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The discovery of high-Tc superconductors (HTSC’s) had a re-
markable impact on the solid state physics, not only genera-
ting a number of new problems, fundamental and applied,
but also enforcing researchers to revise some older ones. Such
phenomena as metal-insulator transitions, inevitable disorder
in various subsystems of a compound, long-range and short-
range magnetic order, coherent and incoherent transport, low
dimensionality, and many others are intrinsic to copper oxides.
What is the most important, all respective effects are evolvi-
ng with the concentration x of doped carriers. In course of
this evolution, the initial antiferromagnetic (AFM) insulators,
also considered Mott—Hubbard [70,121] or charge-transfer [180]
insulators with broad enough dielectric gap (up to 2 eV), are
transformed into superconducting (SC) metals, whereas the
long-range AFM order gets reduced to short-range AFM cor-
relations, and the resulting critical temperature Tc of SC tran-
sition turns to be a certain function of x (see, e.g., the revi-
ews by [27, 91, 104] and the references therein). Moreover, this
function is non-monotonous (bell-shaped), reaching the maxi-
mum value at the so called optimum doping, Tmax

c = Tc (xopt),
and this value can be quite high, over 130 K [179] and up to 164
K under pressure [6]. Consequently, the HTSC’s with Tc < Tmax

c

are called underdoped, if x < xopt, or overdoped, if x > xopt.
In general, the observed strong dependence of physical (inclu-
ding SC) properties on the number of charge carriers is a great
challenge for investigation in itself, and it remains actual despite
the impressive effort of both theorists and experimentalists.

On the other hand, HTSC’s are quite sensitive to the effects
of disorder, and a definite pool of researchers has been establi-
shed, who study the effects of impurities (non-magnetic and
magnetic) there [20, 27, 33, 94, 99, 147, 169, 173], understanding
impurities as ions that do not change the charge balance of
superconducting systems. This study somehow overshadows the
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above referred fact that the parent oxide compounds are not metals but insu-
lators with a wide gap between the filled valence band and empty conduction
band, and the metallization is provided by a heterovalent doping (La3+ ← Ca,
Sr, Ba) or by non-stoichiometric oxygens in La2CuO4, by oxygenation of
YBa2Cu3O6, etc. However, it is of principal importance that such “pouring
in” of Fermi-liquid of electrons (or, more oftenly, holes) into the system has an
immediate effect on the lattice structure, leading from translational invariance
to a weaker or stronger disorder. This is related to the fact that the charge
carriers (which can be either mobile or localized, as seen below) are introdu-
ced together with their parent ions. These ions differ chemically from those
of the initial compounds and produce random Coulomb and deformation fi-
elds. It is in this sense that they resemble impurities, but possessing the main
distinguishing property of dopants — to supply charge carriers. This principal
distinction permits to separate dopants as a specific class of impurities, the “in-
trinsic” ones. Without dopants, the number of which just defines the number
of carriers, there can not be metallization of Mott insulators (besides the effect
of such uniform factors as pressure, temperature, electric field, etc.).

Considering the above indicated richness of physical characteristics of su-
perconducting state in HTSC systems and their sensitivity to the material
composition and to different inhomogeneities on one hand and the available
bulk of experimental and theoretical research on them, including the studies
by the present authors, on the other hand, it looks meaningful to prepare
a properly directed and possibly comprehensive monograph on dopants and
impurities in such systems that is effectively our purpose here.

To distinguish the two different effects of dopants, we shall denote in what
follows their concentration as “x” when they are considered as suppliers of
charge carriers and as “c” when considered as scatterers for the carriers (though
possible to be of the same value). The same notation c will be also used for
the concentration of the above mentioned ”foreign” impurities, which do not
change the number of carriers but are certainly able to influence the transport,
thermodynamics, and other characteristics of the system. This class of defects
we call strictly impurities (to distinguish them from dopants), and they are
oftenly considered as the only source of impurity effects in HTSC. Therefore
the samples without such impurities and defects (except dopants, of course)
are usually regarded “clean” [177]. Probably, this vision of HTSC materials as
uniform systems determined the prevailing usage of well elaborated field-theo-
retical methods of condensed matter physics to describe their unusual properti-
es, with the main accent on strong electron-electron correlations and coupling
to AFM degrees of freedom, and this field of study was already extensively
reviewed in the literature (see, e.g., [10,24]). In certain particular cases, as for
perovskite metal oxides YBa2Cu4O8 or Sr2RuO4 (and some other ruthenates)
which are metallic already in their stoichiometric state, this approach should be
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fully exhaustive. A rather comprehensive review of experimental and theoreti-
cal results by such treatment was recently given in the book by [135].

However, for the majority of high-Tc compounds that are non-stoichiomet-
ric, the evident fact that the number of randomly distributed dopant scatterers
equals the total number of charge carriers in the doped crystal, indicates the
need for an alternative approach, with the main emphasis on the competition
between the average dopant effect and its fluctuations. It determines the main
distinction between impurities and dopants that forms the base and defines
the title of this article. This approach naturally incorporates into the general
context of physics of disordered systems, ranging from elastic lattices with
point defects to photonic crystals [51, 103, 186], and also matches with classi-
cal works on impurity effects in conventional superconductors [4, 12]. On the
other hand, the central issue for the field-theoretical approaches, the pairing
mechanism itself, is supposed to be safely “decoupled” from the disorder effects.
Then the SC pairing potential can be included into the treatment simply as a
phenomenological parameter of the uniform “background”.

The “impurity” approach to high-Tc materials, formulated in this manner,
is being consistently developed by the authors for more than a decade, and
now it looks timely to resume the obtained results in a more comprehensive
way. This was the main motivation to us for writing the present book. Since
the existing literature on this topic does not yet contain much other studies
with that clearly expressed purpose, we mainly use our own publications as
a constructive axis, providing necessary references to the relevant results by
other research groups.

Below we realize this program, using the Green’s function (GF) method
[5, 31, 49] as a principal tool. We choose the particular type of two-time GF’s,
since they are more adapted to the systems with intrinsic disorder than the
Matsubara functions, commonly used in the field-theoretical approaches for
uniform systems.

Remind briefly that, depending on the particular statistics of quasipartic-
les, the Fourier transformed two-time (advanced) GF is defined as

⟨⟨a|b⟩⟩(∓)
ε = i

0∫
−∞

ei(ε−i0)t⟨[a (t), b (0)]∓⟩dt, (1)

where a and b are Heisenberg operators, ⟨...⟩ is the quantum-statistical average
with the corresponding Hamiltonian, and [...]∓ stands for the commutator (for
Bose particles) or anticommutator (for Fermi particles). For definite problems
in solid state theory, these operators can be related either to single-particle or
many-particle properties, and respectively one can distinguish the single-partic-
le GF’s (SPGF), two-particle GF’s (TPGF), etc. Various observable quantities
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at a given temperature T = (kBβ)
−1 are obtained after these functions through

the known spectral formula for an average of operator product [30,49]

⟨ba⟩ = 1

π

∞∫
−∞

dε

eβ(ε−µ) ∓ 1
⟨⟨a|b⟩⟩(∓)

ε , (2)

including the chemical potential µ. The argument of Fourier transform is
denoted ε (energy, in units where ~ = 1), as in Eq. (1), for the case of electronic
(Fermi) quasiparticles and ω (frequency, as more conventional) for spin (Bose)
excitations. Respectively, the GF’s are chosen of anticommutator, ⟨⟨.|.⟩⟩(+)

ε , or
commutator type, ⟨⟨.|.⟩⟩(−)

ω . However in what follows the energy and statistics
indices at GF’s will not be indicated, unless necessary.

The explicit form of GF’s can be found in different ways and, for the
non-uniform systems treated below, we shall use the method of equations of
motion [49,188]. Thus, from the Heisenberg equation of motion for operators:

i
d

dt
a (t) = [a (t) ,H]−, (3)

the respective equation for (Fourier transformed) GF’s follows

ε ⟨⟨a|b⟩⟩ = ⟨[a, b]∓⟩+
⟨⟨
[a,H]− |b

⟩⟩
. (4)

In particular, for the operators of creation a†λ and annihilation aλ of free par-
ticles with the Hamiltonian

H =
∑
λ

ελa
†
λaλ,

where ελ is the eigen-energy spectrum (since translational symmetry, the vari-
able λ includes the wave vector k), the diagonal SPGF ⟨⟨aλ|a†λ⟩⟩ reads simply
as

⟨⟨aλ|a†λ⟩⟩ =
1

ε− ελ
. (5)

A much more complicated case of interacting particles (but in a uniform
system) has a general solution

⟨⟨aλ|a†λ⟩⟩ =
1

ε− ελ − Σλ (ε)
, (6)

realized usually through the diagrammatic series [5] for the complex self-energy
Σλ (ε).
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A more adequate representation of GF in systems with randomly distri-
buted point defects (impurities, dopants) at a given concentration c, the so-
called group expansions (GE’s) of the self-energy Σ in complexes of impuri-
ty centers [72] is obtained from the equations of motion, like Eq. (4). These
expansions are analogous to the classical Ursell-Mayer group series in the
theory of non-ideal gases [114], where the particular terms (the group integrals)
include physical interactions between the particles. In our case, these expansi-
ons include indirect (and, what is important, dependent on ε) interactions
between the impurity centers, through the exchange by virtual excitations
from (admittedly renormalized) quasiparticle band spectrum, so that each term
corresponds to summation of certain infinite series of diagrams.

The observable characteristics of a disordered system are described by the
so-called self-averaging GF’s, which values for all particular realizations of di-
sorder are practically non-random, equal to those averaged over disorder [103].
The most important example of such a function is the momentum-diagonal
GF ⟨⟨ak|a†k⟩⟩. Another examples, including also TPGF’s, will be presented
in what follows. The important technical moment is that group expansions
are well defined just for self-averaging quantities, and we shall always try to
formulate each particular problem in terms of these quantities.

The crucial issue for group expansions is their convergence. Strictly speaki-
ng, it can be only asymptotic, moreover, it essentially depends on the chosen
value of ε. In practice, we simply consider the group series convergent for given
ε if the contribution to the self-energy Σ from the 1st term of GE (related to
non-interacting impurities) dominates over that from the 2nd term (impurity
pairs), then we believe that the latter can be dropped (together with the rest
of series). With varying ε, the condition can be reached that these two terms
(and, supposedly, all the rest) turn to be of the same order, this is expected to
define the limit of convergence for the given type of group expansion. Having
established these limits for various such types (they differ in the renormalizati-
on routines used at their derivation), we can combine between them to cover
the maximum energy range. Finally, the areas of the spectrum, where no group
expansion is convergent, define the special regions, like those of concentration
broadening around localized levels or of the mobility edges (dividing band-like
states from localized states).

Besides the scalar GF’s, like that given by Eq. (1), the ones of more comp-
lex algebraic structure can be used. Thus, for superconducting quasiparticles,
the natural structure of GF is a 2× 2 matrix in the Nambu spinor space, then
the observable quantities can either correspond to particular matrix elements
or to traces of these matrices, and the same matrix structure is also inherent
to the constituent terms of group expansions (see below). Another specifics
of SC systems is the symmetry of their condensate ground state, which plays
an important role in formation of impurity states and in the related physical
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effects. In the context of uniform HTSC systems, the issue of their ground
state symmetry was extensively debated in 90-ies, and the bulk of experi-
mental data [172,174] lead physicists to conclude finally in favor of the d -wave
symmetry [171]. Nevertheless, there are still discussed the alternative scenarios
of ground states with traditional s-wave symmetry [23,158], or more sophisti-
cated combinations like d+ is [61,96,157], etc. At least, the recently discovered
family of iron-based HTSC compounds [89,90] revealed a more general multi-
band structure of Fermi surface in their normal state and then a specific, so-
called extended s-wave symmetry of the SC order parameter [116]. Therefore, in
the following treatment of impurity effects, we consider the cases of these princi-
pal candidate ground states, s-wave, extended s-wave, and d -wave, separately.

This book has the following composition. In Chapter 1, we discuss the first
notable change of the phase state of CuO2 planes, yet before their metallizati-
on, under the heterovalent doping introduced into ”intercalating” planes (such
as LaO planes in the prototype La2CuO4 compound). Based on microscopical
models of spin-dependent perturbation by the localized charge carriers and
a semi-phenomenological model of perturbation of magnetic anisotropy by
the dopant-induced deformation fields, it is shown that the latter mechanism
is mainly responsible for the irreversible loss of long-range antiferromagnetic
order. Chapter 2 is devoted to an analysis of metallization processes in semi-
conductors at high enough doping levels, showing important difference between
these processes in 3D and 2D (or quasi-2D) systems. The next Chapter 3 consi-
ders the structure and quantitative parameters of localized (or resonance)
impurity states in layered superconductors (at fixed concentration of charge
carriers and superconducting order parameter). It is demonstrated that these
states are sensitive to the symmetry of superconducting state and of impurity
center. Also they can have a peculiar relation to the remnant short-range AFM
order in the host crystal. Another side of the doping effect, the very formation of
long-range superconducting order in function of doping concentration is treated
in Chapter 4 for the simplest s-wave symmetry of SC order. It is extended for
the d -wave symmetry, relevant for practical high-Tc materials, in Chapter 5,
especially devoted to a self-consistent definition of the density of states (DOS)
of quasiparticle excitations in the vicinity of the Fermi energy εF (at fixed order
parameter) and to some controversial issues about impurity scattering effects
there. An analysis of a broader spectrum area around εF is presented in Chap-
ter 6, permitting to conclude on the doping dependence of the superconducting
order parameter (the gap parameter) and of its fluctuations, due to random
scattering potential by dopant ions. Next, a special class of impurity effects
that appear to be possible in SC systems with the extended s-wave symmetry
of order parameter, as recognized in the doped iron-pnictide compounds, and
can promise interesting practical applications is discussed in Chapter 7. The
next Chapter 8 considers practically the issue of observable effects of indirect
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interactions in impurity clusters, through the specific algebraic technique for
Nambu matrix group series, permitting to find a trade-off between controversial
results of different single impurity approximations. In this course, we compare
the theoretical results with available experimental data and discuss on possible
reasons for disagreement, if any is observed. Finally, the main conclusions from
all the preceding analyses are resumed in the Chapter 8.5, setting them in the
general context of physics of disordered systems and indicating the ways for
its further developments.

At last we acknowledge the fruitful discussions on many of the relevant
issues with A.A. Abrikosov, A.V. Balatsky, V.G. Bar’yakhtar, H. Beck, Ö. Fi-
sher, Yu.B. Gaididei, F. Guinea, E.V. Gorbar, V.P. Gusynin, M.A. Ivanov,
J. Lopes dos Santos, V.A. Miransky, V.M. Pan, E.A. Pashitskii, N.M.R. Pe-
res, N.M. Plakida, A.N. Omelyanchuk, S.G. Ovchinnikov, P. Sacramento,
M.C. Santos, S.G. Sharapov, I.A. Showkovy, V.M. Turkowski and A.A. Var-
lamov. The initial researches were supported by the Scientific Cooperation
between Eastern Europe and Switzerland (SCOPES) programme under Grants
No. 7UKP062150.00/1 and No. IZ73Z0-128026 of the Swiss Science Foundati-
on, and especially the kind hospitality of Neuchatel University were the
composition of the present monograph was started is gratefully acknowledged.
On the following stages of its preparation, the further suppost came from
the European FP7 program under Grant SIMTECH No 246937, from the
Portuguese FCT Project PTDC/FIS/101126/2008, from the STCU Grant
No. 5716-2 and from the Special Program of Fundamental Researches of the
Division of Physics and Astronomy of the National Academy of Sciences of
Ukraine, to all of them we would like to express our deep appreciation.
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OF ANTIFERROMAGNETIC ORDER
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It is well established that the main conducting elements of all
copper oxide perovskites are the CuO2 planes (see Fig. 1.1), and
without doping they are insulating and AFM ordered layers.
The Cu2+ ions with spin S = 1/2 form there a two-sublat-
tice magnetic structure [20, 27, 33, 94, 169, 173]. It should be
noted that different HTSC can have several equivalent but
not identical cuprate planes, though the exchange interaction
between them is as a rule much weaker than that within the
plane (the latter being ∼103 K [91]). In particular, there are
four magnetic sublattices in La2CuO4, La2NiO4, Nd2CuO4, and
YBa2Cu3O6+δ (at δ < 0.5), and the Néel temperature TN of 3D
ordering amounts there from 300 to 400 K [27,91,179], though it
decays rapidly with introduction of dopants into these systems.
This decay is especially pronounced in the La2CuO4 compound,
so that TN → 0 in La2−x(Sr,Ba,Ca)xCuO4 already at x ≈ 0.02,
corresponding to the carrier concentration c ≈ x/2 ≈ 1% per
unit cell. In the yttrium compound, the suppression of AFM
order occurs at higher concentrations δ ≈ 0.3÷0.4, but the
scenario of vanishing long-range order is the same.

It should be mentioned that, despite the apparently simple
experimental picture of doping independent valence of copper
ions (in other words, the Cu ion state and its spin are conser-
ved), the reported approaches to the breakdown of long-range
magnetic order are quite diverse [26, 59, 133]. First of all, one
should take in mind that the transition is not to a paramagnetic
phase, since the short-range magnetic order is conserved even in
the metallic state [104] (furthermore, as shown by recent studi-
es, the long-range antiferromagnetism can be restored, placing
the SC samples into strong enough magnetic field, [99]).

In our opinion, the most essential fact about the decay of
long-range order in HTSC systems with their doping is that
it occurs yet in the insulating phase, where the carriers are
evidently localized. The known and commonly published phase



1.1. Electronic structure near dopant

Fig. 1.1. Unitary cell of LaCu2O4 compound
with a fragment of basal CuO2 plane and a
doped hole carrier residing on an O− ion (not
shown is its parent dopant ion lying outside
this plane). Arrows indicate the spins

diagrams in c − T variables for the-
se systems clearly demonstrate that
TN (c)→ 0 before the material turns
metal. In fact, this fundamental pro-
perty of copper oxides “decouples”
the suppression of long-range mag-
netic order and the metal-insulator
transition. Nevertheless, there are
still popular models where the loss of
magnetic order is related to free car-
riers, as the “spin-bag” model [148],
the translationally invariant Hub-
bard model [44, 84], or some field-
theoretic models [101,182,183].

The role of localized carriers
(even not correlated to dopants) was
first discussed by [9] (and later on,
by [14,26,59]), where it was assumed
that big enough ferromagnetic (FM)
clusters (ferrons) are formed in
CuO2 planes, able to destroy the ini-
tial AFM order. However, the men-
tioned works ignored the carrier ki-
netic energy. An attempt to include
this factor was done by [141], however with the carrier motion restricted again
to FM ordered areas, not confirmed by the available experiments.

In the context of theory of disordered systems, the effects of dopants on
magnetic order in copper oxides were first considered by [82], showing for the
particular case of La2CuO4 that, regardless of the way to introduce the carri-
ers (substituting La3+ ← Ba2+, Sr2+, Ca2+, or inserting non-stoichiometric
oxygens), efficient suppression of long-range magnetic order not only needs
localized carriers to be present but also random deformation fields to be taken
into account, necessary for that this suppression be irreversible.

1.1. Electronic structure near dopant

It is commonly accepted now (see, e.g., [45,128]) that the carri-
ers introduced into the cuprate planes mainly occupy oxygen p-orbitals. For
extremely low doping levels, they remain localized in the attractive Coulomb
field produced by the ionized dopants, near random centers p in the planar
lattice. This localization is also favored, to a considerable extent, by the layered
(close to 2D) structure of HTSC perovskites (Fig. 1.1).
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One can easily estimate the localization radius of the corresponding
electronic (hole) state, comparing the observed value of activation energy
εloc ∼ 0.1 eV for temperature dependent conductivity [168], that is the separati-
on of a local level from the bottom of conduction band (top of the valence
band in hole doped HTSC), to the relevant bandwidth W ∼ 2 eV [45, 91]:
rloc ∼ |a|

√
W/εloc ≈ (2÷3) |a| (where a = (a, b) is the vector of periods

of the 2D rhombic lattice, see Fig. 1.1). This simple estimate shows that the
state formed by the dopant field is of a moderate radius. In fact, it is mainly
localized on the O sites, nearest neighbors to a dopant (notably, the latter
is always located outside the CuO2 planes). Therefore, we restrict the consi-
deration to these nearest neighbors, of which energy levels are lowered by the
Coulomb field of the dopant. Then the splitting of energy levels in the cluster,
formed by such “defect” ions, is defined by the pp-hopping, and the related
kinetic energy exceeds that of magnetic (in particular, exchange) interactions.
As will be seen later, this permits to reduce the spin interaction between the
localized carrier and its environment to the exchange, between the spins of this
carrier (p-hole) and of the Cu2+ ions, or, the same, between a “paramagnetic
impurity” and the magnetic host. The localized spin on O− ion in CuO2 lattice
has an important specifics: it is located completely symmetrically with respect
to the spins of nearby Cu2+ ions. If those are antiparallel, as it should be in
the AFM host, such an impurity spin (or center) is usually called frustrated, or
quadrupole, and peculiar properties of magnetic disordered systems with this
type of centers were first studied by [76] (see also [79]).

