 MeV, is not characterized by a simple EoS,
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Figure 5.4: Equation of state p(ε) used in the HKM calculations. The solid
black line is related to the chemically equilibrated phase, taken from lattice QCD
results as described in Sec. IIIA, while grey region consists of set of the points
corresponding to the different hadron gas compositions at each ε occurring during
the late non-equilibrium stage of the evolution. The dashed line denotes EoS for
the chemically equilibrated hadron gas and dotted line for the chemically frozen
one, they are shown for a comparison.
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like p = p(ε, µB), in our calculations the pressure in this domain depends on 360
variables: energy density and particle concentrations. In Fig. 5.4 we demonstrate
the ”effective” EoS at the temperatures around and below Tch. The points related
to the latter region characterize all the range of the pressure gained at each energy
density when the system evolves with the Glauber IC fixed above. We see that
the pressure is different from the ”limited” cases: the chemically equilibrated and
completely chemically frozen evolution (when the numbers of all (quasi) stable
particles and resonances are conserved). At relatively large energy densities the
non-equilibrium EoS in a dominant space-time region is harder than even in the
chemically equilibrated case. This could reduce the out- to side- ratio for transverse
interferometry radii.

The results of the HKM for the pion and kaon spectra, interferometry radii and
Rout/Rside ratio are presented in Fig. 5.5. Since the temperature and baryonic
chemical potential at chemical freeze-out, which are taken from the analysis of
the particle number ratios [223], are more suitable for the STAR experiment, the
HKM results for kaon spectra are good for the STAR data but not so much for the
PHENIX ones. Note also that, in spite of other studies (e.g., [191]), we compare
our results for the interferometry radii within the whole measured interval of pT

covered at the top RHIC energy. Finally, one can conclude from Fig. 5.5 that
the description of pion and kaon spectra and space-time scales is quite good for
both IC, the Glauber and CGC. It is worth noting, however, that the two fitting
parameters α and ε0 vary by 10-20% for different IC, as it is described above.

The special attention acquires a good description of the pion and kaon longi-
tudinal radii altogether with Rout/Rside ratio, practically, within the experimental
errors. Such an achievement means that the HKM catches the main features of
the matter evolution in A+A collisions and correctly reproduces the homogeneity
lengthes in the different parts of the system which are directly related to the inter-
ferometry radii at the different momenta of the pairs [9, 205]. In this connection
it is valuable to show the structure of the emission function for pions and kaons.

In Fig. 5.6 we demonstrate the space-time structure of the particle emission at
the Glauber IC for different transverse momenta of particles, longitudinal momenta
is close to zero. The space-time picture of particle liberation is quite different for
different transverse momenta: for the soft particles the maximal emission occurs
close to the cental part and happens at relatively later times, while the most of the
hard particles are emitted from the periphery of the system at early times. In fact
(see also [202, 233]), the temperatures in the regions of the maximal emission are
quite different for different pT , they are for pions: T ≈ 75− 110 MeV for pT = 0.2
GeV/c and T ≈ 130−135 MeV for pT = 1.2 GeV/c. So, if one uses the generalized
Cooper-Frye prescription [202, 233] applied to the hypersurfaces of the maximal
emission, these hypersurfaces will be different for the different particle momenta
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Figure 5.5: The transverse momentum spectra of negative pions and negative
kaons, all calculated in the HKM model. The comparison only with the STAR
data are presented in the separate small plots. (Top). The interferometry radii
and Rout/Rside ratio for π−π− pairs and mixture of K−K− and K+K+ pairs.
(Middle and bottom). The experimental data are taken from the STAR [95, 77]
and PHENIX [72, 235, 236] Collaborations.
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kaons with different momenta at the Glauber IC. The values of pT in the middle
row correspond to the same transverse mass for pions and kaons mT = 0.86 GeV.
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and does not correspond to common isotherm [202, 233].

