Unravelling the Hydrogen Bonding Patterns

In Telomeric G-quadruplexes: From Structure to Function

Eugene S. Kryachko[#], Preston J. MacDougall[&] and Skye Neal[&]

[#]Bogolyubov Institute for Theoretical Physics Natl. Acad. Sci. of Ukraine, Kyiv, 03143 Ukraine

[&]Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132 U.S.A.

Abstract

In this work we investigate the molecular basis of the telomere model of aging. Its key trait is the hydrogen (H-) bonding patterns of G-tetrads that serve a top of G-quadruplexes composing telomeres. We show that these patterns demonstrate a variety of bonding characters – from classic hydrogen bonds to so called 'over-coordinated oxygen (OCO)' bifurcated H-bonds that thus result in non-rigidity of G-tetrad structures. This work has implications for the functionality of G-quadruplexes and, in turn, for the quadruplex-based telomere model of aging.