In the La2CuO4+δ compound with over-stoichiometric oxygen, the latter
ions occupy the (1/4, 1/4, 1/4) positions [126], producing the strongest
perturbation of crystalline field on a single O2− ion in the closest CuO2 plane.
In this case, excess holes (released from dopants) form isolated impurity centers
of quadrupole type, or “dumbbells” (Fig. 1.2, a). They are characterized by the
C2 symmetry axis [9, 26, 59]. Otherwise, in the disordered La2−x(Sr,Ba,Ca)x
CuO4 system, impurities are the alkali earth Me2+ ions, substituting La3+
and located over (or under) centers of 2D unit cells in CuO2 planes. In this
case, the dopant potential is equally distributed over four O2− ions, permitting
formation of other type of impurity center (also frustrated) called “plaquette”
(Fig. 1.2, b), with C4 symmetry axis [141]. For each type of centers, there can
be distinguished several species, related to non-equivalent configurations of
their surrounding spins or to different orientations of the C2 axes (in the latter
case, the point symmetry of the center holds even if its localization radius is
great compared to the lattice parameter).

The lower symmetry centers (Fig. 1.2, a) are in fact parts of the higher
symmetry centers, hence we shall study all them together, making comments
on the distinctions between them, if necessary. First of all, using the approxi-
mation of no tunneling between the planes, consider the Hamiltonian for p-

14



1.1. Electronic structure near dopant

Fig. 1.2. Two different kinds of impurity centers perturbing the AFM
subsystem of a CuO2 plane. a — Dumbbell center with 4 possible symmetry
types, {1±} and {2±}, and b — plaquette center with 2 symmetry types,
{1} and {2}

holes setting on O2− ions and being under the dopant field effect. Then, for a
plaquette in p-th unit cell, we easily write down

Hp =
∑
α,β

tpα,pβ
a†pα,σapα,σ, (1.1)

where tpα,pβ
is the matrix element of pp-transitions between nearest neighbor

ions in the plaquette, a†pα,σ is the creation operator for a hole with spin σ on
αth O2− ion in this cell. In fact, such a hole corresponds to appearance of an
O− ion in the lattice. Taking account of the phases of p-states, it is easy to find
the eigen energies of the operator, Eq. (1.1): ε1,4 = ∓2t, ε2 = ε2 = 0, where
t =

∣∣tpα,pβ

∣∣. In the ground state, the hole of course occupies the ε1 level, so
that related ”cluster” creation operator for this state is

c†pα,σ =
1

2

(
a†p1,σ + a†p2,σ − a

†
p3,σ − a

†
p4,σ

)
. (1.2)

It is easily verified that the description of a low-symmetry dumbbel center can
be done in terms of the initial site operators a†pα,σ and apα,σ, since this center
includes only single O− ion.
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1.2. Magnon spectrum perturbation by a doped spin

The simplest model Hamiltonian, describing the magnetic sub-
system of undoped (supposing non-interacting) planes has the form [19,82,91]:

Hmag =
∑
n,ρ

[
(J −∆Jt)S

y
n1
Syn1+ρ + J

(
Sxn1

Sxn1+ρ + Szn1
Szn1+ρ

)
−

− D
(
Syn1

Szn1+ρ −+Szn1
Syn1+ρ

)]
, (1.3)

where Snα is the spin operator of nth Cu2+ ion in αth magnetic sublattice
(α = 1, 2), J the isotropic exchange interaction between nearest spins in CuO2

plane, ∆Jt ≪ J corresponds to the easy plane anisotropy in tetragonal phase of
this crystal, ρ runs over vectors connecting the nearest neighbors. The interacti-
on constant D is for Dzyaloshinskii—Moriya (antisymmetric) exchange, it not
only defines a small out-of-plane canting of spins but also (in this case) a weak
in-plane anisotropy ∆Jrh ∼ D2/J < ∆Jt. Through the standard means of
spin-wave theory with use of Holstein—Primakoff operators, the Hamiltonian,
Eq. (1.3), can be diagonalized as follows

Hmag =
∑
k,µ

Ωµ (k)β
†
µ (k)βµ (k), (1.4)

where the two (µ = 1, 2) magnon modes have eigen energies

Ω2
µ (k) = [A (k) + (−1)µB (k)]2 − C2 (k),

A (k) =
(
J cos 2θ +D sin 2θ +∆Jt sin

2 θ
)
sz,

B (k) =
[
J sin2 θ + 1/2

(
∆Jt cos

2 θ −D sin 2θ
)]
szγk,

C (k) = [(J − 1/2∆Jt) cos θ +D sin θ] szγk cos θ,

tan 2θ =
2D

2J −∆Jt
, γk =

1

z

∑
ρ

eikρ.

(1.5)

Here z (= 4) is the number of nearest neighbors in the plane, the mean spin
value is s = |⟨Szn1

⟩|, and the Bose operators of creation and annihilation of
magnons are related to the spin operators as:

Sxnα
=

1

2

√
s

N

∑
k

eiknα

{
(−1)α [u1 (k) + v1 (k)]

[
β1 (k) + β†1 (−k)

]
+

+ [u2 (k) + v2 (k)]
[
β2 (k) + β†2 (−k)

]}
,

Synα
=

1

2i

√
s

N

∑
k

eiknα

{
(−1)α [u1 (k)− v1 (k)]

[
β1 (k)− β†1 (−k)

]
+

+ [u2 (k)− v2 (k)]
[
β2 (k)− β†2 (−k)

]}
(−1)α cos θ + 1

2
sin θ,
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1.2. Magnon spectrum perturbation by a doped spin

Sznα
=

1

2i

√
s

N

∑
k

eiknα

{
(−1)α [u1 (k)− v1 (k)]

[
β1 (k)− β†1 (−k)

]
+

+ [u2 (k)− v2 (k)]
[
β2 (k)− β†2 (−k)

]}
sin θ − 1

2
(−1)α cos θ. (1.6)

where N is the total number of cells and the Bogolyubov—Tyablikov transfor-
mation coefficients are

uµ (k) =

√
A (k) + (−1)µB (k) + Ωµ (k)

2Ωµ (k)
, vµ (k) = (−1)µ

√
u2µ (k)− 1.

It follows from Eq. (1.5) that for small wave vectors, ak =
√

(akx)
2 + (bky)

2 ≪
≪ 1, the dispersion relations are simplified to

Ω2
µ (k) = Ω2

gµ + J2 (ak)2, (1.7)

where Ωg1 = sz
√
2J∆Jrh = Dsz and Ωg2 = sz

√
2J∆Jt are correspondingly

the smaller and greater gaps in the magnon spectrum. Then, in spite of the 2D
geometry, there can exist long-range order in the system, assured by the easy
axis magnetic anisotropy ∆Jrh in the CuO2 plane and by the finite gap Ωg1.
Respectively, the Néel temperature TN is also finite and equals (see, e.g., [131])

TN ≈
Jsz

ln (Jsz/Ωg1)
=

TMF
N

ln (J/D)
(1.8)

(TMF
N being the self-consistent mean field temperature). In view of Eq. (1.8),

it is natural to expect the most efficient doping effect on the magnetic state
of crystal as a whole just through the Ωg1 value. Note, however, that an addi-
tional stabilizing factor for the magnetic order in this 2D crystal is the (weak)
interlayer exchange interaction, leading from 2D to quasi-2D system and pro-
ducing a dispersion of magnon modes along the normal to layers. Perhaps, it
has the same order of magnitude as Ωg1, but below we shall simply ignore it,
considering that both factors are equally suppressed by the dopants. On the
other hand, this assumption permits to avoid additional complications with
involving the third spatial dimension.

Introduction of a dopant into the system results, at least, in two effects.
Besides creation of a localized (at low doping) hole, it produces a strong enough
local static deformation of the lattice. In the La2CuO4 crystal, this is expressed
not only in the displacements of dopant neighbors from their initial equilibrium
positions, but also in a sensible local perturbation of the tilt angles of the oxy-
gen octahedra, from the uniform value φ ≈ 4◦ to φ0 ∼ 20÷30◦ [166]. In its
turn, this leads to notable local perturbations of magnetic anisotropy parame-
ters and, respectively, of spin-wave spectrum. Moreover, a new spin degree of
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CHAPTER 1. Suppression of antiferromagnetic order

freedom appears, associated with each localized carrier in the crystal, hence
these new spin states and energy levels should be also taken into account.

To describe the interaction between the host spins and the spin of a locali-
zed carrier, one should take into account that a p-hole when moving, say, wi-
thin a plaquette, gets hybridized with dx2−y2-states of Cu2+-ions from the same
plaquette. Then, within 2nd order perturbation theory in pd-hybridization, this
interaction can be reduced [21,57] to the Shubin—Vonsovsky Hamiltonian:

Hpl =
∑

pα,pβ ,nγ

tp,x
2−y2

pα,nγ tx
2−y2,p

nγ ,pβ

U
a†pα,σσ̂apβ ,σ′(Snγ )σ′σ, (1.9)

where tp,x
2−y2

pα,nγ is the matrix element of pdσ-hybridization, U the Hubbard
repulsion energy for holes on Cu site, σ̂ the vector of Pauli matrices. Notice
that, in principle, the Hamiltonian, Eq. (1.9), preserves this form also for the
perturbation theory with the denominator ∆CT (the charge transfer energy
difference between p- and d-levels) instead of U . The nγ site in Eq. (1.9) is a
nearest neighbor O for the Cu ions at pα and pβ (̸= pα) and, as was mentioned
above, the impurity perturbed sites p are randomly distributed over the latti-
ce. Taking again account of the signs of tp,x

2−y
pα,nγ , we arrive at the Heisenberg

effective exchange interaction for plaquettes:

Hpl = Jpd
∑

p,α ̸=β
σ̂pα

[
S(p−a/2)α

+ S(p+a/2)α
+

+S(p−b/2)β
+ S(p+b/2)β

]
, (1.10)

where α labels magnetic sublattices in AFM structure, Jpd ∼
∣∣∣tp,x2−y2pα,nγ

∣∣∣2 /U
as follows directly from Eqs. (1.3), (1.9), and there are two possible types of
plaquettes (Fig. 1.2, b), differing by the orientations of S(p±a/2)α

, S(p±b/2)β
.

In a similar way, we obtain for dumbbells

Hdb = Jpd
∑

p,±α ̸=β
σ̂pα

[
S(p+a±b

2 )
α

+ S(p−a±b
2 )

β

]
, (1.11)

where the number of different types (in spin and orientation) of centers is 4.
Now, using Eqs. (1.6), (1.10), and (1.11), one can write down the interacti-

on Hamiltonian between the spins σpj of localized oxygen holes and host AFM
excitations:

Hint = Jpd
∑
pj ,ρ

σpj · Spj+ρ =
∑
pj

{
ωjσ

z
pj

+

+
1√
N

∑
k,µ

eikpjσ−pj

[
m

(1)
jµkβµ (k) +m

(2)
jµkβ

†
µ (−k)

]
+ h.c.

}
, (1.12)
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1.2. Magnon spectrum perturbation by a doped spin

where the index j = {1}, {2}, {1±}, and {2±} labels possible types of dopant
centers. If there were no local spin tilts (beside those intrinsic for the lanthanum
system), the localized hole spin would occur in zero (compensated) exchange
field, thus ruling out the ∼σzpj

term inHint. In reality, there is a finite frequency
ωj = Jpd sin θj in La2CuO4, corresponding to a finite exchange field produced
by Cu spins on the O site (perpendicular to the AFM vector). In principle, the
angle θj can depend either on the type of center and on the dopant concentrati-
on. As a result, the quantization axis for localized spin turns perpendicular to
the CuO2 plane (while that for Cu spins lies in the plane). The couplings in
Eq. (1.12) are

m
(ν)
{j±}1k = i (−1)j

Jpd
√
s

2
sin

(
a± b

2
k

)
{u1 (k) + v1 (k)+

+ (−1)ν sin θ [u1 (k)− v1 (k)]},

m
(ν)
{j±}2k =

Jpd
√
s

2
cos

(
a± b

2
k

)
{u2 (k) + v2 (k)+

+ (−1)ν sin θ [u2 (k)− v2 (k)]}

(1.13)

for dumbbells, and

m
(ν)
{j}1k =

Jpd
√
s

2

{
(−1)j

(
cos

ak

2
− cos

bk

2

)
[u1 (k) + v1 (k)] −

− (−1)ν
(
cos

ak

2
+ cos

bk

2

)
[u1 (k)− v1 (k)]

}
,

m
(ν)
{j}2k =

Jpd
√
s

2

{(
cos

ak

2
+ cos

bk

2

)
[u2 (k) + v2 (k)] −

− (−1)ν+j sin θ
(
cos

ak

2
− cos

bk

2

)
[u2 (k)− v2 (k)]

}
(1.14)

for plaquettes (where the index ν = 1, 2 distinguishes between the correspondi-
ng functions in the operator, Eq. (1.12)).

We note that the form of Eq. (1.12) is not specific and characterizes various
disordered spin systems (see [79]) and dielectric glasses with two-level systems
under the effect of deformation fields [113]. As will be seen below, anomalous
behavior of the subsystem of localized spins in CuO2 planes and of the whole
crystal is generally defined by the specific symmetry of the corresponding
centers and by the system dimensionality.

Noteworthy, we do not suppose the constant Jpd to be such strong that the
AFM order between Cu2+ ions within a dumbbell or plaquette be completely
destroyed, as was done by [9,26,59]. These authors considered Jpd ≫ J , though
available numerical studies do not confirm that strong inequality, moreover, one
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CHAPTER 1. Suppression of antiferromagnetic order

should rather compare Jpd with the full exchange field Jz. Finally, we notice
that even in the case Jpd ≫ J , permitting a cluster to be formed of a hole spin
strongly coupled with nearest neighbor Cu spins, this would again create an
effective cluster spin in zero exchange field of its neighbors, interacting with
host spin excitations in the same way as given by Eq. (1.12).

1.3. Effective interaction between localized spins

Now we can use the full spin Hamiltonian H = Hmag + Hint

in order to find the GF’s ⟨⟨βµ (k) |β†µ (−k)⟩⟩ω whose poles generate the well
known dispersion relation

ω2 − Ω2
µ (k)− ReΣµ

(
k, ω2

)
= 0, (1.15)

where the self-energy:

Σµ
(
k, ω2

)
=

2σ

N

∑
pj

{
ω2
[
|m(1)

jµk|
2 − |m(2)

jµk|
2
]
+

+ ωjΩµ (k)
[
|m(1)

jµk|
2 + |m(2)

jµk|
2
] (
ω2 − ω2

j

)−1
}
, (1.16)

is obtained in the linear order in concentration c (supposedly small). Here the
average value of localized spin operator σ = ⟨σzpj

⟩ is used, and the couplings

m
(ν)
jµ (k) are as given by Eqs. (1.13) and (1.14).

In presence of impurities, the lowest gap value in the magnon spectrum is
renormalized as

Ω̃g1 =

√
Ω2
g1 +ReΣ1

(
0, Ω̃2

g1

)
,

however, taking into account the long-wave asymptotics of couplings m(ν)
jµ (k):

∼(ak)2 /Ωg1 for dumbbells and ∼(ak)4 /Ωg1 for plaquettes, it follows from
Eq. (1.16) that the renormalized magnon band edge practically coincides with
its initial value Ωg1. Hence the most important terms for the restructuring of
the magnetic ground state should be of higher order then linear in the dopants
concentration. Such terms come from the indirect inter-impurity interaction,
through the exchange by virtual magnons [79]; the same interaction produces
broadening of localized spin levels. In principle, the related terms can be
calculated, using the functions, Eqs. (1.13), (1.14), in analogy to Eq. (1.16).
But the resulting expressions are too cumbersome, and simpler estimates can
be obtained from a procedure, based on an effective Hamiltonian for localized
spins only.

It will be clear from the following that the concentration broadening is
defined by the indirect interaction between the dopants at mean distances
r ∼ ac−1/2, where the main contribution comes from magnons with wave num-
bers k ∼ 1/r. The impurity spin subsystem turns adiabatically slow with
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1.3. Effective interaction between localized spins

respect to these magnons, provided c ≫ (ωj/J)
2. Since the latter value is

typically ∼10−3÷10−4, it is rather safe to expect this inequality granted for
actual concentrations c ∼ 10−2 in La2−x(Sr,Ba,Ca)xCuO4 system.

Using the Hamiltonian H, related to the self-energy (1.15), and writing
down the equation of motion for the “impurity” GF’s ⟨⟨σ+pj

|σ−pj
⟩⟩, it is simple

enough to close these equations in the second order with respect to couplings
m

(ν)
jµ (k). The same equations can be obtained in even simpler way, using the

effective “exchange” operator in the adiabatic (ω ≪ J) limit:

Heff =
∑
pj

[
ωjσ

z
pj

+
∑
p′
j′

(V
(x)
pj ,p′

j′
σxpj

σxp′
j′
+ V

(y)
pj ,p′

j′
σypj

σy
p′
j′
)

]
, (1.17)

where the parameters of effective anisotropic interaction are

V
(xy)
pj ,p′

j′
=

2

N

∑
k,µ

e
ik(pj−p′

j′ )

Ωµ (k)

{
m

(1)
jµk

(
m

(1)
j′µk

)∗
+m

(2)
jµk

(
m

(2)
j′µk

)∗
±

± m(1)
jµkm

(2)
j′µk ±

(
m

(1)
jµkm

(2)
j′µk

)∗}
+ c.c. (1.18)

It is evident that the most essential contribution into the broadening of ωj is
defined by the interactions, Eq. (1.18), between the centers of the same type,
that is for j = j′. In this case we have

V
(xy)
pj ,p′

j
≡ V (xy)

j

(
p− p′) = 4

N

∑
k,µ

eik(p−p′)

[∣∣∣m(1)
jµk

∣∣∣± ∣∣∣m(2)
jµk

∣∣∣]2
Ωµ (k)

. (1.19)

Explicit calculation of these quantities, with use of definitions (1.7), (1.13),
(1.14), shows that their dominant components are

V
(x)
j

(
p− p′) = J2

pdsz

4πJ
×



(
a

|p−p′|

)2
sin 2φ̃, ∥ db,(

a
|p−p′|

)2
cos 2φ̃, ⊥ db,

3
32

(
a

|p−p′|

)4
cos 4φ̃, pl,

(1.20)

respectively for interactions between parallel dumbbells, perpendicular
dumbbells, and plaquettes. Here φ̃ is the angle between the radius-vector p−p′

and the AFM vector of 2D magnetic matrix (remind that the latter directi-
on is defined by the tilt of CuO6 octahedra [91]). Then another component,
V

(y)
j (p − p′), turns out to be only a fraction (ωj/Jpd)

2 ≪ 1 of that given
by Eq. (1.20), which effectively reduces the Hamiltonian, Eq. (1.17), to the
Ising type.
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CHAPTER 1. Suppression of antiferromagnetic order

It is of interest that the same (Ising-like) effective interaction is also cha-
racteristic for the so-called orthogonal impurity centers in 3D magnets, but,
since caused there by a strong uniaxial anisotropy of impurity ions, it differs
from Eq. (1.20) by the sign and by the ∼r−1 decay law [79]. At the same time,
the indirect interaction between two-level systems in dielectric spin glasses,
due to exchange by virtual phonons, decays as fast as ∼r−3 [113].