One can see in Fig. 5.6, the top plots, that at equal transverse momentum
pT the maximal emission of kaons happens earlier than pions as one can expect
since the kaons interact weaker. At the same time the kaon interferometry radii in
Fig. 5.5 follow approximately the pion radii, demonstrating the approximate mT -
scaling [234] with deviations to the slightly bigger values than pion radii have. The
explanations can be gained from the middle row in Fig. 5.6 where the comparison
is done for the same transverse mass of pions and kaons. Then the maxima of pion
and kaon emissions become closer and the majority of kaons leave system even
somewhat later than pions at the same mT , opposite to the comparison at the
same pT . Since in simplest situations the homogeneity lengths for bosons depend
on mT [234], one could say that the approximate mT -scaling could indicate the
similarity of the freeze-out picture for kaons and pions. However, probably, such
a conclusion is very approximate since the real structure of the emission processes
in A+A collisions is quite complicated as one can see from the details in Fig. 5.6.

5.9 Results: space-time scales for SPS, RHIC,

LHC

The above formulated model is then applied to the description of particle spectra
and space-time scales observed at SPS and RHIC experiments.

The pion emission function per unit (central) rapidity, integrated over az-
imuthal angle and transverse momenta, is presented in Fig. 5.7 for the top SPS,
RHIC and LHC energies as a function of transverse radius r and proper time τ .
The two fitting parameters ε0 and 〈vT 〉 are fixed as discussed above and marked in
figures. The pion transverse momentum spectrum, its slope as well as the absolute
value, and the interferometry radii, including Rout to Rside ratio, are in a good
agreement with the experimental data both for the top SPS and RHIC energies.

As one can see particle emission lasts all the lifetime of the fireballs; in the
cental part, r ≈ 0, the duration is half of the lifetime. Nevertheless, according to
the results above in this chapter, the Landau/Cooper-Frye prescription of sudden
freeze-out could be applied in a generalized form accounting for momentum depen-
dence of the freeze-out hypersurface σp(x); now σp(x) corresponds to the maximum
of emission function S(tσ(r, p), r, p) at fixed momentum p in an appropriate region
of r. This finding gives one possibility to keep in mind the known results based on
the Cooper-Frye formalism, applying them to a surface of the maximal emission
for given p. Then the typical features of the energy dependence can be understood
as follows. The inverse of the spectra slopes, Teff , grows with energy, since as one
sees from the emission functions, the duration of expansion increases with initial
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Figure 5.7: The pT -integrated emission functions of negative pions for the top
SPS, RHIC and LHC energies (top); the interferometry radii (middle) Rout/Rside

ratio and transverse momentum spectra (bottom) of negative pions at different
energy densities, all calculated in HKM model. The experimental data are taken
from CERES [240] and NA-49 Collaborations [241, 242] (SPS CERN), STAR [95,
77] and PHENIX [72, 235] Collaborations (RHIC BNL)
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energy density and, therefore, the fluid element get higher transverse collective ve-
locities vT when reaching a decoupling energy densities. Therefore the blue shift of
the spectra becomes stronger. A rise of the transverse collective flow with energy
leads to some compensation of an increase of Rside: qualitatively the homogeneity
length at decoupling stage is Rside = RGeom/

√
1 + 〈v2

T 〉mT/2T , (see, e.g., [237]).
So, despite a significant increase of the transverse emission region, RGeom, seen in
Fig.1, a magnification of collective flow partially compensates this. As a result
there is only a moderate increase of the Rside with energy. Since the temperatures
in the regions of the maximal emission decrease very slowly when initial energy
density grows (e.g., the temperatures for SPS, RHIC and LHC are correspond-
ingly 0.105, 0.103 and 0.95 MeV for pT = 0.3 GeV/c ) the Rlong ∼ τ

√
T/mT

[234] grows proportionally to an increase of the proper time associated with the
hypersurface σpT

(x) of maximal emission. As we see from Fig. 5.5 this time grows
quite moderately with the collision energy.

A non trivial result concerns the energy behavior of the Rout/Rside ratio. It
slowly drops when energy grows and apparently is saturated at fairly high en-
ergies at the value close to unity (Fig.1). To clarify the physical reason of it
let us make a simple semi-quantitative analysis. As one can see in Fig. 1, the
hypersurface of the maximal emission can be approximated as consisting of two
parts: the ”volume” emission (V ) at τ ≈ const and ”surface” emission (S). A
similar picture within the Cooper-Frye prescription, which generalizes the blast-
wave model by means of including the surface emission has been considered in
Ref. [48]. If the hypersurface of maximal emission τ̃(r) is double-valued func-
tion, as in our case, then at some transverse momentum pT the transverse spectra
and HBT radii will be formed mostly by the two contributions from the differ-
ent regions with the homogeneity lengths λi,V =

√
< (∆ri)2 > (i = side, out) at

the V -hypersurface and with the homogeneity lengths λi,S at the S-hypersurface.
Similar to Ref.[237], one can apply at mT/T � 1 the saddle point method
when calculating the single and two particle spectra using the boost-invariant
measures µV = dσV

µ p
µ = τ̃(r)rdrdφdη(mT cosh(η − y) − pT

deτ(r)
dr

cos(φ − α)) and

µS = dσS
µp

µ = r̃(τ)τdτdφdη(−mT cosh(η − y)der(τ)
dτ

+ pT cos(φ − α)) for V - and
S- parts of freeze-out hypersurface correspondingly (here η and y are space-time
and particle pair rapidities, the similar correspondence is for angles φ and α, also
note that pT

mT
> der(τ)

dτ
[202, 233]). Then one can write, ignoring for simplicity the

interference (cross-terms) between the surface and volume contributions,

R2
side = c2V λ

2
side,V + c2Sλ

2
side,S (5.81)

R2
out = c2V λ

2
out,V + c2Sλ

2
out,S(1 − dr̃

dτ
)2, (5.82)

where the coefficients c2V + c2S ≤ 1 and we take into account that at p0/T � 1 for
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pions βout = pout/p
0 ≈ 1. All homogeneity lengths depend on mean transverse mo-

mentum of the pion pairs pT . The slope dr̃
dτ

in the region of homogeneity expresses
the strength of r − τ correlations between the space and time points of particle
emission at the S-hypersurface r̃(τ). The picture of emission in Fig. 1 shows that
when the energy grows the correlations between the time and radial points of the
emission becomes positive, dr̃

dτ
> 0, and they increase with energy density. The pos-

itivity is caused by the initial radial flows [212] ur(τ0), which are developed at the
pre-thermal stage, and the strengthening of the r−τ correlations happens because
the non-central ith fluid elements, which produce after their expansion the surface
emission, need more time τi(ε0) to reach the decoupling density if they initially
have higher energy density ε0. (Let us characterize this effect by the parameter

κ = dτi(ε0)
dε0

> 0). Then the fluid elements before their decays run up to larger radial
freeze-out position ri: if a is the average Lorentz-invariant acceleration of those
fluid elements during the system expansion, then roughly for ith fluid elements
which decays at time τi we have at aτi � 1: ri(τi) ≈ ri(τ0) + τi + (ur

i (τ0) − 1)/a.
Then the level of r − τ correlations within the homogeneous freeze-out ”surface”
region, which is formed by the expanding matter that initially at τ0 occupies the
region between the transversal radii r1(τ0) and r2(τ0) > r1(τ0), is

dr̃

dτ
≈ r1(τ1) − r2(τ2)

τ1 − τ2
≈ 1 − R

ε0κ
(5.83)

and, therefore, the strength of r− τ correlations grows with energy: dτ̃
dr

→ 1. Note

that here we account for τ2 − τ1 ≈ κ(ε0(r2(τ0)) − ε0(r1(τ0))) and that dε0(r)
dr

≈ − ε0
R

where ε0 ≡ ε0(r = 0) and R is radius of nucleus. As a result the second S-
term in Eq. (5.82) tends to zero at large ε0 , reducing, therefore, the Rout/Rside

ratio. In particular, if λ2
side,V � λ2

side,S then, accounting for a similarity of the
volume emission in our approximation and in the blast wave model, where as
known λside,V ≈ λout,V , one can get: Rout

Rside
≈ 1 + const · R

ε0κ
→ 1 at ε0 → ∞. It is

worthy to note that also measure µS tends to zero when dτ̃
dr

→ 1 that again reduces
the surface contribution to side− and out− radii at large pT .