1.4. Phase states at low temperatures

Because of random distribution of dopants and localized spi-
ns, associated to them, it is of course impossible to diagonalize the Hami-
ltonian (1.17) exactly. Nevertheless, this Hamiltonian is quite relevant and it
can be used, together with Eq. (1.19), in order to determine the concentrati-
on broadening Γj of the levels ωj . Then, it should be taken in mind that
the correct value of Γj for rapidly decaying interactions cannot be obtained
from simple mean-field treatment, or by using the σxpj

→ ⟨σxpj
⟩ replacement in

Eq. (1.17). The consistent estimate of Γj is defined by the minimum vicinity
of ωj where any group expansion for the GF ⟨⟨σ+pj

|σ−pj
⟩⟩ is diverging (see in

more detail below, Sec. 2.1). Writing down the respective equations of motion
with use of the Hamiltonian, Eq. (1.17), and analyzing the behavior of the
first terms of resulting GE series (non-renormalized, see also Chapter 2), one
obtains a convergency condition (at small concentrations, until Γj ≪ ωj) alike
that by [73]:

c

∣∣∣∣∣∣
∑
n̸=0

A2
j (n)

1−A2
j (n)

∣∣∣∣∣∣ < 1, (1.21)

where the interaction function for jth level: Aj (n) = V x
j (n) /2 (ω − ωj), and

n runs over all the sites in the lattice. Then, with an account of explicit form
of Eq. (1.19), we arrive at the particular forms of Eq. (1.20), which define the
considered broadening for each type of centers:

|ω − ωj | > Γj =
J2
pdsz

8J
×

{
c for db,
3

128
Γ (3/4)4 c2 for pl.

(1.22)

Since the energies ωj are of the same order of magnitude for both types of
centers, it is seen from Eq. (1.21) that a stronger broadening is obtained for
dumbbell centers. It is also of interest that, accordingly to experiments [163],
introducing Me2+ ions into the La2CuO4 lattice produces shifts of apical oxy-
gens into thetraedrical positions. In other words, creation of a plaquette center
is quite probably accompanied by the emergence of a nearby dumbbell center.
This may explain why both kinds of centers produce equally fast suppression
of the AFM order.
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1.4. Phase states at low temperatures

When the doping concentration becomes equal to

c1 =
ωdbJ

J2
pdsz

(1.23)

the broadening Γdb becomes comparable to the energy ωdb, and the estimate
(1.21) can be only applied by the order of magnitude. Then the low-energy part
of the magnon spectrum, including the gap Ωg1 of the pure crystal, is washed
out by the concentrational broadening (taking into account that ωdb & Ωg1 in
La2CuO4). As a result, the initial structure of magnetic ground state, with two
Nйel sublattices by Cu2+ ion spins in the CuO2 plane, no more corresponds to
the lowest energy.

At low enough temperatures and for sign-alternating interaction (see
Eq. (1.19)) between randomly located and localized spins, it is well known
that the glass-like ordering takes place [25], and this is just the type of orde-
ring expected for the localized subsystem. An important moment here is that
for ωj ∼ Ωg1 and c > c1, Eq. (1.22), there is no long-range order neither
for the “host” spins. In this case, a natural energy parameter, characterizing
the low energy part of the entire spectrum, is the strength of interaction bet-
ween the localized spins at mean distances, estimated just by the value of Γj ,
Eq. (1.21). This value is also related (by the order of magnitude) to the freezing
temperature Tf of the resulting spin glass, which grows with doping (provided
c > c1) as

Tf ∼ c
J2
pd

J
. (1.24)

As far as T < Tf , there can not be spin-wave excitations with wave numbers
smaller than the minimum value

kmin ∼ c (Jpd/J)2 /a, (1.25)

and the inverse value

ξmag = 2π/kmin ∼ (J/Jpd)
2 a/c≫ a (1.26)

defines the low temperature magnetic correlation length in the 2D subsystem
of Cu2+ spins.

Notice yet that if the parameters of the initial (undoped) system assure the
inequality ωj ≪ Ωg1 (for instance, if there is no Dzyaloshinskii—Moriya inte-
raction, as is the case for some HTSC compounds), the ground state will display
a glassy ordering of impurity spins against long-range ordered host spins. This
situation is actual, in particular, for AFM crystals with quadrupolar impurity
centers [76,79].

It follows also from the estimates, Eqs. (1.22) and (1.23), (and will be
confirmed below) that the spin glass phase is limited from above by the tem-
peratures ∼10 K, much lower than TN. This finite temperature domain is in

23



CHAPTER 1. Suppression of antiferromagnetic order

a reasonable agreement with some experimental estimates, for instance, those
obtained by [53].

However, it is important to keep in mind that the interaction between
impurity and host spins gets “switched off” thermically at T > Tf , since the
occupancies of both spin levels of a localized carrier get equalized, that is
σ → 0 (see Eq. (1.15)). These levels become degenerated, and the subsystem
of localized spins turns paramagnetic. Then they cannot any more influence
the ordering of copper spins in the CuO2 planes. This scenario would inevitably
lead to the restoring of long-range AFM order, that is to a re-entrant phase
transition, since the variation of TN by impurity effects is (by the order of
magnitude) only ∼cTN.

Thus we conclude that the spin-spin interaction, like that by Eq. (1.12),
alone is unable to destroy the AFM ground state of the host La2CuO4 crystal at
low dopings, being only effective at low enough temperatures. This conclusion
enforces a search for another mechanisms of destroying the long-range AFM
order, not loosing their efficiency even for Tf < T < TN.

1.5. Static deformations and long-range magnetic order

The physical origin of the inefficiency of purely magnetic me-
chanism for irreversible suppression of long-range magnetic order is easily re-
cognized in the low values of the eigen frequencies ωj of localized spins in
the field by copper spins (remind that these frequency are only finite for the
La2CuO4 compound). Therefore, it is important to understand if there are
any perturbations by dopants in the crystal that can survive at temperature
raise up to high enoughvalues. In few words, it can be said yes, they are.
Those are also originated in the heterovalent dopants (or non-stoichiometric
oxygens), whose electronic radius is different from that of the substituted ions.
The resulting local deformations and the related strain fields do not depend
on the spin states of dopants, and the interaction between a localized spin
near a dopant and its surrounding spins can be modelled as a strong local
perturbation of the host spin anisotropy. It is timely to remind here that the
anisotropy ∆Jrh (for simplicity denoted ∆J below), stabilizing the ordered
magnetic ground state in La2CuO4 even for non-interacting CuO2 planes, is
weak, fully determined by the weak uniform rhombic distortion of its perovskite
structure. The related tilts are perturbed by the introduced dopants, so that
great local tilt angles φj ≫ φ appear.

A detailed microscopic analysis [53] shows that in reality this would result
in a rather strong variation of the antisymmetric exchange. However, in order
not to complicate the presentation with unessential technicalities and to obtain
semi-quantitative estimates, we employ a simple phenomenological approach,
assuming that randomly distributed centers in 2D magnetic crystal perturb the
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1.5. Static deformations and long-range magnetic order

Fig. 1.3. Schematic of a long-scale spin
fluctuation of radius ρ ≫ a in a square
lattice with short-range AFM order. Nea-
rest neighbor spins are almost antiparralel,
while the AFM vector continuously varies
on a scale of Bloch length rB < ρ

in-plane magnetic anisotropy by an amount δJ ≫ ∆J thus causing random
deviations of the AFM vector.

To describe the long-scale spin fluctuations in the system of host spins,
we use the continuum approximation and introduce an angle function ψ (r),
related to the twist of the AFM vector at the point r with respect to its initial
orientation (Fig. 1.3). The energy density in presence of the dopant induced
fluctuations, accordingly to the Hamiltonian, Eq. (1.3), can be given by the
phenomenological functional

E [ψ (r)] =
1

2
J |∇ψ (r)|2 + sin2 ψ (r)

[
∆J

a2
+ δJ

∑
p

σpδ (r− p)

]
, (1.27)

where p again runs over random positions of dopants, and random variables
σp take with equal probabilities the values ±1.

It is easy to verify that fluctuations of the angle ψ (r) have a characteristic
decay scale defined by the two first terms in Eq. (1.26), that is the Bloch length
rB = a

√
J/∆J . If the impurity concentration satisfy the adiabaticity condition

(see Sec. 1.4), c ≫ (ωj/J)
2, then rB ≫ r and the related fluctuation involves

many dopants. The energy variation, associated with such a fluctuation of size
ρ (Fig. 1.3), is

E (ρ) =

∫
r<ρ

E [ψ (r)] dr = α1J + α2∆J (ρ/a)2 + S (ρ),

where the random quantity

S (ρ) =
δJ

a

∑
p

σp

∫
r<ρ

δ (r− p) sin2 ψ (r) dr

has the normal Gaussian distribution

Pρ (S) =
a

ρδJ
√
πα3c

exp

[
− S2

α3c (ρδJ/a)
2

]
,
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and the constants α1,2,3 ∼ 1 are defined by optimization of the test function
ψ (r). Basing on this distribution, we can write down the probability W (T, c)
of fluctuation-induced destroying of the initial spin order in an arbitrary point r
of the crystal with dopant concentration c at temperature T . Then the function
TN (c) will be defined by the condition W (TN (c), c) = η, where η ∼ 1/2.

At small concentration c≪ 1 (but again c≫ (ωj/J)
2), when the width of

distribution Pρ (S) is small compared to α1J+α2∆J (ρ/a)2, the decisive factor
for destroying the long-range magnetic order are thermal fluctuations, which
can be considered mutually independent and also statistically independent of
dopant induced fluctuations. The respective contribution into W (T, c) can
be calculated through summation of all possible thermal fluctuations of size
ρ, covering the given point (that provides an additional factor (ρ/a)2), and
optimization with respect to this size:

W (T, c) = max
ρ

(ρ/a)2
∞∫
0

e−E(ρ)/T g (E, ρ) dE, (1.28)

where
g (E, ρ) = Pρ

(
α1J + α2∆J (ρ/a)2 − E

)
. (1.29)

The maximum in Eq. (1.27) corresponds to

ρmax ≈
aT√

α2∆J (T − α1cJ/c2)
,

leading to the linear dependence of Néel temperature on impurity concentration

TN (c) = TN (0) (1− c/c2), (1.30)

where the temperature TN (0) is that given by Eq. (1.8), and

c2 =
4α1α2J∆J

α3 (δJ)
2

is the characteristic concentration for complete suppression of long-range
magnetic order (as will be shown below). Note that the values c1, Eq. (1.22),
and c2 are generally independent, and coexistence of AFM and spin-glass order
is only possible if the condition c1 < c2 holds, that means

ωdb <
2α1α2J

2
pdΩg1

α3 (δJ)
2 Jsz

.

With growing dopant concentration, the radius ρmax also grows, reaching the
Bloch value rB, whereas the Néel temperature decreases. At c→ c2 and T → 0,
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1.5. Static deformations and long-range magnetic order

the main role is transferred to statistical concentration-induced fluctuations,
where the probabilities to destroy the magnetic order within each fluctuation
cluster are strictly correlated. This eliminates the factor (ρ/a)2. For T = 0, the
probability W (0, c) is defined by the total probability of formation of “flipped”
(that is, having ψ = π/2) clusters with negative E values

W (0, c) = max
ρ

0∫
−∞

g (E, ρ) dE =
1

2

[
1− erf

(√
c2/c

)]
, (1.31)

including the error function

erf (x) =
2√
π

x∫
0

e−t
2
dt.

It follows immediately from Eq. (1.30) that TN (c) → 0, i.e., the long-range
order fully vanishes, at c → c2. Actually, it can be considered to vanish
even earlier, at some c′2 < c2, when TN (c) reaches the value Tf (c), given by
Eq. (1.23).

Remarkably, the results of the presented phenomenological approach are
found in a good agreement with a microscopic model, which takes into account,
beside Eq. (1.12), the local spin anisotropies induced by dopants (through their
strain fields). Thus, for plaquette centers, the anisotropy Hamiltonian is:

Han = −δJ
∑

p,α̸=β

[(
Sx(p+a/2)α

)2
+
(
Sx(p−a/2)α

)2
+

+
(
Sz(p+b/2)β

)2
+
(
Sz(p+b/2)β

)2]
. (1.32)

Here, for consistency, the spins S ≥ 1 are considered. Passing again to the
magnon operators, Eq. (1.32) is easily reduced to the form

Han =
1

N

∑
k,k′,p

ei(k−k′)p

{
V
(
k,k′)β†1 (k)β1 (k′)+

+
1

2
W
(
k,k′) [β1 (k)β1 (k′)+ h.c.

]}
, (1.33)

limited to the lowest magnon branch µ = 1 only. The scattering coefficients in
Eq. (1.33) are:

V
(
k,k′) = δJ

{
[u1 (k) + v1 (k)]

[
u1
(
k′)+ v1

(
k′)] cos k− k′

2
a −

− 2
[
u1 (k)u1

(
k′)+ v1 (k) v1

(
k′)] cos k− k′

2
b

}
,

27



CHAPTER 1. Suppression of antiferromagnetic order

W
(
k,k′) = δJ

{
[u1 (k) + v1 (k)]

[
u1
(
k′)+ v1

(
k′)] cos k− k′

2
a −

− 2
[
u1 (k) v1

(
k′)+ u1

(
k′) v1 (k)] cos k− k′

2
b

}
.

From Eq. (1.33) (using also the free magnon operator (1.4)), one can obtain
the dispersion equation

ω2 − Ω2
1 (k)− ReΣk (ω) = 0 (1.34)

with the self-energy (cf. to Eq. (1.16))

Σk (ω) =
2cΩ1 (k)

N

∑
k′

Ω1 (k
′)
[
|V (k,k′)|2 + |W (k,k′)|2

]
ω2 − Ω2

1 (k
′)

.

In the limit of low frequencies and wave numbers, this is reduced to

Σ0 (0) = cΣdef (δJ)
2,

where the numeric constant

Σdef =

(
8

π

)2
π/2∫
0

π/2∫
0

dxdy
(cosx− cos y)2

1− cosx cos y
≈ 4.225.

A qualitatively similar result also follows for the dumbbell centers.
It can be easily verified from Eq. (1.34), in accordance with the definition,

Eq. (1.7), that the gap in magnon spectrum becomes zero (which leads to the
loss of long-range order) when the concentration reaches the value

c→ c2m =
2J∆J (sz)2

Σdef (δJ)
2 . (1.35)

Its excellent agreement with the above estimated characteristic concentration
c2 shows full correspondence between both, phenomenological and microscopic,
approaches.

We notice that the value TN (c) can be also easily estimated from the
condition Ωg1 (c) = 0. Indeed, it follows from Eq. (1.34) that

Ωg1 (c) = Ωg1
√

1− c/c2m,

which immediately leads to

TN (c) = TN (0)
2− ln (1− c/c2m)

2 ln (J/D)
.
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1.5. Static deformations and long-range magnetic order

Fig. 1.4. Low concentration part of the phase diag-
ram for the La1−cAcCu2O4 (A = Ba, Ca, Sr, etc.)
compound. The regions I and II are respectively for
the AFM long-range ordered and short-range ordered
(spin-liquid) phases, the shadowed region is for the
spin-glass-like phase

Fig. 1.5. Experimental phase diagrams for the
characteristic HTSC compound La2−xSrxCuO4, in a
wider concentration region (left panel, B. Keimer et
al.,) and in a specific intermediate region between the
AFM and SC phases (right panel, S. Wakimoto et
al.,). Compare to the theoretical picture in Fig. 1.4

If the number of dopants (per unit cell) exceeds c2 (that is, c > c2m), the
long-range order will be absent in the system for all T . However, the effective
interaction, Eq. (1.18), between the localized spins will persist, due to contri-
bution of magnons with well defined wave numbers

k ∼ 1/r ∼
√
c/a≫ kmin ∼

√
cδJ/(aJ). (1.36)

I

But the resulting glassy order will be less stable with growing c and kmin,
and this should lead to a relative lowering of Tf (c) at c > c2 compared to its
value given by Eq. (1.23) (to a deviation from the dashed line in Fig. 1.4).
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CHAPTER 1. Suppression of antiferromagnetic order

The resulting phase diagram of the system in variables c − T in the die-
lectric (which is important) region is shown in Fig. 1.4. It displays an appea-
ling concordance, not only qualitative but also reasonably quantitative, with
various diagrams reported in experimental works (see, e.g., [27,80,104]). Thus,
the global phase diagram for La2−xSrxCuO4 ( [92]) shown in Fig. 1.5 shows
a steep, almost linear decay of the NпїЅel temperature with x until about
x ∼ 2%, and the more detailed view of the transition from AFM insulator to
metal ( [175]) reveals the onset of low temperature spin-glass phase around
10 to 20 K. These characteristic concentration and temperature values can
be directly compared to the above estimates for c2, Eq. (1.30), and Tf(c2),
Eq. (1.23), whereas the onset of metallic (and SC) state at a higher doping
x ∼ 5% corresponds to the metallization processes to be considered below in
Chs. 2 and 4.

1.6. Concluding remarks

The above presented analysis is rather suggestive in that a rea-
sonable description of doping effects on Mott insulators, which the La2CuO4

system (and other copper oxides) undoubtedly belong to, can be reached
through the physics of doped magnetic semiconductors. This approach is adop-
ted by many authors, in particular by [91] in their review article. Actually,
the undoped HTSC systems display rather conventional magnetic properties.
Then, introduction of dopants leads to a gradual destroying of the long-range
AFM order, passing to a short-range correlated order. The latter is characteri-
zed by the correlation radius ξmag ∼ 1/kmin, such that the AFM order is
preserved within this range but absent at longer distances.

We should say that other well-known HTSC system, YBa2Cu3O6+δ, can
also realize a similar scenario of destroying long-range order by deformation
effects. But the dopants in this compound are O2− ions forming chains within
the CuO planes, and they produce other types of centers, which are more
efficient in frustrating the initial order in the neighboring CuO2 planes rather
than in deforming the lattice [78]. It is probably by this reason that the effect
of random strains is not so pronounced here, and the suppression of long-range
order takes place at higher c values, related to δ ≈ 0.3÷0.33 [27]. Nevertheless,
this value again precedes the concentration necessary for the system to become
metallic.

The Green function approach, used here to describe the suppression of
long-range magnetic order, will be applied below to study the insulator-metal
transition and the superconducting properties of metallized doped systems.
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As was mentioned, introduction of dopants into parent HTSC
compounds has a profound effect on their physical properties,
the most important of them being the appearance of metallic
conductivity and superconductivity with high Tc values. First
of all, the dopants lead to destruction of long-range magnetic
order, when the main changes in the ground state and excitati-
on spectrum of magnetic subsystem are due to localized charge
carriers near dopant ions. With further growing number of do-
pants, this modification also extends to the electronic properti-
es, so that a considerable part of charge carriers pass to delocali-
zed states.

Starting to discuss the electronic states, we shall follow the
same physical concepts that were (to a certain extent) exploi-
ted in the above analysis of magnetic excitation states. They
consist in what can be called the “impurity” approach, where
an important role is played by the Coulomb fields by ionized
dopants. It was mentioned already that for a single dopant (or
for a low enough doping, see the criteria below) the electronic
state of a doped electron (hole) is localized. The extensive physi-
cs related to such localization was studied in a great detail for
conventional semiconductors with donor or acceptor impuriti-
es [75, 120, 121]. We begin from some basic notions for these
systems, in view of a certain similarity with the metallization
processes in HTSC, though the specifics of the latter materials,
especially their pronounced layered structure and practically
2D character of carrier motion in the crystal, will introduce
important new features into that elaborated scheme.

For a well understood hydrogen-like impurity state in a se-
miconductor [121], the local energy level can be presented as
εloc = −m∗e4/2κ, where m∗ is the main band effective mass, e
the electron charge, and the (static) dielectric constant κ≫ 1.
For κ ∼ 20÷40, as in HTSC materials [91]), such a level can be
shallow enough. The local level has a certain concentrational
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broadening Γloc ≪ |εloc| (until the impurity concentration c is low enough), and
the edge of main band is shifted by some amount ∆ε, also proportional to c. It
should be emphasized that the parameters of localized states at infinite-range
impurity perturbation are mainly defined by the properties of the host crystal,
while the localized states in 2D situation for doped HTSC are rather related to
the short-range impurity perturbation. However the features of restructuring
of the electronic spectrum at given c and εloc are quite universal and there
are no visible reasons that they be very different for the process of doping the
HTSC compounds.