The presented qualitative, in fact, analysis demonstrates the main mechanisms
leading to the non-trivial behavior of Rout to Rside ratio exposed in detailed HKM
calculations, see Fig.1 (bottom, right).

5.10 Conclusions

The hydrokinetic approach to A+A collisions is developed. It allows one to de-
scribe the continuous particle emission from a hot and dense finite system, expand-
ing hydrodynamically into vacuum, in the way which is consistent with Boltzmann
equations and conservation laws, and accounts also for the opacity effects.
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The analysis and numerical calculations show that the widely used phenomeno-
logical Landau/ Cooper-Frye prescription for calculation of pion (or other particle)
spectrum is too rough if the freeze-out hypersurface is considered as common for
all momenta of pions. The Cooper-Frye formula, however, could be applied in
generalized form accounting for direct momentum dependence of the freeze-out
hypersurface σ(p); the latter corresponds to the maximum of emission function
S(tσ(r, p), r, p) at fixed momentum p in an appropriate region of r.

The hydro-kinetic model is then developed for a detailed study of the matter
evolution and space-time picture of hadronic emission from rapidly expanding
fireballs in A+A collisions. The model allows one to describe the evolution of
the QGP as well as the gradually decoupling hadronic fluid - a chemically non-
equilibrium matter, where the equation of state is defined at each space-time point
and accounts for decays of resonances into the non-equilibrated medium.

The HKM is applied to restore the initial conditions and space-time picture of
the matter evolution in central Au+Au collisions at the top RHIC energy. The
analysis, which is based on a detailed reproduction of the pion and kaon mo-
mentum spectra and measured femtoscopic scales, demonstrates that basically the
pictures of the matter evolution and particle emission are similar at both Glauber
and CGC initial conditions (IC) with, however, the different initial maximal en-
ergy densities: it is about 20% more for the CGC initial conditions. The initial
pre-thermal flow is slightly less for the CGC IC. The main factors allowing one
to describe well simultaneously the spectra and femtoscopic scales are: a rela-
tively hard EoS (crossover transition and chemically non-equilibrium composition
of hadronic matter), pre-thermal transverse flows developed prior to thermaliza-
tion time, an account for an “additional portion” of the transverse flows due to the
shear viscosity effect and fluctuation of initial conditions, a correct description of
a gradual decay of the non-equilibrium fluid at the late stage of expansion. Then
one does not require the too early thermalization time, τi < 1 fm/c, to describe
the data well. All these factors are included in the present version of the HKM
and it allows one to describe observables with only the two parameters.

An analysis of the emission function at the top RHIC energies demonstrates
that the process of decoupling of the fireballs created in Au+Au collision lasts
from about 8 to 20 fm/c, more than the half of fireball’s total lifetime. The
temperatures in the regions of the maximal emission are different at the different
transverse momenta of emitting pions: T ≈ 75 − 110 MeV for pT = 0.2 GeV/c
and T ≈ 130− 135 MeV for pT = 1.2 GeV/c. A comparison of the pion and kaon
emissions at the same transverse mass demonstrates the similarity of the positions
of emission maxima, that could point to the reason for an approximate mT scaling.

Finally, the model is applied for the description of behavior of interferometry
radii as a function of collision energy. Then the main mechanisms that lead to the
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paradoxical behavior of the interferometry scales find a natural explanation. In
particular, a slow decrease and apparent saturation ofRout/Rside ratio around unity
at high energy happens due to a strengthening of positive correlations between
space and time positions of pions emitted at the radial periphery of the system.
Such an effect is a consequence of the two factors accompanying an increase of
collision energy: a developing of the pre-thermal collective transverse flows and an
increase of initial energy density in the fireball.

Further developments of the hydrokinetic approach and an analysis of the data
in non-central A+A collisions will be the subject of a follow-up work.
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CHAPTER

SIX

Conclusions

In Chapter 2, a new class of analytic solutions for 3D relativistic expansion with
anisotropic flows is found. The ellipsoidal generalization of the spherically symmet-
ric Hubble flow is considered within this class. These solutions can also describe
the relativistic expansion of the finite systems into vacuum. Specific equation
of state makes the application to the whole hydrodynamic stage of evolution in
heavy ion collisions to be problematic. However, the solutions can still be appicable
during deconfinement phase transition and the final stage of evolution of hadron
systems. Also, the solutions can serve as a test for numerical codes describing 3D
asymmetric flows in the relativistic hydrodynamics.

A fast MC event generator (FASTMC) based on Landau/Cooper-Frye freeze-
out prescription is presented in Chapter 3. It accounts for the decays of unstable
resonances and weak decays. FASTMC allows to describe both central and non-
central heavy ion collisions. The description of the kt-dependence of the correlation
radii at

√
s = 200AGeV RHIC collisions has been achieved within ∼ 10% accuracy.

The comparison of the RHIC v2 measurements with the MC generation results
shows that the scenario with two separated freeze-outs is more favorable for the
description of the pt-dependence of the elliptic flow.

The new hybrid dinamical model for matter evolution in ultrarelativistic heavy
ion collisions is presented in Chapter 4. It has many improvements, as compared
to existing ones: flux-tube initial conditions (EPOS), event-by-event treatment,
use of an efficient (3+1)D hydro code including flavor conservation, employment
of a realistic equation-of-state, use of a complete hadron resonance table, and a
hadronic cascade procedure after an hadronization from thermal matter at an early
time.

The model is able to describe simultaneously different soft observables: trans-
verse spectra for pions, kaons, protons, lambdas, xis; v2-coefficients for pions,
protons and kaons; interferometry (HBT)-radii for pions.
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Finally, in Chapter 5, the hydrokinetic approach to A+A collisions is devel-
oped. It allows one to describe the continuous particle emission from a hot and
dense finite system, expanding hydrodynamically into vacuum, in the way which
is consistent with Boltzmann equations and conservation laws, and accounts also
for the opacity effects. The conditions of applicability of generalized Cooper-Frye
distribution are found and proved by numerical calculations.

The hydro-kinetic model is then developed for a detailed study of the matter
evolution and space-time picture of hadronic emission from rapidly expanding
fireballs in A+A collisions. The model allows one to describe the evolution of
the QGP as well as the gradually decoupling hadronic fluid - a chemically non-
equilibrium matter, where the equation of state is defined at each space-time point
and accounts for decays of resonances into the non-equilibrated medium.

The HKM is applied to restore the initial conditions and space-time picture of
the matter evolution in central Au+Au collisions at the top RHIC energy. The
model is able to reproduce pion and kaon spectra together with pion and kaon
interferometry radii. The main factors, which allows one to describe well simulta-
neously the spectra and femtoscopic scales are: a relatively hard EoS (crossover
transition and chemically non-equilibrium composition of hadronic matter), pre-
thermal transverse flows developed to thermalization time, an account for an “ad-
ditional portion” of the transverse flows due to the shear viscosity effect and fluc-
tuation of initial conditions, a correct description of a gradual decay of the non-
equilibrium fluid at the late stage of expansion. Then one does not require the too
early thermalization time, τi < 1 fm/c, to describe the data well. All these factors
are included in the presented version of the HKM and it allows one to describe
observables with only the two parameters.

One can note the presence of the same factors (crossover EoS, pre-thermal
transverse flows) in both hybrid and hydrokinetic model, being important for the
simultaneous reproduction of particle spectra and femtoscopic scales. This stresses
the importance and solidity of the results obtained.

An analysis of the emission function at the top RHIC energies demonstrates
that the process of decoupling of the fireballs created in Au+Au collision lasts
from about 8 to 20 fm/c, more than the half of fireball’s total lifetime.

A comparison of the pion and kaon emissions at the same transverse mass
demonstrates the similarity of the positions of emission maxima, that could point
out to the reason for an approximate mT scaling.

Finally, the hydro-kinetic model is applied for the description of behavior of
interferometry radii as a function of collision energy. Then the main mechanisms
that lead to the paradoxical behavior of the interferometry scales find a natural
explanation. In particular, a slow decrease and apparent saturation of Rout/Rside

ratio around unity at high energy happens due to a strengthening of positive cor-
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relations between space and time positions of pions emitted at the radial periphery
of the system. Such an effect is a consequence of the two factors accompanying an
increase of collision energy: a development of the pre-thermal collective transverse
flows and an increase of initial energy density in the fireball.