With growing c (also related to the number x of dopants and carriers),
either Γloc and ∆ε grow, so that the “band” of localized states gets closer to
the edge of the main band, and after reaching the so-called Mott threshold
value [121] cM ≈ 0.02(a/aB)

3, where aB = ~2κ/(m∗e2) is the effective Bohr
radius, the two bands merge and a transition of (3D) system into metallic state
occurs. Physically this is due to the overlapping tails of localized electronic
states on dopants, transforming them to another, delocalized type [51].

The theory of insulator-metal transition in the 3D systems with long-
range impurity states from finite-range perturbations was further developed
by [75], and we shall follow its main concepts generalized for low-dimensional
systems [81,83].

In particular, it was shown for doped 3D semiconductors [77], that a quali-
tative restructuring of spectrum happens when the impurity concentration
tends to a characteristic value, c→ cloc ∼ (a/rloc)

3, defined by the radius of
localized state

rloc =
~√

2m∗ |εloc|
∼ a

√
W

|εloc|
≫ a, (2.1)

where W is the bandwidth. At this concentration, the mean inter-impurity
distance r ∼ ac−1/3 becomes of the order of localization radius rloc, and there
are two different types of such restructuring. The particular type is formally
defined by the relation between c and another characteristic concentration,
specific for each system,

ccr ≈ 0.05
( γ
W

)6
, (2.2)

where γ is the hybridization parameter between the impurity state and main
band (long-wave) states. If cloc < ccr, then at ccr > c > cloc the incoherent
restructuring takes place, otherwise, for c > cloc, ccr, the restructuring is of
the coherent type. In both cases, the vicinity of εloc of width Γloc gets filled
with fluctuation states, localized on groups of impurities at mean distances
∼r ∼ ac−1/3. The physical difference between the two types follows from the
way how Γloc grows with concentration.
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For incoherent restructuring, Γloc at c > cloc turns bigger than either εloc
and ∆ε, and comparable by the order of magnitude to the Fermi energy εF
(referred to the edge of main band). Hence the Fermi states are widely broa-
dened and there is no evidence for transition into metallic phase. Formally,
this is also the case for the above mentioned hydrogen-like states, though the
metallization onsets here above the Mott threshold.

In the case of coherent restructuring, a weaker coupling of localized states
to the main band states defines a relatively slower growing Γloc, and the resul-
ting spectrum turns more complicated. Here a new region of band-like states
(besides the main band) emerges near the local level εloc, since its dispersion
turns to be ≈∆ε, wider than the width Γloc of the localized level. This enables
the system as a whole to pass into metallic state already at c ∼ cloc.

Though not rigorous, a more specific definition of cloc can be given, ba-
sing on ideas of percolation theory [118,156] in assumption that the spectrum
restructuring results from effective percolation over localized impurity wave
functions. Then, using the probability distribution for the distance r between
neighbor impurities in 2D and 3D systems:

p (r) =
2πcr

a2
exp

(
−πcr

2

a2

)
, 2D,

p (r) =
4πcr2

a3
exp

(
−4πcr3

3a3

)
, 3D,

we readily arrive at the expressions for cloc through the localization radius rloc

cloc ≈
1

π
|ln (1− p2)|

(
a

rloc

)2
, 2D, (2.3)

cloc ≈
3

4π
|ln (1− p3)|

(
a

rloc

)3
, 3D, (2.4)

where p2 ≈ 0.68 [143] and p3 ≈ 0.29 [42] are the respective values of percolation
threshold.

In spite of having this rather clear general picture of electronic spectrum
development at introducing dopants into a semiconductor, the discovery of
HTSC opened the problem how to adapt these notions to electronic systems
of lower dimensionality, 2D or quasi-2D, where the character of restructured
electronic spectrum is mainly defined by the impurity (localized) perturbati-
ons. This issue was analyzed by [81, 83] and in the following sections of this
Chapter, we present the main results of corresponding papers. We consider the
T = 0 case, showing the essential distinctions of the spectrum restructuring in
low-dimensional, 2D and quasi-2D, systems through the comparison with 3D
systems.
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CHAPTER 2. Metallization in doped semiconductors

2.1. Model and basic results for 3D systems

To make this comparison easier for the reader, we first present
the essential results for 3D doped (semiconductor derived) metals. Alike the
preceding Chapter 1, we follow the model of single-site perturbation, or the
Lifshitz model, where the impurity ions occupy random sites in simple cubic
crystal and create the same perturbation potential VL on these sites. We again
suppose the impurity concentration small, c ≪ 1, so that direct interactions
between impurities can be neglected in the Hamiltonian. Let also the crystal
electronic spectrum consist in a single band εk, then the Hamiltonian of this
model has the simplest form

Hel =
∑
k

εka
†
kak +

VL
N

∑
p,k,k′

ei(k−k′)pa†k′ak, (2.5)

where a†k and ak are the Fermi operators of creation and annihilation of electron
in kth band state,N the number of cells, and we do not write explicitly the spin
indices (only implying the factor of 2 in the lattice sums for thermodynamical
quantities). The energy reference is chosen at the long-wave edge ak → 0 of
non-perturbed band, where the dispersion law in tight-binding nearest neighbor
approximation

εk = 2t (3− cos akx − cos aky − cos akz) (2.6)

turns parabolic: εk ≈ t (ak)2, within the considered energy range |ε| ≪W (the
bandwith related to the tight-binding hopping amplitude t as W = 2zt with
the coordination number z = 6 for simple cubic lattice).

The relevant GF’s for this problem are Gk,k′ = ⟨⟨ak|a†k′⟩⟩. The spectrum
of single-particle band states for the Hamiltonian, Eq. (2.5), is defined by the
poles of momentum-diagonal GF’s Gk = Gk,k, averaged in chaotic distribution
of impurities. More generally, the spectrum of quasiparticle states (including
localized ones) is most adequately characterized by the DOS

ρ (ε) =
2

πN

∑
k

ℑGk (ε). (2.7)

It includes the usual spin factor 2 (supposing electrons unpolarized), and the
symbol ℑ for imaginary part, already mentioned in Introduction.

To characterize the local electronic properties, it is more suitable to use
the local GF’s

G0n (ε) =
1

N

∑
k

eiknGk (ε) (2.8)

describing the correlation between electron states on sites 0 and n in the lattice.
In particular, the DOS, Eq. (2.7), is presented in terms of the diagonal local
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2.1. Model and basic results for 3D systems

GF G ≡ G00 as ρ (ε) = (2/π) ImG (ε). As usual in condensed matter theory,
the lattice sums, like Eq. (2.8), are calculated by passing from summation to
integration. Within quadratic dispersion law, it is suitable to integrate in the
“radial” variable ξk = εk − µ and “angular” variables θk = arccos kz/k, φk =
= arctan ky/kx, accordingly to the rule:

1

N

∑
k

fk =
( a
2π

)3 ∫
dkf (k) ≈

≈ ρN
8π

W ′−µ∫
−µ

dξ

π∫
0

sin θdθ

2π∫
0

dφf (ξ, θ, φ), (2.9)

with the normal state Fermi DOS ρN = ma3kF/
(
π2~2

)
and the “effective

bandwidth” W ′ =
(
π4/48

)1/3
W (in what follows we shall not distinguish it

from the true bandwidth W ). 1
The energy spectrum of a non-uniform system generally consists of conti-

nuous areas of band-like (extended) states and localized (fluctuation) states
separated by the Mott mobility edges [120]. The approximate boundaries of
these regions and the spectrum characteristics within each of them can be
established, studying convergence of various types of GE’s for momentum-
diagonal GF’s Gk related to the Hamiltonian, Eq. (2.5). These different ex-
pansions are constructed, starting from the basic equation of motion,

Gk,k′ = δk,k′G0
k +

VL
N

∑
p,k′′

eip(k−k′)G0
kGk′′,k′ , (2.10)

where G0
k = (ε− εk)−1 is the non-perturbed band GF, and choosing different

ways to close the infinite chain of equations for the “scattered” GF’s, like Gk′′,k′

in Eq. (2.10).
In particular, the routine to obtain the fully renormalized GE consists

in consecutive iterations of this equation for the “scattered” GF’s and in
systematic separation of those already present in the previous iterations [72].
Thus, for the m-diagonal GF Ĝk, we first separate the scattering term with
the function Gk itself from those with Gk′,k, k′ ̸= k:

Gk = G0
k +

VL
N

∑
k′,p

ei(k−k′)·pG0
kGk′,k =

= G0
k + cVLG

0
kGk +

VL
N

∑
k′ ̸=k,p

ei(k−k′)·pG0
kGk′,k. (2.11)

1 Strictly speaking, the “radial” integration in Eq. (2.9) is reasonable only for close
enough vicinity of Fermi energy, nevertheless we extend it in what follows to the whole
bandwidth, in order to obtain some qualitative estimates.
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Then for each Gk′,k, k′ ̸= k we write down Eq. (2.11) again and single out the
scattering terms with Gk and Gk′,k in its r.h.s:

Gk′,k =
VL
N

∑
k′′,p′

ei(k
′−k′′)·pG0

k′Gk′′,k =

= cVLG
0
k′Gk′,k +

VL
N

ei(k
′−k)·pG0

k′Gk +
VL
N

∑
p′ ̸=p

ei(k
′−k)·p′

G0
k′Gk+

+
VL
N

k′′ ̸=k,k′;p′ei(k
′−k′′)·p′

G0
k′Gk′′,k. (2.12)

Note that, among the terms with Gk, the p′ = p term (the second in r.h.s. of
Eq. (2.12)) bears the phase factor ei(k

′−k)·p, so it is coherent to that already
present in the last sum in Eq. (2.11). That is why this term is explicitly sepa-
rated from other, incoherent ones, ∝ ei(k

′−k)·p′ , p′ ̸= p (but there will be no
such separation when doing 1st iteration of Eq. (2.11) for the m-non-diagonal
GF Gk′′,k itself).

Continuing the sequence, we collect the terms with the initial function
Gkwhich result from:

i) all multiple scatterings on the same site p and
ii) such processes on the same pair of sites p and p′ ̸= p.
Then summation in p of the i)-terms gives rise to the first term of GE, and,

if the pair processes were neglected, it would coincide with the self-consistent
T-matrix result of Sec. 5.2. The second term of GE, obtained by summation in
p,p′ ̸= p of the ii)-terms, contains certain interaction matrices Âp′,p generated
by the multiply scattered functions Gk′,k, k′ ̸= k, etc., (including their own
renormalization). For instance, the iterated equation of motion for a function
Gk′′,k with k′′ ̸= k,k′ in the last term of Eq. (2.11) will produce:

Gk′′,k =
VL
N

∑
k′′′,p′′

ei(k
′′−k′′′)·p′′

G0
k′′Gk′′′,k =

=
VL
N

ei(k
′′−k)·pG0

k′′Gk +
VL
N

ei(k
′′−k)·p′

G0
k′′Gk+

+terms with Gk′,k and Gk′′,k+

+terms with Gk′′′,k (k′′′ ̸= k,k′,k′′). (2.13)

Consequently, we obtain the solution for an m-diagonal GF as

Gk = Gk,k =
1

1/G0
k − Σk

, (2.14)

and the renormalized self-energy is expressed through the respective GE: Σk =
= cT (1 + cBk + ...), where T = VL/ (1−GVL) is the renormalized “T-matrix”
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Fig. 2.1. Diagrammatic representation of
“irreducible group integrals” for impurity
pairs in Eq. (2.15)

(not to be confused with temperature).
The next term to unity in the brac-
kets is:

Bk =
∑
n̸=0

A0,ne
−ikn +A0,nAn,0

1−A0,nAn,0
,

(2.15)
describing the effect of all possible impurity pairs on quasiparticle with qua-
si-momentum k. Formally, the numerator in Eq. (2.15) corresponds to two “ir-
reducible group integrals” (Fig. 2.1) in analogy to the classical Ursell—Mayer
theory [114].

The indirect (mediated by the quasiparticles) interaction between impuri-
ties at lattice sites 0 and n is described by the function

A0,n =
T

N

∑
k′ ̸=k

eik
′nGk′ ,

where the sum in quasi-momenta is restricted accordingly to the above algo-
rithm of separation. There are even more such restrictions in each product:
A0,nAn,0 = (T/N)2

∑
k′ ̸=k

∑
k′′ ̸=k,k′ ei(k

′−k′′)nGk′Gk′′ , and so on. This seems
to seriously hamper calculation of the sum

∑
n̸=0 in Eq. (2.15) (not to say

about higher order GE terms). To avoid this difficulty, the integrand can be
identically transformed as:

A0,ne
−ikn +A0,nAn,0

1−A0,nAn,0
= A0,ne

−ikn +A0,nAn,0+

+
A0,nAn,0A0,ne

−ikn +A0,nAn,0A0,nAn,0

1−A0,nAn,0
,

in order to use simple identities at summation of the two first terms in the
r.h.s. [72]. Due to the momentum independence of T-matrix we have:∑

n̸=0

A0,ne
−ikn = −A0,0 +

∑
n

A0,ne
−ikn =

= −A0,0 +
T

N

∑
n

∑
k′ ̸=k

ei(k
′−k)nGk′ = −A0,0,

and ∑
n̸=0

A0,nAn,0 = −A2
0,0 +

∑
n

A0,nAn,0−

−A2
0,0 +

T 2

N2

∑
n

∑
k′,k′′ ̸=k′

ei(k
′−k′′)nGk′Gk′′ = −A2

0,0.
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Notably, at summation of all higher order products, like∑
n̸=0

A0,nAn,0A0,ne
−ikn = −A3

0,0 +
∑
n

A0,nAn,0A0,ne
−ikn = −A3

0,0+

+
T 3

N3

∑
n

∑
k′,k′′ ̸=k′

ei(k
′−k′′+k′′′−k)nGk′Gk′′Gk′′′ =

= −A3
0,0 +

T 3

N2

∑
k′,k′′

Gk′Gk′′Gk−k′+k′′ ,

the restrictions can be simply ignored. Thus we arrive at the final form for the
renormalized GE:

Σk = cT
(
1− cA0,0 − cA2

0,0 + cB̃k + ...
)

(2.16)

with the modified pair term:

B̃k =
∑
n̸=0

A3
0,ne

−ikn +A4
0,n

1−A2
0,n

,

where the interaction A0,n = G0,nT and local GF’s G0,n = N−1
∑

k e
iknGk

and G = G0,0 are already free from restrictions. The two terms, next to unity
in the brackets of Eq. (2.16), correspond to the excluded double occupancy of
the same site by impurities, the term cB̃k describes the averaged contribution
of all possible impurity pairs, and the dropped terms are for triples and more
impurities.

An alternative routine consists in iterations of equation of motion for all
the terms Gk′′,k in Eq. (2.11) and summing the contributions ∝ G0

k, like the
first term in the r.h.s. This finally leads to the solution of form

Gk = G0
k +G0

kΣ
0
kG

0
k, (2.17)

where the non-renormalized self-energy

Σ0
k = cT 0

(
1 + cB0

k + ...
)
, B0

k =
A0

0,ne
−ikn +A0

0,nA
0
n,0

1−A0
0,nA

0
n,0

, (2.18)

contains the interaction functions A0
0,n = G0

0,nT
0 with the respective scattering

amplitude, also called “T-matrix” [124]: T 0 = VL/
(
1−G0VL

)
, and local GF’s

G0
0,n = N−1

∑
k e

iknG0
k, G0 = G0

0,0. Like the previous Eq. (2.16), the next to
unity term in the brackets of Eq. (2.18) describes the contribution from all
possible clusters of two impurities and the dropped terms are for clusters of
three and more impurities. This permits in principle to describe the hierarchical
structure of quasi-continuous spectrum of localized states in the crystal with
impurities [103].
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2.1. Model and basic results for 3D systems

It was shown by [77] (see also [79]) that the representation, Eq. (2.18),
assures GE to remain convergent down to the closest range near the local level
εloc (this range defines its true broadening Γloc, see below). The local level itself
is defined by the pole of the first GE term, being the solution of the Lifshitz
equation

VLReG
0 (εloc) = 1 (2.19)

provided VL < V cr
L < 0 (see the definition of the critical value V cr

L below,
Eq. (2.22)). One can represent the wave function of such localized state as:

|ψloc⟩ =
∑
n

aloc (n) |ψn⟩, (2.20)

where the atomic wave function on nth lattice site, |ψn⟩, enters |ψloc⟩ with the
amplitude

aloc (n) = aloc (0)VLG
(0)
0n (εloc),

relative to the amplitude aloc (0) at the very impurity site. The latter amplitude
is fixed through the normalization condition

∑
n |aloc (0)|

2 = 1 as

aloc (0) = −
[
VL

√∣∣dG(0)/dε
∣∣
ε=εloc

]−1
.

As established by the analysis of a number of disordered systems with long-
range impurity states [79], the type of spectrum restructuring at high enough
impurity concentrations is already pre-defined by the parameters of single
impurity problem. Namely, if the amplitude aloc (0) of local state at the very
impurity site is small, |aloc (0)| ≪ 1, the restructuring will be of incoherent
type, and for the other extreme, 1−|aloc (0)| ≪ 1, it should be of coherent type.

On the other hand, when passing to the energy range of band-like states in
such non-uniform system, a wider area of convergence is achieved with the fully
renormalized representation, Eq. (2.16). Below, the Hamiltonian, Eq. (2.5),
and GE’s, Eqs. (2.16) and (2.18), will be also used for analysis of electronic
spectrum and electronic states in 2D and quasi-2D systems.

As to the present 3D case, its comprehensive analysis by [80] has shown
that the function G0 in Eq. (2.19) behaves near the band edge (at 0 < −ε ≪
≪W ) as

G0 =
1

V
(cr)
L

+
π

2
√
6
∣∣∣V (cr)

L

∣∣∣3/2
√
−ε+O

( ε

W 2

)
. (2.21)

Then the condition
VL = V

(cr)
L = −

(π
6

)4/3 W
2

(2.22)

defines the (negative) critical value of impurity perturbation, such that the
localized level, Eq. (2.19), exactly coincides with the band edge, εloc = 0. For
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CHAPTER 2. Metallization in doped semiconductors

perturbations being slightly overcritical, VL < V
(cr)
L (but VL/V

(cr)
L − 1 ≪ 1),

this level lies just below the edge

εloc ≈ −
24

π2

∣∣∣V (cr)
L

∣∣∣( VL

V
(cr)
L

− 1

)2
, (2.23)

and the characteristic concentration cloc, related to Eqs. (2.1), (2.4), is

cloc ≈
18
√
3

π
|ln (1− p3)|

∣∣∣εloc
W

∣∣∣3/2 ≪ 1. (2.24)

Then the localized wave function |ψloc⟩ is isotropic and decays within the cha-
racteristic length (cf. to Eq. (2.1)) rloc ≈ ac

−1/3
loc ≫ a, so that its amplitude

on the very impurity site aloc (0) ≈ c
1/6
loc , that is rather small. In view of the

aforesaid, this indicates the preference for incoherent type of spectrum restruc-
turing at higher impurity concentrations, c≫ cloc (but still at c≪ 1).

The renormalized band energies ε (k) are defined by the solutions of the
dispersion equation, following from the fully renormalized GE

ε (k)− εk − ReΣk [ε (k)] = 0, (2.25)

provided the series (2.18) for the respective self-energy Σk is convergent. Tes-
ting their few first terms shows that the convergence condition is [74,75,77]:

c

∣∣∣∣∣∑
n

A2
0n

∣∣∣∣∣≪ 1. (2.26)

Considering this condition fulfilled, we can retain only the first, k-independent
term, Σ(1), in the expansion, Eq. (2.16). This gives rise to the self-consistent
approximation for local GF, defined as

G (ε) ≡ G(0)
(
ε− Σ(1)

)
(2.27)

(analogous approximation will be also implemented for various SC systems in
the following Chapters).

In the present case, it can be verified that there are two formal solutions
of Eq. (2.25) with an account taken of Eqs. (2.21) and (2.27) at c≪ cloc. The
first solution describes weakly perturbed quasiparticle states of the main band
with the shifted dispersion law

ε (k) ≈ εk +∆(1)

and with the quasiparticle broadening

Γ (k) ≈ ImΣ(1) [ε (k)] ≈ 2π

81

c

cloc

|εloc|3/2 ε1/2 (k)
|εloc|+ ε (k)

.
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2.1. Model and basic results for 3D systems

The shift ∆(1) of the band edge is found from the condition ∆(1) =
= ReΣ(1)

(
∆(1)

)
and equals

∆(1) ≈ 2π

81

c

cloc
|εloc|, (2.28)

that is much smaller of |εloc|. The concentration broadening Γ(1) of this shifted
edge is estimated as the width of its vicinity where the series, Eq. (2.16), ceases
to converge and there is no more sense to label the states with wave vector
(or, in other words, the transition from band to localized states occurs). This
width is of the order of

Γ(1) ≈ 2π

81

(
c

cloc

)1/2
∆(1), (2.29)

that is yet much smaller of ∆(1) itself. Notice that the same estimate for Γ(1)

(where the Mott mobility edge εc should be located) follows from the known
Ioffe—Regel—Mott (IRM) criterion in doped semiconductors [71,121], requiring
for band states that the mean free path be greater than the wavelength: ℓ≫ λ.
Relating ℓ ∼ V τ with the group velocity V = ∇kε (k) and lifetime τ ∼ ~/Γ (k)
and expressing λ = 2π/k, this criterion is formulated as

k∇kε (k)≫ Γ (k). (2.30)

The condition that both sides of this relation turn to be comparable establi-
shes the minimum permitted value of wave number for the main band kmin ∼
∼ c/

(
ac

2/3
loc

)
(cf. to kmin ∼

√
cδJ/(aJ) for AFM magnons in Sec. 1.4).

The second solution of Eq. (2.25) should formally describe another branch
of band-like states (beyond the main band), with a dispersion law near the
localized level εloc:

εimp (k) ≈ εloc −
4π

81

c

cloc

ε2loc
|εloc|+ εk

. (2.31)

But in fact one cannot consider these states really existing, since the IRM
criterion does not hold for them and this whole band occurs within a broader
vicinity of εloc, of width ∼ (c/cloc)

1/2 εloc, where the fully renormalized GE
(2.16) ceases to converge and hence does not make sense. Pitifully, this fact
is overlooked by some authors, for instance, in the review article on doped
cuprate materials by [8].

Actually, all the states beyond the main band (in particular, for ∆1− ε≫
≫ Γ1) should pertain to the localized type, and the true broadening of the local
level εloc should be defined as the convergence radius of the non-renormalized
group expansion (2.18), which is of the order of

Γloc ∼
(
c

cloc

)1/3
exp

[
−η
(
cloc
c

)1/3]
εloc (2.32)
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CHAPTER 2. Metallization in doped semiconductors

with some numerical factor η ∼ 1. The value of Γloc is just of the order of in-
direct interaction energy V0n ∼ G(0)

0n /
∣∣dG(0)/dε

∣∣
ε=εloc

at mean distances |n| ∼
∼ r ∼ ac−1/3 between neighbor impurities, taking into account that for |n| ≫ a
we have

G
(0)
0n (εloc) ≈

6a

π|n|W
exp

(
−
37/4c

1/3
loc√
2

|n|
a

)
. (2.33)

This gives us a clear physical reason to prefer the non-renormalized expansi-
on in the considered energy range. The alternative choice, for the renormali-
zed GE, would lead to evident overestimate for Γloc, and we note that such
overestimate is typical at inadequate usage of the basis of band states for
narrow distributions of localized states. This also explains why the commonly
used approximation of coherent potential fails for such purposes [51]. Further
on, we shall recognize similar problems at studying the quasiparticle spectra
of disordered superconductors.

One more situation, when an apparent solution turns inexistent, corres-
ponds to the slightly undercritical perturbation, VL > V

(cr)
L (but 1−VL/V (cr)

L ≪
≪ 1), when there appears a formal root of Eq. (2.19) at some positive energy
εres > 0 within the main band (but εres/W ≪ 1, like the case of resonance
vibrational states in crystals with heavy impurities, [88]). But the related
broadening at this energy is too big:

Γres ∼
ImΣ(1)(εres)∣∣dG(0)/dε

∣∣
ε=εres

∼
√
εresW ≫ εres, (2.34)

and thus excludes any real resonance in the spectrum (alike the known absence
of s-wave resonance in usual quantum-mechanical scattering by a rectangular
well [147]).

The above obtained expressions, Eqs. (2.39), (2.40), and (2.43), are only
valid until c ≪ cloc. If the concentration reaches c ∼ cloc, all the values εloc,
∆(1), Γ(1), and Γloc turn to be of the same order of magnitude. For yet hi-
gher concentrations, c ≫ cloc, the broadening Γloc is already defined by the
convergence of renormalized expansion, Eq. (2.16), and is of the order

Γloc ∼
(
c

cloc

)2/3
|εloc|. (2.35)

This is already much greater of |εloc| and of the same order as either the band
edge shift and the width of supposed impurity band εimp (k). The physical con-
clusion is that for such high impurity concentrations (though still c≪ 1) it does
not make sense to speak about neither local impurity level nor impurity band
of coherent states, nor shifted edge of the main band. All these features get
“buried” within a broad fluctuation region Γloc. Such evolution of the spectrum
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2.2. Spectrum and electronic properties of doped 2D metal

Fig. 2.2. Transformation of the electronic spect-
rum in presence of impurities, which produce a
shallow localized level εloc, with their growing
concentration c: a — c ≪ cloc, b — c ≫ cloc

corresponds to its incoherent res-
tructuring, as qualitatively shown
in Fig. 2.2.

In the system, where each im-
purity center contributes with one
electron (this is just the physical
condition for dopants in HTSC),
the position of Fermi level εF can
be defined (in neglect of Cou-
lomb interaction between carri-
ers) from the physically clear sum
rule (the number equation)

εF∫
−∞

ρ (ε) dε = c = x, (2.36)

with the DOS function given by Eq. (2.7). For small concentrations, the posi-
tion of εF occurs within the vicinity Γ(1), Eq. (2.22), of the shifted band edge,
and for high concentrations it neither exceeds the value of Γloc, Eq. (2.35).
Thus, it always stays within the range of localized states, and there is no evi-
dence for insulator-metal transition. Indeed, such transition may be obtained
within the scope of different model of impurity perturbation, the Anderson s-d
hybrid model [13], but we do not treat this issue in more detail here, addressing
the reader to the original papers [74, 75, 81, 83]. On the other hand, the above
considered Lifshitz model looks to be closer, than the hybrid model, to the
specifics of single-site perturbation by dopant impurities in HTSC compounds.

2.2. Spectrum and electronic
properties of doped 2D metal

It was already mentioned in the preceding Chapter 1 that the
energy levels of those ions in cuprate planes which are closest neighbors to
dopants, are shifted down compared to the rest of ions. In this course, the
CuO2 planes themselves are not sensibly distorted, permitting to consider the
Hamiltonian (2.3) as an adequate model for the electronic effects of dopants.
For simplicity, we omit now the spin (magnetic) degrees of freedom of charge
carriers and only focus on the question how the lowered (here 2D) dimensionali-
ty is reflected in the electronic properties of impurity subsystem, compared to
the 3D case in Sec. 2.1.

Let us consider the low energy spectrum of a non-perturbed 2D system,
using the simplest tight-binding dispersion law (analogous to Eq. (2.6) for 3D
case):

εk = 2t (2− cos akx − cos aky). (2.37)
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CHAPTER 2. Metallization in doped semiconductors

Fig. 2.3. Exact geometry of the 2D Fermi surface for dispersion law, Eq. (2.37), (solid line)
and its circular approximation (dashed line) at εF = W/8

Fig. 2.4. Energy dependencies for real and imaginary parts of the electronic Green function
for the normal metal state (with parabolic dispersion law) in a uniform planar system

Near the bottom of the 2D band 0 ≤ ε ≪ W = 8t, where the dispersion law,
Eq. (2.37), turns quadratic: εk ≈ t (ak)2, it leads to a constant normal state
DOS ρ (ε) ≈ ρN = 4/ (πW ). This corresponds to a circular Fermi surface:
εF = (akF)

2/2πρN , which is a good approximation to its true form: εF =
= (2− cos akx− cos aky)/2πρN by Eqs. (2.21), (2.37), at akF ≈

√
2πx . 1 (see

Fig. 2.3).
Consequently, there appears a qualitative difference from the 3D case in

the behavior of local GF’s (cf. to Eqs. (2.14), (2.24)). Here the integration rule,
Eq. (2.9), is reformulated for “radial” and “angular” variables ξk = εk − µ and
φk = arctan ky/kx, as:

1

N

∑
k

fk =
( a
2π

)2 ∫
dkf (kx, ky) ≈

ρN
2

W ′−µ∫
−µ

dξ

2π∫
0

dφf (ξ, φ), (2.38)

where again we shall not distinguish the “effective bandwidth” W ′ = πW/2
from true bandwidth W for Eq. (2.37) and the “radial” integration is rather
qualitative. Now, the diagonal GF reads:

G(0) (ε) =
ρN
2

W−µ∫
−µ

dξ

ε− µ− ξ
=
ρN
2

{
ln

∣∣∣∣ ε

W − ε

∣∣∣∣+ iπθ [ε (W − ε)]
}
, (2.39)

and it has divergence of its real part and jumps of imaginary part at the band
edges (Fig. 2.4).
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2.2. Spectrum and electronic properties of doped 2D metal

These singularities are also present in the non-local functions:

G
(0)
0n (ε) =

ρN
4π

W−µ∫
−µ

dξ

ε− µ− ξ

2π∫
0

eik·ndφ = − 2

W
K0

(√
−4πε

W

|n|
a

)
, (2.40)

where K0 (z) is the MacDonald function [2] with asymptotics

K0 (z) ≈
{√

2/πze−z, z ≫ 1,
ln(2/γEz), z ≪ 1,

and the Euler constant γE ≈ 1.781.
In this case, Eq. 2.11 (with use of Eq. 2.39) leads to formation of a local

level at any VL < 0, that is with zero threshold (V (cr)
L = 0) as expected for

2D systems [147]. For weak impurity attraction, 0 < −VL ≪ w, one obtains as
shallow level as

εloc ≈ −W exp

(
− 1

|VL|ρN

)
, (2.41)

that is |εloc| ≪ |VL| ≪W . This level is related to the isotropic (in plane) wave
function, Eq. (2.12), with the decay radius rloc = a/

√
4π |εloc| /W , and the

characteristic impurity concentration in this system is now (cf. to Eq. (2.13))

cloc = 4 |ln (1− p2)| |εloc| /W ≈ 4.56 |εloc| /W ≪ 1, (2.42)

while the amplitude of localized state at the very impurity site is aloc (0) ∼
∼ √cloc ln (1/cloc), that is relatively small.

The dispersion law for renormalized band states, within the convergence
range of the series (2.13), is again given by Eq. (2.25), with use of the truncated
self-energy Σ(1) = cVL/ (1− VLG) and the renormalized local GF G (ε) =
= G(0)

(
ε− Σ(1)

)
. In the long-wave limit ak ≪ 1 this dispersion law reads

ε (k) ≈ εk +
cW

2 ln [W 2/(εk|εloc|)]
. (2.43)

Taking into account Eq. (2.42), this relation defines the shifted band edge (at
k → 0) within logarithmic accuracy as

ε (k → 0) = ∆(1) ≈ cW

2 ln [1/(ccloc)]
.

The damping of these states Γ (k) ≈ πcW/
{
2 ln2

[
W 2/(εk|εloc|)

]}
leads,

through the IRM criterion, Eq. (2.22), to the minimum allowed value of the
wave number kmin ∼ πa−1√c/ ln

[
W 2/(∆(1)|εloc|)

]
and to the respective broa-

dening of the shifted band edge

Γ (kmin) = Γ(1) ∼ cW

2 ln2 [1/(ccloc)]
≈ ∆(1)

ln [1/(ccloc)]
≪ ∆(1). (2.44)
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In particular, it is seen that the activation energy εac = ∆(1) − εloc is growing
non-linearly with c.

An approximate description of the dispersion law and DOS in crystal
with higher concentration of impurities can be obtained within the self-con-
sistent procedure for Σ(1), alike Eq. (2.27), using the explicit functional form,
Eq. (2.39):

G (ε) = G(0)
(
ε− Σ(1)

)
= ρN ln

(
Σ(1) − ε

W − ε+Σ(1)

)
. (2.45)

Otherwise, from the relation Σ = cVL/ (1− VLG) we have G = V −1
L −c/Σ, and

comparing this with Eq. (2.45) arrive at a simple self-consistency equation for
the complex-valued function Σ(1) (ε):

Σ(1) ln
Σ(1) − ε
|εloc|

+
c

ρN
= 0. (2.46)

This corresponds to the self-consistent T-matrix approximation (SCTMA,
[22]), extensively used also in the HTSC theory (see below). In accordance
with the discussion of Sec. 2.1, this approximation is only justified within the
convergence range of the renormalized series (2.15). However, the formal soluti-
ons of Eq. (2.46) exist for all ε and the respective G (ε) can be considered as
a model for the true GF.

Let us begin again from low impurity concentrations, c≪ cloc. Then from
Eq. (2.39) we find that close to the band edge (for |ε| ≪ |εloc|) the inequality
holds: ImΣ(1) ≪ ReΣ(1), and the energy dependence of ReΣ(1) (ε) is logarith-
mically slow: ReΣ(1) (ε) ≈ cW/2 ln

[
W 2/(εloc(ε− Σ(1)))

]
. Setting ReΣ(1) ≈

≈ ∆(1) near the shifted band edge, one can then define the behavior of ImΣ(1)

and, respectively, of DOS in this energy region:

ρ (ε) ≈ c

π
Im

1

Σ(1) (ε)
, (2.47)

as shown in Fig. 2.5. It is seen that for ε −∆(1) ≫ Γ(1) (see Eq. (2.44)) thus
calculated DOS is close to the unperturbed value, ρ (ε) ≈ ρN , but it decays
steeply within the transition region

∣∣ε−∆(1)
∣∣ ∼ Γ(1) and turns zero at ε−

−∆(1) = −Γ(1). In reality, ρ (ε) should remain finite here, which is assured by
the next to unity terms from the series, Eq. (2.15), omitted in the SCTMA app-
roach. As will be shown below, the pair term is dominating here and contributes
into DOS by ∼ (c/cloc)

2 ρN .
Similarly to the 3D case, another dispersion law, like Eq. (2.42), with so-

lutions close to εloc, does not make sense, so that all the states beyond the
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2.2. Spectrum and electronic properties of doped 2D metal

Fig. 2.5. Self-consistent calculation of DOS, Eq. (2.47), for perturbation parameter VLρN =
= −0.4 (resulting in cloc ≈ 7.6%, accordingly to Eq. (2.42)) and different impurity concent-
rations: c = 1% (dash-dotted line), 4.4% (dashed line) and 10% (solid line). Vertical dashed
lines indicate the positions of the localized level εloc ≈ −0.08/ρ0 and of the Fermi level (at
10% doping)
Fig. 2.6. DOS calculated with direct account of the contribution of impurity pairs for the
same perturbation as in Fig. 2.5 and c = 1% ≪ cloc. The line 1 represents the weakly
perturbed main band, the lines 2 and 3 follow the two asymptotics of Eq. (2.49) (interpolated
by the dash-dotted line), and the line 2 ′ is for the “far tail” of pair contribution, which defines
the position of Fermi energy εF below the mobility gap εc (inset). Note the striking difference
with the self-consistent result (the dash-dotted line in Fig. 2.5) near the impurity level εloc

renormalized main band are localized. The true value of concentrational broa-
dening of the impurity level in this case also follows from convergence of the
non-renormalized group series, Eq. (2.17), and has the order (cf. to Eq. (2.23))

Γloc ∼
(
c

cloc

)1/4
exp

(
−η2D

√
cloc
c

)
|εloc| ≪ |εloc|, (2.48)

where the factor η2D ∼ 1 can generally differ from that in Eq. (2.23). Outside
this region, the DOS ρ(ε) at c≪ cloc is given by the expressions

π(c2/cloc)

∣∣∣∣ εloc
ε− εloc

∣∣∣∣ ln ∣∣∣∣ 2εloc
ε− εloc

∣∣∣∣ ρN for Γloc ≪ |ε− εloc| ≪ |εloc|,

(4πc/cloc)
2

∣∣∣∣ εloc
ε− εloc

∣∣∣∣3 ρN for |εloc| ≪ |ε− εloc| ≪
√
|εloc|W.

(2.49)

Their analysis shows that the whole range of “far tail” (ε−εloc > |εloc|) contains
about ∼c2/cloc states (per unit cell), hence it is only this amount of electrons
(from the total of c) that can occupy the states above the shifted edge of
the main band, at ε > ∆(1) where the coherent spectrum begins. However, this
amount is smaller than the volume Γ(1), Eq. (2.44), of the transition region bet-
ween localized and band states, leading to the conclusion that the Fermi level
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at c ≪ cloc lies within the range of localized states (below the mobility edge
εc), as shown in the inset to Fig. 2.6, and the considered system is insulating
at that low doping.

With c growing and reaching values ∼cloc, all the quantities ∆(1), Γ(1) and
Γloc become of the order of |εloc|, like the 3D case, and the impurity states
distribution merges with the main band. As a result, the activation energy εac
turns to decrease and becomes zero. In the self-consistent approach, Eq. (2.46),
this process is reflected in the merger of the two edge points, zeros of ImΣ(1)(ε).
The respective concentration value is cm =

(
4/e2

)
cloc (corresponding to ≈4.2%

at Fig. 2.5, close to the case shown there by the dashed line).
At further growing concentration, up to c≫ cloc, the main band edge with

dispersion law, Eq. (2.43), gets shifted to negative energies:

∆(1) = −
cρ−1
N

ln (c/cloc)
, (2.50)

that is much lower than εloc. The transition region between the two types of
states in this case is of the order of

Γ(1) ∼ cW

2 ln2 (c/cloc)
≪ ∆(1), (2.51)

so that the band edge shift in the 2D system (unlike the 3D system) is a well
defined quantity at c≫ cloc (see Fig. 2.7). The minimum value of wave number
is kmin ∼ a−1√c/ ln (c/cloc), and the damping of band states

Γ (k) =
cW

2 ln2 (|εloc| /εk)
,

so that the IRM criterion holds within the whole energy range ε−∆(1) ≫ Γ(1),
covering also the energy εloc where the impurity level existed at c ≪ cloc.
In all this range, the DOS is close to ρN , but it decreases down to values
∼(cloc/c)2 ln6 (c/cloc) ρN within the transition region Γ(1), and behaves accor-
dingly to the second line in Eq. (2.49) at ∆(1) − ε ≫ Γ(1). This broadening
of the band edge (and, respectively, of the initial logarithmic singularity in
ReG seen in Fig. 2.4) impedes formation of a single-impurity resonance in Σk,
Eq. (2.15), that is of a resonance spike in DOS anywhere near the band edge.

Thus, for concentrations c≫ cloc, the restructuring of 2D electronic spect-
rum is expressed in:

i) the shift ∆(1), Eq. (2.43), of its edge, which is only moderately broadened
(due to the additional big logarithm in the denominator of Eq. (2.32)), and

ii) in disappearance of the resonance spike near the local level energy.
The further analysis shows that this restructuring does not produce band-

like states with enhanced amplitudes near impurity sites (the impurity band).
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2.2. Spectrum and electronic properties of doped 2D metal

Fig. 2.7. Schematics of the spectrum restructuring at c ≫ cloc (cf. to the self-consistent
result, the solid line in Fig. 2.5)
Fig. 2.8. Doping dependence of the chemical potential from Eq. (2.52) (solid line) is
reasonably close to linear: µ (x) ≈ (x− xmet)w/2 (dashed line) at x ≫ xmet ≈ 2cloc

Accordingly to the above referred general theoretical scheme [79], such restruc-
turing should be classified as incoherent. However, the restructuring of 2D
system reveals a qualitative difference from that of 3D system at equivalent
conditions (the same Lifshitz disorder model and similar values of its parame-
ters) in the physical outcome, since it does not forbid the metallization (the
insulator-metal transition). Indeed, this is suggested, firstly, by a pronounced
shift of the band edge, secondly, by the level of occupation of the renormalized
band, and finally, by the phase state of electronic system as a whole.