Further elaboration of the hydrokinetic approach and an analysis of the data
in non- central A+A collisions will be the subject of a follow-up work.
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Glossary

BNL − Brookheaven National Laboratory
CERN − Conseil Européen pour la Recherche Nucléaire
SPS − Super Proton Synchrotron
RHIC − Relativistic Heavy Ion Collider
LHC − Large Hadron Collider
HBT − Hanburry-Brown-Twiss
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Development of hydrodynamic and hydrokinetic approaches to
ultrarelativistic nucleus-nucleus collisions

Iurii KARPENKO

Resumé :

La motivation principale pour étudier la physique des collisions d’ions lourds à des énergies ultrarela-
tivistes est de recréer les conditions physiques semblables à celles qui existaient dans l’Univers quelques
microsecondes après le Big Bang. On pense que la nouvelle forme fondamentale de la matière, le plasma
de quarks et de gluons a été créé dans ces collisions. L’analyse des données expérimentales fournies du
collisionneur RHIC suggère que les systèmes quasi-macroscopiques (boules de feu), créés en collisions
noyau-noyau montrent un comportement hydrodynamique à un certain moment de leur évolution.
L’objectif du travail présenté dans cette thèse est de construire le modèle dynamique de collisions noyau-
noyau, compatible avec les échelles d’espace-temps qui sont mesurés dans les expériences. Enfin, deux
modèles sont présentés. Le premier est ce qu’on appelle un modèle hybride, qui combine l’approche hydro-
dynamique pour les systèmes denses de quark-gluon et d’hadrons, constitué en collisions noyau-noyau, et
l’approche cinétique pour traiter le gaz raréfié d’hadrons formé à un stade tardif de collision. L’utilisation
de plusieurs améliorations (équation d’état crossover, les conditions initiales de l’approche EPOS, simula-
tion événement-par-événement) est soulignée et conduit à une bonne description de l’ensemble des données
expérimentales “mous” pour les collisions noyau-noyau auprès de RHIC.
Le deuxieme modèle est basé sur l’approche hydro-cinétique, qui intègre une expansion hydrodynamique de
systèmes constitués en collisions noyau-noyau et de leur découplage dynamique décrite par les probabilités
de liberation. Le modèle est étendu pour inclure les caractéristiques réalistes de collisions d’ions lourds
et appliquée pour décrire les spectres transversales pour la plupart des hadrons et des rayons HBT dans
collisions noyau-noyau auprès de RHIC.
Mots clés : Collisions noyau-noyau, hadrons, hydrodynamique, interférométrie, cinétique, générateur
d’évènement.

Abstract :

The primary physics motivation of studying heavy ion collisions at ultrarelativistic energies is to recreate
the physical conditions similar to those which existed in early universe just several microseconds after
the beginning of the Big Bang. The new, fundamental form of matter, quark-gluon plasma is believed
to be created in these collisions. The analysis of experimental data from RHIC collider suggests that
the quasi-macroscopical systems (fireballs) created in A+A collisions show hydrodynamical behavior at
certain stage of their evolution.
The goal of the work presented in this thesis is to construct the dynamical model of A+A collision,
consistent with space-time scales measured in the experiments. Finally, two models are presented. The
first one is so-called hybrid model, which combines hydrodynamic approach for dense quark-gluon and
hadron systems, formed in A+A collisions, and kinetic approach to treat rarefied hadron gas formed at
late stages of collision. The use of several improvements (crossover equation of state, initial conditions
from EPOS approach, event-by-event simulation) is stressed and lead to good description of wide range
of soft sector experimental data for 200A GeV RHIC Au+Au collisions.
The second model is based on hydro-kinetic approach, which incorporates a hydrodynamical expansion of
the systems formed in A+A collisions and their dynamical decoupling described by escape probabilities.
The model is extended to include realistic features of heavy ion collisions and applied as well to describe
transverse spectra for most abundant hadrons and HBT radii in 200A GeV RHIC Au+Au collisions.

Keywords : Heavy ion collisions, hadrons, hydrodynamics, interferometry, kinetics, event generator.