The Fermi energy in the doped system is generally defined by Eq. (2.25)
and, as follows from the above description of DOS in 2D system, it obtains at
c ≫ cloc the value εF ∼ xρ−1

N , hence it is much higher of the mobility edge εc
and occurs within the range of extended, relatively weakly damped states. It
can be concluded that the reduced spatial dimensionality favors the transition
of initial insulating system into metallic state under the effect of doping. The
characteristic impurity concentration cloc can be also considered as an effective
estimate for the metallization threshold in doping, xmet ∼ cloc. Then, if the
chemical potential in a doped and disordered system is understood as the
distance from the Fermi energy εF to the mobility edge εc ≈ −∆(1) + Γ(1), its
dependence on doping level is:

µ (x) ≈ xW

2

(
1− 1

ln2 (x/cloc)

)
, (2.52)

and, as seen from the plot in Fig 2.8, it is very well approximated by the simple
linear function

µ (x) ≈ x− xmet

2
W (2.53)

with xmet ≈ 2cloc in the doping range x≫ xmet relevant for metallic behavior.
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CHAPTER 2. Metallization in doped semiconductors

The indicated result on metallization of 2D doped systems is obtained wi-
thin the random phase approximation and looks to contradict the known con-
clusion about suppression of 2D metal-insulator transition by the weak locali-
zation (coherent backscattering) effects [11]. In this relation, we note that, unli-
ke exemplar 2D electronic gas systems as semiconducting GaAs/GaAlxAs1−x
inversion layers [1], the multilayered HTSC are actually 3D structures with a
strongly pronounced anisotropy, and this situation needs a special treatment
of impurity effects, to follow in the next Section.

2.3. Specifics of doped quasi-2D systems

Real crystals, even strongly anisotropic, always preserve a finite
coupling between the layers (conductive in metallic state). Therefore we briefly
discuss the distinct features, expected to appear at transition from purely 2D
to weakly 3D situation, following [81]. Let us choose the dispersion law for
quasi-2D system as follows

εk ≈ t
(
ak∥
)2

+ t′ (akz)
2, (2.54)

where k2∥ = k2x + k2y and t′ ≪ t is the interlayer hopping parameter. From
Eq. (2.8), we find the general expression for local GF near the band edge:

G(0) (ε) =
ρN
2

[
ln

∣∣∣∣ −ε+W ′

W +W ′ − ε

∣∣∣∣+√ ε

W ′ ln

∣∣∣∣∣
√
W ′ +

√
ε√

W ′ −
√
ε

∣∣∣∣∣−

−
√
W − ε
W ′ arctan

√
W ′

W − ε
+ iπmin

(
1,

√
ε

W ′

)]
, (2.55)

where W = 2/ρN = 4πt and W ′ ≡ π2t′ characterize respectively the in-plane
and out-of-plane dispersion. This function practically coincides with that given
by Eq. (2.39) in the “quasi-2D” energy region, |ε| ≫ W ′. In contrary, in the
“quasi-3D” region, |ε| ≪ w′, it behaves as:

G(0) (ε) ≈ ρN
2

(
ln
W ′

W
+ π

√
−ε
W ′ − 1

)
,

that is similar to Eq. (2.27) for the 3D system and here also a certain finite
perturbation value is needed for emergence of local level with energy εloc <

< 0. However this critical value, V (cr)
L =W/ [ln(W/W ′)− 1], is logarithmically

suppressed compared to Eq. (2.21). If the local level gets within the “quasi-3D”
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2.3. Specifics of doped quasi-2D systems

region, 0 < −ε ≪ W ′, the process of spectrum restructuring needs a special
treatment (see below) but this is only possible at a rather strict limitation

0 < V
(cr)
L − VL ≪

(
V

(cr)
L

)2
W

, (2.56)

hardly realizable, unless VL is somehow controlled. For a wider range of this
parameter (

V
(cr)
L

)2
W

< V
(cr)
L − VL ≪W,

the local level εloc gets within the quasi-2D region W ′ ≪ −εloc ≪W , and the
type of spectrum restructuring at c≫ cloc is the same as for purely 2D system
from the preceding Section 2.2.

To estimate the characteristic impurity concentration for quasi-2D system,
let us consider the related wave function (2.12) of the localized state. Unlike
the above considered isotropic systems, characterized by a single localization
radius rloc, we find here two very different radii, namely, a longer one which
characterizes the in-plane extension:

rloc ≈ a

√
t

|εloc|

(that is formally the same as in isotropic 2D and 3D systems), and a much
shorter one for the extension across the weakly coupled layers:

r′loc ≈
{
a, |εloc| ≫W ′,

a
√
W ′/ |εloc|, |εloc| ≪W ′,

This readily implies that the effective overlapping of localized functions and
spectrum restructuring in quasi-2D systems occurs at impurity concentration

cloc ∼

{
|εloc| /W, |εloc| ≫W ′,

|εloc|3/2/
(
W
√
W ′
)
, |εloc| ≪W ′,

(2.57)

In the latter case, the impurity level occurs within the “quasi-3D” region if the
concentration satisfies the condition cloc ≪ c ≪ ccr ∼ W ′/W , then the spect-
rum restructuring is confined to the same region and has the same character as
for the isotropic 3D system, described in Sec. 2.1. In this case, as was already
mentioned, there is no reliable evidence (within the given approach) for metalli-
zation of such quasi-2D system. However, with further doping, when reaching
the condition c ≫ ccr, the restructuring already extends to the “quasi-2D”
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CHAPTER 2. Metallization in doped semiconductors

region, where the relations of Sec. 2.2 become valid. Then the insulator-metal
transition turns viable and it is controlled by the criteria formulated above for
the 2D case.

Thus, the sufficient condition in quasi-2D systems for their metallization is
that the dopant (or, the same, carrier) concentration surpasses simultaneously
the characteristic values cloc and ccr, and this resembles the situation in 3D
systems with low critical concentration, Eq. (2.2).

2.4. Concluding remarks

The results presented in this Chapter are quite appropriate, in
our opinion, for description of processes that take place at doping of metal-
oxide systems, basic for all the HTSC materials. In fact, these have an affinity
to 2D systems, the number of carriers equals the number of dopants, and the
ionized dopants produce an attractive perturbation potential VL for holes. In
the limit of isolated layers, the metallization process for HTSC compounds
should be close to the scenario, proposed for purely 2D systems, while the
account of weak interlayer tunneling (weak “3D-zation”) will relate them to the
results obtained for quasi-2D systems. Though the perturbations from dopants
in HTSC’s may not be, strictly speaking, of single-site type and rather pertain
to dumbbell or plaquette type (see Chapter 1), but, if one considers finite size
clusters of perturbed ions in CuO2 planes with relatively low concentration,
the resulting model is practically identical to Eq. (2.4) and leads to the same
results for low energy spectrum.

However, an experimental check for some of the predictions by this ap-
proach would be quite useful. In spite of an undoubted similarity between
HTSC systems and common doped semiconductors, indicated in the literature
and mentioned in the previous Chapters, it would be of evident interest to
trace the properties of doped metal oxides at all levels of doping, especially
near the metallization.

In particular, this relates to the non-monotonic c-dependence of carrier
activation energy in dielectric phase, and to the broadening of Fermi states
and electrical resistivity in metallic phase. Moreover, this check is of principal
importance, since it would help to clarify the role of 2D effects and to verify
adequacy of the proposed approach to non-stoichiometric HTSC compounds.
We notice again that in their normal state they represent the so-called “bad
metals” where the total number of charge carriers (delocalized and localized)
coincides with the number of scattering centers.

It is evident that the model, Eq. (2.4), has also certain limitations for direct
(quantitative) comparison with the real compounds, since those have another
strongly pronounced characteristics, as magnetism related to electronic (Hub-
bard) correlations. They are not included in the present consideration either by
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2.4. Concluding remarks

technical and physical reasons. Technically, the tendency to make the model as
complete as possible will jeopardize its analytical flexibility and predictability,
while our purpose was to develop some simple concepts on analytical grounds.
Physically, the reasons to leave aside the correlation effects stem from the fact
that a small amount of doped carriers should be weakly interacting even in a
Mott insulator.

The movement of a carrier in AFM-ordered medium has also its peculiari-
ties, but, when treating again the diluted fermion gas, they are only reflected in
the effective mass (or bandwidth), supposed to be a fitting parameter. Resumi-
ng, we can consider even the present, rather simple, theory and its conclusions
ripe enough for qualitative and semi-quantitative testing in experiments made
on this purpose.
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IN SUPERCONDUCTING SYSTEMS
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54

Following the program announced in Introduction, we pass now
from impurity effects in normal systems to those in supercon-
ductors, considering the SC coupling as a given phenomenologi-
cal parameter with proper spatial symmetry. It is well known
that this symmetry is generally related with the microscopical
mechanism of SC pairing between charge carriers, and in parti-
cular for singlet pairing the effective attraction of carriers with
opposite spins and momenta on the same lattice site leads to
the usual s-wave symmetry whereas that on the neighbor si-
tes favors for the d -wave (or the extended s-wave) symmetry.
Notice that at this stage of the presentation the impurities (ac-
cordingly to their indicated distinction from dopants) are still
viewed separately from the charge carriers, which independently
form the SC condensate and quasiparticle excitations.

The simplest model for this situation is given by the extensi-
on of Hamiltonian (2.5), taking an explicit account of the spin
indices σ and of the attractive character of dopant impurity
perturbation (the explicit minus sign of the last term) and in-
cluding the mean-field term for SC coupling:

HSC =
∑
k

[
ξk
∑
σ

a†k,σak,σ + (∆∗
kak,↑a−k,↓ + h.c.)−

−VL
N

∑
p,k′,σ

ei(k−k′)pa†k′,σak,σ

]
. (3.1)

In absence of impurities, the normal quasiparticle energy ξk =
= εk−µ is referred to the chemical potential µ ≈ εF, this will be
also the reference for the energy argument ε in GF’s (unless the
above used reference to the band edge is explicitly indicated).
The gap function ∆k satisfies the BCS gap equation (for given
temperature T , in energy units)

∆k =
1

N

∑
k′

Vk,k′
∆k′

Ek′
tanh

(
Ek′

2T

)
(3.2)
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with the SC coupling function Vk,k′ and the SC quasiparticle energy Ek =

=
√
ξ2k +∆2

k. Commonly, it is solved using the Cooper separable ansatz:

Vk,k′ = VSCγkγk′ , (3.3)

where VSC is the SC coupling constant, the coupling function γk = γj (k) θ(ε
2
D−

−ξ2k) is restricted to the BCS shell of width εD (the “Debye energy”) around
the Fermi level, and a certain symmetry factor γj (k) us determined by the
most favorable type of SC order for given material (j = s, d, ...). To simplify
the formalism, it is convenient to define this factor to be only a function of the
angular variable in the 2D Brillouin zone while the possible radial dependence
of coupling is implicitly included through its Fermi level value into VSC (ma-
king the latter doping dependent). Then Eq. (3.2) yields in the gap function
∆k = ∆γk where the gap parameter ∆ satisfies the standard gap equation:

1 =
VSC
N

∑
k

γ2k√
ξ2k +∆2γ2k

tanh


√
ξ2k +∆2γ2k

2T

. (3.4)

In this traditional framework, the study of specific impurity states in the
electronic spectrum of a superconductor was extensively developed yet in “old”,
s-wave superconductivity, with the trivial symmetry factor γs (k) = 1. The
famous work by [12] showed that usual non-magnetic scatterers (treated in
the Born approximation: VL ≪ W, εF), while being responsible for residual
electric resistivity in the normal state, have no sensible influence on the basic
superconducting parameters, as the isotropic gap parameter ∆s ≡ ∆ or the
transition temperature Tc. Briefly, the relevant argumentation is as follows. Let
us suppose that the exact spectral representation is known for electronic GF
in a normal metal with impurities, related to Eq. (2.5) (or to (3.1) at ∆ = 0):

G (ε) =
1

N

∑
λ

1

ε− ελ
, (3.5)

where ελ is the eigen energy of λth exact eigen state. This looks identical to the
form cited in Introduction, Eq. (5), however an implicit difference is in that the
states |λ⟩ in Eq. (3.5) are not supposed translationally invariant. Nevertheless,
one can pass formally from the basis of |k, σ⟩ states to that of |λ⟩ states,
through a certain unitary matrix Uλk,σ = ⟨λ|k, σ⟩ and then, after introducing
the s-wave SC coupling, arrive at the same equation for Tc as can be obtained
from Eq. (3.2) for the pure crystal. This conclusion about ineffectiveness of
non-magnetic impurities for SC quasiparticles, known as Anderson’s theorem,
had been repeatedly confirmed beyond the scope of Born approximation [37,93,
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CHAPTER 3. Impurity states in superconducting systems

164], and it also agrees well with the bulk of experimental data on conventional
SC metals. Below we shall reconsider this problem and specify some its finer
details within the microscopic GF context.

In other seminal work by [4], it was stated that, contrariwise to the case
of Anderson’s theorem, magnetic impurities 1 remain effective in the SC state
and may considerably modify both ∆ and Tc. Then, also going beyond the
Born approximation, it was shown that a magnetic impurity in an s-wave SC
system can produce localized quasiparticle excitations, with energies below
∆ (or resonance states above ∆) [112, 150, 187]. These studies were further
extended on the case of non-magnetic scatterers in SC systems with p- and
d -wave symmetry of the order parameter, mainly using the self-consistent
approach, like that by Eq. (2.28) or the CPA method [154,165]. However, as it
was already noticed in Sec. 2.1 for normal systems, this approach leads to an
inadequate “smearing down” of narrow impurity bands. Hence, in considerati-
on of impurities in SC systems (in the diluted limit c≪ 1), the preference
should be rather given to the non-renormalized GE, Eq. (2.6), and, until well
convergent, it can be approximated by the usual T-matrix [124]. The necessary
estimates to control this approximation can be obtained from the properly
reformulated convergence criteria, in analogy to Eqs. (1.20) and (2.25).

“New” superconductors differ phenomenologically from “old” ones by the
above mentioned quasi-planar crystalline structure and extremely short SC
coherence length ξc, of the order of few interatomic distances a, and these
factors should somehow affect the character of impurity states. In particular,
in an s-wave SC system satisfying the criterion kFξc ∼ 1, shallow (close to the
gap edge) localized levels can be produced even by non-magnetic impurities,
if they suppress locally the SC coupling [138]. The fundamental microscopical
distinction, consisting in the d -wave symmetry of SC gap function, has also a
profound influence on the formation of impurity states, admitting existence of
in-gap resonances over wide enough range of perturbation and defining their
considerable broadening [139].

In the Sections to follow, we present a comparative study of the ground
state properties and quasiparticle excitations in the most common and impor-
tant cases of s- and d -wave superconductors with impurity scatterers. At this
stage, the analysis will be restricted to single impurity effects, but admits dif-
ferent kinds of impurity centers, either in their coupling to SC quasiparticles
and in their spatial symmetry.

1 Related to the Kondo effect in normal metals.
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3.1. Green’s functions for superconducting quasiparticles

3.1. Green’s functions for superconducting quasiparticles

For the Green function analysis of electronic spectra in a SC
system with impurities, it is convenient to use the formalism of Nambu spinors:
the row-spinor ψ†

k = (a†k,↑, a−k,↓) and respective column-spinor ψk. Thus we
rewrite the Hamiltonian Eq. (3.1) in a more compact spinor form

Hsc =
∑
k

ψ†
k (ξkτ̂3 +∆kτ̂1)ψk −

1

N

∑
p,k′

ei(k−k′)pψ†
k′ V̂ ψk

, (3.6)

including the Pauli matrices τ̂j (j = 1, 2, 3) and the impurity perturbation
matrix V̂ . The most common choice for the latter is the N-diagonal form V̂ =
= VLτ̂3, generalizing the perturbation in Eq. (2.4) to the SC case, but one can
also consider various extensions of this form, either by the spatial range of
perturbed sites (Sec. 3.4) and by the spin variables (Sec. 3.5), and the specific
possibility for N-non-diagonal perturbation (Sec. 3.3). Then we define the 2×2
Nambu matrix of single-particle GF’s

Ĝk,k′ = ⟨⟨ψk|ψ†
k′⟩⟩. (3.7)

The matrix elements in the expanded form of Eq. (3.7) are the well-known
Gor’kov normal and anomalous functions [63]. In what follows, we shall also
distinguish between the Nambu indices (N-indices) and the quasi-momentum
indices (m-indices) in this matrix and in related (more complicated) matrices.
The relevant physical properties of SC state are suitably expressed in terms
of these GF’s. Thus, the global single-particle DOS, which defines, e.g., the
electronic specific heat, is given by a generalization of Eq. (2.6)

ρ(ε) = π−1ImTr Ĝ, (3.8)

where the local GF matrix
Ĝ =

1

N

∑
k

Ĝk (3.9)

with Ĝk ≡ Ĝk,k, generalizes the scalar local GF, (2.8). Similarly, we can define
the local DOS (LDOS) at nth lattice site

ρn (ε) =
1

πN

∑
k,k′

ei(k−k′)nImTr Ĝk,k′ , (3.10)

relevant for interpretation of topography data in scanning tunneling spectros-
copy (STM, [129]). Other expressions for observable characteristics through
GF’s, including also more complicated two-particle functions, are given in the
following Chapters.
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CHAPTER 3. Impurity states in superconducting systems

In absence of impurities, the matrix (3.7) admits an explicit solution:
Ĝk,k′ → δk,k′Ĝ0

k, where the non-perturbed m-diagonal GF matrix is

Ĝ0
k =

ε+ ξkτ̂3 +∆kτ̂1
ε2 − E2

k

. (3.11)

We notice that in this case both quantities, Eqs. (3.8), (3.10), coincide and
describe the uniform DOS, whose particular forms for each type of SC
symmetry will be discussed in the next Section. There we shall apply the
above definitions to calculation of basic effects from isolated impurity centers
in planar SC systems.

3.2. Superconducting state
symmetry and impurity states

In analogy with the equation of motion, Eq. (2.10), for scalar
GF in normal electronic system, we write down the equation of motion for
Nambu matrix GF in the SC system, related to the Hamiltonian, Eq. (3.4):

Ĝk,k′ = δk,k′Ĝ0
k −

1

N

∑
p,k′′

ei(k−k′′)pĜ0
kV̂ Ĝk′′,k′ . (3.12)

Its solutions can be obtained again in form of GE’s, the matrix analogues to
Eqs. (2.16), (2.18) (see in more detail Ch. below). Their simplest truncated
forms for the m-diagonal GF Ĝk = Ĝk,k are

Ĝk =

[(
Ĝ0

k

)−1
+ cT̂ (0)

]−1

, (3.13)

within the energy region of band-like states, and

Ĝk = Ĝ0
k − cĜ0

kT̂
0Ĝ0

k (3.14)

outside this region, and the non-renormalized T-matrix (the matrix analogue
to the scalar quantity, Eq. (2.18)) is:

T̂ 0 = V̂
(
1 + Ĝ0V̂

)−1
. (3.15)

where, in analogy to Eq. (3.9), the non-perturbed local GF matrix is Ĝ0 =

= N−1
∑

k Ĝ
0
k.

These approximations permit a simple analysis of quasiparticle spectra,
in particular, the solutions to the matrix analogue of the Lifshitz equation,
Eq. (2.19) (related here to possible poles in Eq. (3.15)). But the specifics of SC
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3.2. Superconducting state symmetry and impurity states

systems is in that such solutions and the subsequent impurity effects essentially
depend on the form of symmetry factor γj (k) and on the width 2εD of the
energy shell in the SC coupling function, Eq. (3.3). The “Debye energy” εD is
generally understood as a characteristic energy scale for the boson mode, me-
diating the Cooper pairing between charge carriers. From the model point of
view, there is no specific restriction on the value of εD compared to µ in doped
HTSC systems, and even the values as great as εD ∼ W can be considered
(e.g., for a non-retarded attraction, [119]).

Let us begin from the simplest case of s-wave SC. Here, in absence of
impurities, the gap function is isotropic, γs (k) = 1, and the gap parameter
∆ (at zero temperature) is expressed by the usual BCS formula ∆ =
= εD/ sinh (1/λ) ≈ εDe

−1/λ where the dimensionless coupling constant is
λ = VSCρN . Calculating the lattice sums for SC systems (either 3D and 2D)
accordingly to the rules, Eqs. (2.9) and (2.38), we obtain the general form of
unperturbed local GF matrix for s-wave case as:

Ĝ0
s = ρN [g0s + g1sτ̂1 − gasτ̂3], (3.16)

where the coefficient functions in the low energy range ε2 ∼ ∆2 ≪W 2, µ2 are
given within accuracy to O

(
∆3/µ3

)
by:

g0s (ε) =
ε

2

W−µ∫
−µ

dξ

ε2 − ξ2 −∆2
≈ − πε

2
√
∆2 − ε2

+
ε

2µ̃
(3.17)

(with µ̃ = µ (1− µ/W ) ≈ µ for 2D and µ̃ ≈ µ),

g1s (ε) =
∆

2

εD∫
−εD

dξ

ε2 − ξ2 −∆2
≈ − π∆

2
√
∆2 − ε2

+
∆

εD
, (3.18)

and almost constant particle-hole asymmetry factor 2 is

gas =
1

2

W−µ∫
−µ

ξdξ

ξ2 +∆2 − ε2
≈ ln

√
W

µ
− 1. (3.19)

Using Eq. (3.16) in Eq. (3.7), we arrive at the well-known BCS form of DOS
in s-wave superconductor:

ρs (ε) = ρN
εθ
(
ε2 −∆2

)
√
ε2 −∆2

, (3.20)

2 At higher energies this factor is no more constant, and at µ2 < ε2 < (w − µ)2 it also
obtains an imaginary part which is relevant for definition of chemical potential itself, see
Chs. 4, 5.
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shown in Fig. 3.1. Next, if we neglect the small last terms in Eqs. (3.17), (3.18),
the s-wave T-matrix is readily obtained as:

T̂ 0
s =

v

ρN (1 + π2v2)

(
πv

ε−∆τ̂1√
∆2 − ε2

+ τ̂3

)
, (3.21)

where the dimensionless perturbation parameter v = VLρN/ (1− VLρNgas).
Notably, this T-matrix has no poles within the gap, since the denominator
1 + π2v2 is never zero. Hence there is no roots for Lifshitz equation and thus
no quasiparticle localization on a single impurity center for this symmetry 3.
Using Eq. (3.21) in Eqs. (3.13), (3.7), we obtain for DOS the same function
ρs (ε) with the same value ∆ as in the pure crystal. This justifies Anderson’s
theorem within T-matrix approximation for s-wave SC with point-like (non-
magnetic) impurities.

But even if the single impurity can not produce here quasiparticle locali-
zation, it can have a pronounced effect on the local SC order parameter
∆n = VSC ⟨an,↑an,↓⟩. Using the spectral theorem, Eq. (2), we express this
parameter in terms of GF’s

∆n =
VSC
2πN

∑
k,k′

ei(k−k′)nθ
(
ε2D − ξ2k

)
θ
(
ε2D − ξ2k′

)
×

×
∞∫

−∞

dε

eε/T + 1
Im TrĜk,k′ τ̂1. (3.22)

In the pure SC crystal where Ĝk,k′ → δk,k′Ĝ
(0)
k (see above), Eq. (3.22) simply

coincides with the BCS gap equation, so that: ∆n = ∆. Otherwise, it simply
leads to the general GF expression for the global SC order parameter

∆ =
1

N

∑
n

∆n =
VSC
2πN

∑
k

θ
(
ε2D − ξ2k

)
×

×
∞∫

−∞

dε

eε/T + 1
ImTr Ĝkτ̂1, (3.23)

(to be studied in more detail in the following Chapters). Hence the local
perturbation of the order parameter, ∆−∆n, is only related to the non-diagonal

3 However, taking into account the mentioned small terms ∼∆/µ and ∼∆/εD can produ-
ce a very shallow localized level at ∼∆3/ (µεD) ≪ ∆ from the gap edge, like those indicated
below in Eq. (3.31) and considered in more detail in Sec. 3.3.
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3.2. Superconducting state symmetry and impurity states

Fig. 3.1. DOS of s-wave SC quasiparticles, turning zero within the gap ∆, showing an
integrable BCS singularity at the gap edge, and tending to the normal state value ρN at
ε ≫ ∆

Fig. 3.2. Spatial relaxation of the perturbed SC order around the impurity site (at weak per-
turbation, v = 1/2π). Note that the shown continuous function is defined, strictly speaking,
only for |n| ≫ a, but its value at n = 0 is exact

(either N- and m-) elements of the local GF:

∆−∆n = − VSC
2πN

∑
k,k′ ̸=k

ei(k−k′)nθ
(
ε2D − ξ2k

)
θ
(
ε2D − ξ2k′

)
×

×
∞∫

−∞

dε

eε/T + 1
Im Tr Ĝk,k′ τ̂1. (3.24)

The simplest solution for the m-non-diagonal GF follows from Eq. (3.12), and
for an isolated impurity at p = 0 it reads

Ĝk,k′ =
1

N
Ĝ0

kT̂
0Ĝ0

k′ . (3.25)

This provides the local perturbation of SC order parameter as:

∆−∆n = −VSC
2π

∞∫
−∞

dε

eε/T + 1
ImTr F̂ 0

nT̂
0F̂ 0

−nτ̂1, (3.26)

with F̂ 0
n = N−1

∑
k e

iknθ
(
ε2D − ξ2k

)
Ĝ0

k.

Using Eq. (3.26) at zero temperature and taking account of the BCS
equation, Eq. (3.4), we express the maximum relative perturbation, attained
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CHAPTER 3. Impurity states in superconducting systems

at the very impurity site n = 0, as

η =
∆−∆0

∆
=

−
0∫

−∞
dεImTr F̂ 0

0 T̂
0F̂ 0

0 τ̂1

0∫
−∞

dεImTr F̂
(0)
0 τ̂1

, (3.27)

where F̂ 0
0 = ρN (f0s + g1sτ̂1) and

f0s = −
πε√

∆2 − ε2
+

ε

εD
(3.28)

only differs from g0s, Eq. (3.17), by the the small ε/εD term. Then the trace in
the numerator of Eq. (3.27) turns out to be exactly that in the denominator
times the energy independent factor

π2v2

1 + π2v2
≡ ηs (v). (3.29)

This is just the sought relative perturbation, and therefore the order parameter
at the impurity site is always suppressed [139]:

∆0 = ∆(1− ηs) =
∆

1 + π2v2
,

progressively with growing the perturbation strength.
The maximum suppression of SC order, Eq. (3.29), relaxes with the di-

stance from the impurity site as described by Eq. (3.26), attaining at |n| ≫ a
the asymptotic behavior:

∆−∆n

∆−∆0
=

(
sin kF |n|
kF |n|

)2
, (3.30)

shown in Fig. 3.2. This sort of Friedel oscillations is also confirmed by the di-
rect numeric solutions of the Bogolyubov—de Gennes equations [15,54] and in
the experimental data by STM topography [129]. The resulting off-diagonal
perturbation potential can be self-consistently included into the Hamiltonian,
(3.4), and in the case when SC order at the impurity site is suppressed, ∆0 < ∆,
it will give rise to a rather shallow localized level (see in more detail in Sec. 3.3):

∆− εloc ∼
(∆−∆0)

2

2∆ (kFξc)
2 . (3.31)

However, even for short enough SC coherence length ξc such that kFξc is of
order of few units, as is the case in high-Tc materials, the separation of this
level from the gap edge is expected to be only ∼10−3∆, and it should not
have any sizable effect on the physics of considered system. The analysis of SC
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3.2. Superconducting state symmetry and impurity states

order parameter at finite impurity concentrations will be done in the following
Chapters 4 and 5.

Now let us turn to consideration of the d -wave symmetry in a planar SC
system. Accordingly to the aforesaid in the beginning of this Chapter, we expect
the symmetry factor γd (k) in Eq. (3.4) to be proportional to the difference
cos akx − cos aky, compatible with the d -wave symmetry, in the normalized
form:

γd (k) =
cos akx − cos aky

max (cos akx − cos aky)
. (3.32)

Here the denominator can be approximated near the Fermi surface at low
enough filling as

max (cos akx − cos aky) ≈
a2k2F
2
≈ 4µ

W
= πµρN

and just this value will enter VSC at calculation of doping dependence of SC or-
der parameter in Ch. 5. But in the simplest approach one can use the symmetry
factor γd (k) at a given parameter ∆; then the most important difference of
this case from the s-wave one is the presence of nodal lines kx = ±ky where
the gap function turns zero, changing its sign from quadrant to quadrant. In
accordance with the chosen circular approximation for the Fermi surface, the
symmetry factor in the gap function can be suitably expressed through the
angular variable φk = arctan (ky/kx) as γd (k) ≈ cos 2φk. Thus, we arrive at
the unperturbed local GF matrix in a modified form, compared to the s-wave
case, Eq. (3.16):

Ĝ0
d = ρN (g0d − g3dτ̂3). (3.33)

The coefficient functions are calculated with use of the rule, Eq. (2.38), and
the function

g0d (ε) =
ε

4π

2π∫
0

dφ

W−µ∫
−µ

dξ

ε2 − ξ2 −∆2 cos2 2φ
≈ iK

(
∆2

ε2

)
+

ε

2µ̃
(3.34)

(again within accuracy to O
(
∆3/µ3

)
) contains the complete elliptic integral

of 1st kind K(k) [2], which behaves in the characteristic limits as

K(k) ≈


π (1 + k/4) /2, k ≪ 1,

ln
(
4/
√
k − 1

)
, |k − 1| ≪ 1,

−i ln
(
4i
√
k
)
/
√
k, k ≫ 1.

(3.35)

Correspondingly, DOS for a uniform d -wave SC crystal:

ρ (ε) =
1

π
ImTr Ĝ0

d =
2

π
ρN Im g0d (ε),
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CHAPTER 3. Impurity states in superconducting systems

Fig. 3.3. DOS in a clean d-wave SC system (solid line). Dashed lines indicate the linear
low energy asymptotics, the logarithmic divergence at ε → ∆, and the tendency to constant
value ρN at ε ≫ ∆

Fig. 3.4. Relevant coordinates for integration over Brillouin zone for a d-wave SC system.
a) At closeness to half-filling, local coordinates k1,2 are defined specifically in vicinity of each
nodal point (open circles) on nearly square Fermi surface. b) At low filling, the coordinates
ξk and φk for nearly circular Fermi surface are used in the whole zone

displays a sharp SC coherence peak: ρ (ε) ≈ (2/π) ρN ln
(
4ε/
√
|ε2 −∆2|

)
at

ε → ∆, decays linearly as ρ (ε) ≈ ερN/∆ at ε ≪ ∆, and tends to the normal
state constant DOS value ρN at ε≫ ∆ (Fig. 3.3).

The asymmetry factor in Eq. (3.33):

g3d (ε) =
1

4π

2π∫
0

dφ

W−µ∫
−µ

ξdξ

ξ2 +∆2 cos2 2φ− ε2
≈ gas +

2ε2 −∆2

8µ̃2
,

is close to the above considered constant value gas.
An alternative, “square” approximation for the Fermi surface better fits for

the closeness to half-filling, µ ≈ w/2. Here the lattice sum is presented, instead
of Eq. (2.38), as

1

N

∑
k

f (kx, ky) ≈
ρN
4∆

W−µ∫
−µ

dξ

∆∫
−∆

dηf (ξ, η), (3.36)

where ξ = ~vFk1, η = ~v∆k2, the characteristic velocities are vF = εF/~kF ≫
≫ v∆ = ∆/~kF, and the components k1,2 are defined for each nodal point
in a proper way, as shown in Fig. 3.4. Though there is essential difference
between the function g0d, Eq. (3.34), and the respective elementary function
i (π/2) arcsin (∆/ε) + ε/ (2µ̃) obtained for the square geometry [106] near the
coherence peak, at ε → ∆, both approximations are almost equivalent in the
low energy region, |ε| ≪ ∆, so both them will be employed for this region in
what follows.
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3.2. Superconducting state symmetry and impurity states

Using Eqs. (3.15), (3.33), we also calculate the corresponding T-matrix for
d -wave system

T̂ 0
d (ε) =

v

ρN

vg0d − τ̂3
1− v2g20d

, (3.37)

with the same perturbation parameter v as in the s-wave case. This T-matrix
already permits existence of a low energy resonance at some ε = εres, found
from the condition v |Re g0d (εres)| = 1, analogous to the Lifshitz equation,
Eq. (2.19), in the normal metal.

Since Re g0d (ε) = −ImK
(
∆2/ε2

)
+ ε/ (2µ̃) is monotonously growing wi-

thin 0 < ε < ∆ and reaches its highest value at the gap edge: Re g0d (∆) =
= π/2+∆/ (2µ̃), the formal solution to the Lifshitz equation first appears just
at this edge, εres ≈ ∆, and this occurs when the dimensionless perturbation
parameter v reaches [π/2 + ∆/ (2µ̃)]−1 ≈ 2/π. However, this formal solution
can not yet correspond to a true resonance by the same reason as in the normal
3D system, Sec. 2.1, Eq. (2.34), since its broadening

Γres ≈ Img0d (εres)

(
dRe g0d
dε

∣∣∣∣
εres

)−1

turns out to be ∼ ∆ln
(
∆/
√
|ε2res −∆2|

)
, that is large compared to εres itself.

On the other hand, for strong enough perturbations: v ≫ 1, the resonance
energy is low, εres ≪ ∆, and can be estimated from the logarithmic asympto-
tics, Eq. (3.35): Re g0d (ε) ≈ (ε/∆) ln (4∆/ε), resulting in εres ≈ ∆/ [v ln (4v)]
[17, 139]. Then the level broadening is estimated as Γres ≈ πεres/ [2 ln (4v)],
that is smaller (though not very much) than εres itself (Fig. 3.5). Thus, the
condition to resolve the resonance: Γres < εres, is satisfied if v & eπ/2/4 ≈ 1.2
(much easier than the condition v > 2.97 obtained for the alternative, square
geometry of the Fermi surface [139]).

The local SC order in the d -wave case results from the off-diagonal corre-
lators for nearest neighbor sites in the lattice, ⟨an+δ,↑an,↓⟩, taking the GF form
(in agreement with Eq. (3.32))

∆n =
WVSC
4πµN

∑
k,k′

ei[k(n+δ)−k′n]θ
(
ε2D − ξ2k

)
θ
(
ε2D − ξ2k′

)
×

×
∞∫

−∞

dε

eε/T + 1
Im TrĜk,k′ τ̂1. (3.38)

Compared to the s-wave form, Eq. (3.22), the additional factor W/2µ is int-
roduced here to assure coincidence with the standard gap equation, Eq. (3.2),
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for the uniform order parameter. Its specific GF form, the analogue to s-wave
Eq. (3.23), is here

∆ =
WVSC
4πµ

∞∫
−∞

dε

eε/T + 1
Im TrF̂ 0

δ τ̂1, (3.39)

The respective impurity effect on this order is obtained from the analogue to
Eq. (3.26) but with F̂

(0)
n+δT̂

(0)F̂
(0)
−n τ̂1 in the integrand. Then, to calculate the

important matrix

F̂ 0
δ =

1

N

∑
k

eikδθ
(
ε2D − ξ2k

)
Ĝ0

k,

we use the following rules:∑
k

eikδf (k) ≈
∑
k

f (k),

∑
k

eikδγd (k) f (k) ≈
2µ

W

∑
k

γ2d (k) f (k),∑
k

ξkθ
(
ε2D − ξ2k

)
f
(
ξ2k
)
= 0.

This results in:
F̂ 0
δ ≈ ρN

(
f0d +

2µ

W
g1dτ̂1

)
, (3.40)

where

g1d (ε) =
∆

2π

2π∫
0

cos2 2φdφ

εD∫
0

dξ

ε2 − ξ2 −∆2 cos2 2φ
≈

≈ ∆

2εD
− i ε

∆

[
K

(
∆2

ε2

)
− E

(
∆2

ε2

)]
,

involves the full elliptic integral of 2nd kind E [2], and the function f0d only
differs from g0d, Eq. (3.34), by its last term ε/εD, the same as f0s from g0s
in Eq. (3.28). Taking also into account that F̂ 0

0 is simply a scalar ρNf0d, we
obtain in analogy to Eq. (3.27) the relative suppression on the impurity site:

ηd =

−
εD∫
0

dεImTr F̂ 0
δ T̂

0F̂ 0
0 τ̂1

εD∫
0

dεImTr F̂
(0)
δ τ̂1

=

−
εD∫
0

dεIm
[
v2g0df0dg1d/

(
1− v2g20d

)]
εD∫
0

dεIm g1d

. (3.41)

The numerically calculated function ηd (v) turns to be quite similar to the
s-wave ηs (v), Eq. (3.29), at weak perturbations, v ≪ 1, but its saturation
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3.3. Localized states from perturbation of pairing potential

Fig. 3.5. Low energy resonance level εres (arrow) in the DOS of d-wave superconductor
with a finite concentration c = 0.2ρN∆ of strong enough impurity scatterers, v = 2.3. Other
distinctions from the pure crystal DOS in Fig. 3.3 (shown here by the dashed line) are the
finite spike at ε = ∆ and the enhanced slope at ε < εres (inset)
Fig. 3.6. Comparison of the integrand functions in the numerator (solid line) and in the
denominator (dashed line) of Eq. (3.41) at the same value of perturbation parameter v = 2.3
as used in Fig. 3.5. Note the sizeable negative effect of the resonance level at εres, stronger
reducing the value ηd ≈ 0.91 compared to ηs ≈ 0.98 for this v

to unity at stronger perturbations, v & 1, is sensibly delayed. As seen from
Fig. 3.6, the energy dependencies of the two integrands in Eq. (3.41) are no
more identical, as it was for the s-wave case. The indicated delay of ηd (v) is
evidently due to the pronounced negative effect of the low energy resonance
level εres, absent in the s-wave case.

Consideration of similar impurity effects in LDOS, Eq. (3.8) (related to
m-non-diagonal, but N-diagonal elements of GF matrices), will be done in
Sec. 3.4 for a more general perturbation operator (extended in lattice sites,
but still diagonal in Nambu indices). Meanwhile, the next Section introduces
an alternative perturbation model, which is non-diagonal in Nambu indices.

3.3. Localized states
from perturbation of pairing potential

The quasiparticle spectrum in a uniform s-wave superconductor
has the effective dimensionality ds = 1 and in principle favors localization near
any, no matter how weak, attractive center. Such a center can be formed, e.g.,
by a local depression of the gap function ∆(r) 4 near magnetic vortices in a
type II superconductor. This situation was first studied yet in 60-ies, for “old”
superconductors satisfying the condition kFξc = 2εF/ (π∆)≫ 1, by [36]. They
obtained a quasiclassical spectrum of bound levels, filling the s-wave gap almost

4 A continuous analog to the above considered local order parameter ∆n.
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completely, with small level separation: δ ∼ ∆/ (kFξc) ≪ ∆, thus providing a
small bulk rate ∼ (kFξc)

−2 of “normal metal” into the system.
Recall that for impurity pertubation V̂ diagonal in Nambu indices, the

localization in an s-wave superconductor is not permitted by Anderson theo-
rem. And even for possible non-diagonal perturbation (say by perturbation
of local SC coupling, as indicated in Sec. 3.5), the depression of ∆(r) in the
systems with kFξc ≫ 1 would be still negligible if the mean inter-impurity
distance is smaller of the coherence length ξc when the inhomogeneities of
size ∼ξc are effectively averaged. However, in HTSC materials an opposite
condition kFξc ∼ 1 is testified by the experiments, though the ratio εF/∆ is
still rather high, and the BCS Hamiltonian, Eq. (3.4), is believed true (at least
qualitatively). In this condition, we can expect that:

i) the separation δ between vortex levels is comparable to the gap ∆ itself
(as, in fact, observed in YBa2Cu3O7), that is the levels (at least, lower ones)
are strongly quantized,

ii) similar bound levels due to order-parameter-perturbing impurities are
possible [138].

Then a relatively simple level structure for an isolated center permits an
advance to their higher concentrations, using the standard metods of the theory
of disordered systems as exposed above in Ch. 2 and 3.

Let us consider a superconductor with impurity centers which can influence
the superconducting coupling constant, e.g., through quasilocal vibrational mo-
des (for usual electron-phonon coupling), or perturbing the magnetically orde-
red subsystem, if the latter determines the coupling (like the case to be conside-
red below in Sec. 3.5). However, the impurities are presumed to be non-magne-
tic in the sense that they do not affect the electronic spin indices. Also we limit
the consideration in this Section only to the s-wave symmetry of SC order, when
its local perturbation can produce localization of quasiparticles. The obtained
bound levels can be also regarded to model the quantized vortex levels. The
treatment is confined to 2D as for metal-oxide compounds, nonetheless it can
be easily generalized to 3D (which may be the case for the fullerene based
high-Tc systems).

To display the crossover from kFξc ≫ 1 to kFξc ∼ 1 regime for a single
impurity center at r = 0, we shall first use, instead of the general Green
function techniques, a simpler approach through the Bogolyubov—de Gennes
(BdG) equations:

−~2
(
∇2 + k2F

)
u (r) + 2m∆v (r) = 2mεu (r),

~2
(
∇2 + k2F

)
v (r) + 2m∆u (r) = 2mεv (r),

(3.42)

where m is the effective mass. For the local perturbation of the BdG potential
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3.3. Localized states from perturbation of pairing potential

∆(r) we adopt the simplest stepwise model

∆(r) =

{
∆, r > ξc,
∆0, r < ξc,

(3.43)

with ∆0 < ∆ and search for localized solutions of Eq. (3.42) with energies
∆0 < ε < ∆. The circular symmetry of potential implies that these discrete
levels are labeled by integer values 5 of angular momentum l (with respect to
the azimuthal angle φ): ε = εl. The related solutions are ul (r) = eilφul (r),
vl (r) = eilφvl (r), where the radial functions ul (r), vl (r) are presented as a
BdG spinor:

φl (r) =

(
ul (r)
vl (r)

)
,

which satisfies a differential equation(
∂2

∂r2
+

1

r

∂

∂r
− l2

r2
+ Ûl

)
φl (r) = 0 (3.44)

with the matrix
Ûl = k2F +

2m∗

~2
[εlτ̂3 − i∆(r) τ̂2].

Alike the method by [36], the solutions of Eq. (3.44) can be defined separately
for the inner and outer regions with respect to perturbation, and for the model
potential, Eq. (3.43), they are exact :

φl (r) = φ<l (r) =

(
∆0

εl

)
AlJl

(
k<l r

)
, r < ξc,

φl (r) = φ>l (r) =

(
∆
εl

)
ReBlHl

(
k>l r

)
, r > ξc,

(3.45)

including the Bessel and Hankel functions, Jl and Hl, and some coefficients Al
and Bl (since there is no radial currents associated with localized quasiparticle
states, the radial functions can be chosen real). The relevant wavenumbers in
Eq. (3.45) are

k<l =

√√√√
k2F +

2m∗
√
ε2l −∆2

0

~2
≈ kF +

√
ε2l −∆2

0

~vF
and

k>l =

√√√√
k2F +

2m∗
√
ε2l −∆2

~2
≈ kF + i

√
∆2 − ε2l
~vF

5 Unlike the situation with vortex core levels by [36] where the vortex topological charge
leads to complex ∆(r) ∼ ∆(r) eiφ, thus selecting only l ± 1/2 values.
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Fig. 3.7. Localized energy levels
in an s-wave superconductor
are irregularly distributed (the
length of respective drop lines
corresponds to the angular mo-
mentum l) in a very narrow
stripe of width δ = (∆−
−∆0)/(kFξc)

2 ≪ ∆ − ∆0 near
the gap edge (here at a choice
of kFξc = 30, note the verti-
cal scale). Inset: a schematic of
model rectangular depression of
the order parameter (for ηsup =
= 0.34) and the stripe of locali-
zed levels on that scale

(equivalent solutions result from using kF −
√
ε2l −∆2

0/~vF for k<l and kF−

− i
√

∆2 − ε2l /~vF for k>l ).
As far as kFξc ≫ 1, the matching between φ<l (r) and φ>l (r) at r = ξc can

be done, using the long distance asymptotics:

Jl (z) ≈
√

2/πz cos (z + δl), Hl (z) ≈
√

2/πz exp (iz + iδl),

with δl = −π (l + 1/2) /2+
(
l2 − 1/4

)
/2z. This defines the eigen-energies εl as

εl ≈ ∆− ∆−∆0

k2Fξ
2
c

cos4 (kFξc + δl), (3.46)

and, as seen in the plot, Fig. 3.7, for kFξc = 30, they fill in a very irregular
way the narrow energy interval [∆1 − δ,∆] near the gap edge, where δ =
= (∆ − ∆0)/(kFξc)

2 ≪ ∆ − ∆0. Hence, whatever the suppression parameter
ηsup = (∆ −∆0)/∆ be, all the levels are very shallow. However, it should be
noted that the average density of levels grows towards the borders (especially
the upper) of this interval. This discrete spectrum is essentially different from
the above referred uniform filling of the whole gap by the bound levels in the
cores of Abrikosov vortices, described by [36]. The physical mechanism for this
irregular behavior stems from occasional resonances which spinor quasiparticle
waves with rather big wavenumbers (close to kF) can have in the potential
well of width ξc (generally incommensurate with Fermi wavelength). There are
no reasons why such behavior should not be present also for more realistic
continuous perturbation potentials.

But the matching mode leading to Eq. (3.46) fails at (l + 1/2)π ∼ 2kFξ,
so that for kFξ ≫ 1 there is no more than ∼ 2kFξ/π localized levels, alike the
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3.3. Localized states from perturbation of pairing potential

cases of vortex core levels by [36] and of those for a normal electron in 1D or
2D rectangular well [147].

When passing to the kFξc ∼ 1 regime, only the lowest level with l = 0
survives, so that the criterion for single-level spectrum can be written as

kFξc < α
3π

4

(so that the l = 1 level disappears) with a factor α ∼ 1 to be specified numeri-
cally. This criterion does not seem unrealistic for the known high-Tc materials
where the value kFξc ≃ 3 was reported either for YBa2Cu3O7 (in the ab-plane)
and for the doped fullerite K3C60. If it is granted, the single localized level ε0
is obtained from the matching condition:

k<0 J1
(
k<0 ξc

)
Re = J0

(
k<0 ξc

)
Re
[
k>0 e

iψH1

(
k>0 r

)]
, (3.47)

with an appropriate phase shift ψ between the inward and outward solutions.
Numeric analysis shows that with small variations of kFξc, this single level can
occur anywhere within the interval δ, like the above considered case of Fig. 3.7.
However, a typical value of the binding energy should be estimated as ε0 ∼ δ.

For the system with a finite concentration c of single-level centers, we can
again develop the Green function treatment, through a version of Hamiltoni-
an, Eq. (3.4). Considering that the localization length for such level is much
greater of the perturbation length: rloc ∼ ξ (εF/∆)2 ≫ ξ (see below), we can
approximate the stepwise perturbation of BdG potential by a delta-function,
writing down the perturbation operator as V̂ = Vg τ̂1 with the perturbation
parameter Vg =

∑
n<ξ (∆0 −∆). Then from the same equation of motion,

Eq. (3.9), we obtain the solution for Green function, analogous to Eq. (3.10)
but with a modified T-matrix:

T̂ (0)
g =

1

Dg

[
1

πρN
τ̂1 + vVg

(
ε−∆τ̂1√
∆2 − ε2

− gas
πρN

τ̂3

)]
, (3.48)

where the dimensionless perturbation parameter

v =
πρNVg

1 + V 2
g

(
π2ρ2N + g2as

) (3.49)

is analogous to that figuring in Eq. (3.21) of the preceding Sec. 3.2, and the
resonance denominator

Dg = 1− 2v∆√
∆2 − ε2

(3.50)

defines a single bound level ε0 = ∆
√
1− 4v2. It is easy to see from Eq. (3.49)

that v has the maximum possible value

vmax =
1

2
√

1 + (gas/πρN )
2
<

1

2
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(not to be confused with that in Eq. (3.21)), so that the depth of bound level
is restricted by

ε0,min = ∆
√

1− 4v2max = ∆
gas√

π2ρ2N + g2as

.

The collective excitation spectrum and related observable values for this
impurity model will be further analyzed in Chap. 4. Now we pass to a more
involved model of impurity perturbation with several degrees of freedom.

3.4. Extended impurity centers in d-wave planar systems

The perturbation that impurities introduce into the electronic
subsystem of crystal, depend either on their positions with respect to the latti-
ce and on the potential they produce on the nearest host sites. The preceding
Sections used the simplest possible model [15, 17, 55, 102, 139, 142], where an
impurity only disturbs a single site in the lattice and the potential is characteri-
zed by a single perturbation parameter (acting either on diagonal or off-dia-
gonal Nambu matrix elements). This point-like perturbation model allows a
rather simple description of the quasiparticle DOS in terms of their Green
functions, including the above mentioned low energy resonances, in a good
concordance with the STM measurements data. On the other hand, the point-
like model predicts sound impurity effects on the local SC order, perhaps too
strong to be adequate to the observed stability of SC state under doping.

However, in reality, the impurity perturbations in high-Tc materials are not
exactly point-like but rather extended to a finite number of nearest neighbor
lattice sites to the impurity center. This raises an important question on how
robust are the results of point-like approximation to the spatial extent and

Fig. 3.8. Extended perturbation over four
nearest neighbor sites to the impurity ion
(its projection onto the CuO2 plane is
shown by the dashed circle at the origin)

geometry of impurity perturbation.
The opposite limit to the point-like per-
turbation is that where the defect is
much bigger of the Fermi wavelength
and can be treated quasiclassically
[7], but it hardly applies to real
atomic substitutes in high-Tc systems
where the perturbation extends to few
nearest neighbors of the impurity si-
te. In this Section, we develop a mi-
croscopic treatment for the latter kind
of extended perturbation and compare
its results with those for point-like
perturbations. We consider the host
crystal with d -wave SC order within the
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3.4. Extended impurity centers in d-wave planar systems

same circular approximation for spectrum as used in deriving Eq. (3.26) and
rewrite the perturbation term in the model Hamiltonian, Eq. (3.4), for di-
sordered d -wave superconductor:

Himp = − 1

N

∑
k,k′,p

ei(k
′−k)p

∑
δ

ei(k
′−k)δΨ†

k′ V̂Ψk. (3.51)

It contains formally the same perturbation matrix V̂ = VLτ̂3 as in Eq. (3.4), for
the case of point-like impurity, but takes an explicit account of the phase shifts
ei(k

′−k)δ at quasiparticle scattering by extended (attractive) perturbation Vimp

on the nearest neighbor lattice sites δ to the impurity center p (which itself
does not pertain in this case to the SC plane, see Fig. 3.8).

Then the equation of motion, Eq. (3.9), is modified to:

Ĝk,k′ = Ĝ0
kδk,k′ − 1

N

∑
k′′,p,j

ei(k−k′′)pαjkαjk′′Ĝ0
kV̂ Ĝk′′,k′ , (3.52)

where we expanded the structural function for impurity scattering in Eq. (3.51)
as:
∑

δ e
i(k′−k)δ =

∑4
j=1 αjkαjk′ . The functions

α1,k = 2 cos
akx
2

cos
aky
2
, α2,k = 2 cos

akx
2

sin
aky
2
,

α3,k = 2 sin
akx
2

cos
aky
2
, α4,k = 2 sin

akx
2

sin
aky
2
,

(3.53)

realize irreducible representations of the C4 point group (j = 1 being related
to A-, j = 2, 3 to E -, and j = 4 to B -representations, [43]) and thus satisfy
the orthogonality condition

1

N

∑
k

αj,kαj′k = δjj′ . (3.54)

The impurity effects on quasiparticle spectrum are then naturally classified
along these representations, alike the known effects of magnetic impurities in
ferro- and antiferromagnetic crystals, see [80,84].

The orthogonality of the αj,k functions results in that Eq. (3.52) has a
solution formally coinciding with Eq. (3.10), but with the T-matrix additi-
ve in these representations: T̂ (0) =

∑
j T̂

(0)
j , where each partial T-matrix

T̂
(0)
j = −V̂

(
1 + V̂ Ĝ

(0)
j

)−1
includes the specific local GF matrix: Ĝ(0)

j = N−1×

×
∑

k α
2
j,kĜ

(0)
k . Alike Eq. (3.26), this matrix can be expanded in the basis of

Pauli matrices
Ĝ0
j = ρN (gj0 + gj1τ̂1 − gj3τ̂3). (3.55)

The dimensionless coefficient functions gji can be calculated using again the
integration rule, Eq. (2.9). Some of them are zero by the symmetry reasons:

73



CHAPTER 3. Impurity states in superconducting systems

g11 = g41 = 0, and the rest can be approximated as:

gj0 ≈ α2
jg0, gj3 ≈ α2

jgas, g21 = −g31 ≈ α2
2g1. (3.56)

Here α2
j are the average values of α2

jk over the Fermi surface: α2
1 ≈ 4 (1− µ/W ),

α2
2,3 ≈ 4µ/W , α2

4 ≈ 2 (µ/W )2, where the band occupation parameter µ/W
(≈πx/2, see Sec. 6.1) is supposedly small, in concordance with the chosen cir-
cular geometry. The functions g0 and g1 coincide with g0d and g1d in Eq. (3.34)
and (3.40) and also the constant gas is the same as in Sec. 3.2 (within the
relevant energy range |ε| ≪ µ≪W ).

Using these results, we readily calculate the partial T-matrices T̂ (0)
j and

find that the most important contribution to T̂ (0) comes from the j = 1 term
(A-representation):

T̂ 0
1 =

vA

α2
1ρN

vAg0 − τ̂3
DA

. (3.57)

Here vA = α2
1VLρN/(1 − α2

1VLρNgas) is the dimensionless perturbation
parameter in the A-channel, and DA(ε) = 1− v2Ag20(ε) is the energy dependent
denominator. In particular, it can produce a low energy resonance at ε = εres
(so that ReDA(εres) = 0), analogous to the above mentioned resonance for
point-like impurity center. This again requires that vA exceeds the critical
value vA,cr ≈ 2/π.

The contributions from j = 2, 3 (E -representation) are:

T̂ 0
2,3 =

vE

α2
2ρN

vE (g0 ∓ g1τ̂1)− τ̂3
DE

, (3.58)

with the respective perturbation parameter vE = α2
2VLρN/(1 − α2

2VLρNgas)
and the denominator DE = 1 − v2E

(
g20 − g21

)
. It is less probable to have a

resonance effect in this channel at low occupation µ/W ≪ 1, since
i) the parameter vE is reduced compared to the A-channel value, and
ii) there is a competition between Re g20 and Re g21 in the denominator DE .
The B -channel contribution (j = 4) has the same structure as the A-

channel term, Eq. (3.57), but with vA replaced by a strongly reduced value
vB = α2

4VLρN/(1 − α2
4VLρNgas), hence it turns even less important than the

E -channel terms.
Now we are in a position to describe the perturbation of basic observable

characteristics of SC system by extended impurity centers. Thus, the global
DOS, Eq. (3.7), is obtained, using Eqs. (3.57), (3.58) in Eq. (3.10), as

ρ (ε) ≈ ρN
π

Im g0 (ε− Σ0). (3.59)

Here the scalar self-energy

Σ0 =
cwg0(ε)

2

(
v2A

α2
1DA

+
2v2E

α2
2DE

+
v2B

α2
4DB

)
(3.60)
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3.4. Extended impurity centers in d-wave planar systems

Fig. 3.9. DOS in the d-wave superconductor
with extended impurity centers (the solid li-
ne), for the choice of parameters W = 2 eV,
µ = 0.3 eV, εD = 0.15 eV, Vimp = 0.2 eV,
c = 0.15. The arrow indicates the low-energy
resonance by the A-channel impurity effect
and the dashed line represents the pure d-wave
DOS. Insets: weak E -channel “antiresonances”
at high energies (upper panel) and near the
gap edge (lower panel)

includes the effects of extended impurity centers in all three channels. Fig. 3.9
presents the results of direct calculation from Eq. (3.59) with use of Eq. (3.60)
at a characteristic choice of parameters, W = 2 eV (w ≈ 3.14 eV), µ = 0.3 eV,
εD = 0.15 eV, VL = 0.2 eV (this gives for particular channels: vA ≈ 0.934,
vE ≈ 0.088, and vB ≈ 0.006), and c = 0.15. They are quite similar to the
above considered results for point-like impurities [16,139], showing a reduction
of the sharp coherence peak at ε = ∆ and emergence of a relatively broad low-
energy resonance at εres (shown by the arrow), mainly due to the A-channel
effect. But, additionally, there are small “antiresonance” effects from the E -
channel (insets to Fig. 3.9), at ε ≈ ∆ and at some high enough energy (∼70∆
in this case). Clearly, these E -channel features shouldn’t have any practical
effect on the system thermodynamics.

The local density of states (LDOS) on nth site, Eq. (3.8), can be expressed
through its variation δρn(ε) = ρn(ε) − ρ(ε), compared to the mean value
ρ(ε) = N−1

∑
n ρn(ε) (identical to the global DOS), and in analogy with the

above considered variation of the SC order parameter, Eq. (3.24), it is only
given by the m-non-diagonal GF’s:

δρn(ε) =
1

πN

∑
k,k′ ̸=k

ei(k−k′)·nImTr Ĝk,k′ . (3.61)

These functions are easily calculated for the simplest case of a single impurity
center at p = 0:

Ĝk,k′ =
1

N

∑
j

αj,kĜ
0
kT̂

0
j Ĝ

0
k′αj,k′ , (3.62)

describing a finite effect on the local characteristics near the impurity. Thus,
the quantity δρn attains its maximum value at n = δ, the nearest neighbor sites
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to the impurity. Using Eq. (3.63) and the orthogonality relations, we expand
this value in a sum:

δρn=δ(ε) =
1

πN2

∑
k,k′,j

ImTr eik·δαj,kĜ
0
kT̂

0
j Ĝ

0
k′αj,k′e−ik

′·δ =

=
1

π

∑
j

ImTr Ĝ0
j T̂

0
j Ĝ

0
j ,

and present the overall maximum LDOS as:

ρn=δ(ε) =
2ρN
π

Im

[
g0(ε)

(
1 +

vANA

α2
1DA

+ 2
vENE

α2
2DE

+
vBNB

α2
4DB

)]
. (3.63)

Alike Eq. (3.59) for global DOS, the resonance contribution to Eq. (3.63), the
most important at low energies ε ∼ εres, comes from the A-channel with the
numeratorNA = 2g3+vA(g

2
0+g

2
3). Other channels withNE = 2g3+vE(g

2
0−g21 −

− g23) and NB = 2g3+vB(g
2
0+g

2
3) mainly contribute to renormalization of out-

of-resonance behavior, compared to the pure d -wave DOS ρd(ε) = 2/πIm g0(ε).
The calculated from Eq. (3.63) behavior of LDOS on nearest neighbor sites
to the impurity is shown by solid line in Fig. 3.10. It displays a low energy
resonance (the arrow), much more pronounced than that in the global DOS,
Fig. 3.9, and an overall enhancement compared to the LDOS curve for remote
sites from impurity ρn→∞ = ρd (the dashed line). This picture can be compared
with the direct experimental measurements of differential conductance through
the STM tip positioned close to and far from an impurity center [129].

In quite a similar manner, the local perturbation of SC order parameter,
Eq. (3.22), can be considered. The local d -wave SC order in the unit cell contai-
ning the impurity (see Fig. 3.8) is given by the average ∆n = (VSCW/2µ)×
×⟨an+δ1,↓an+δ2,↑⟩ 6, where the normalization factor W/2µ is the same as in
Eq. (3.28). Also the suppression parameter for this extended defect is defined
as ηext = 1−∆0/∆, and it is only contributed by the non-diagonal GF’s:

ηext = −
VSCW

4µN∆

∑
k,k′ ̸=k

ei(k·δ2−k′·δ3)×

× θ
(
ε2D − ξ2k

)
θ
(
ε2D − ξ2k′

)
⟨a−k,↓ak′,↑⟩ =

= −

∑
j(−1)j

0∫
−∞

dεImTr F̂ 0
j T̂

0
j F̂

0
j τ̂1

0∫
−∞

dεImTr F̂ 0
δ τ̂1

, (3.64)

6 Of course, this definition admits the choice of any pair of nearest neighbor sites closest
to impurity, instead of δ1 and δ2.
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3.4. Extended impurity centers in d-wave planar systems

Fig. 3.10. Local density of states on the nearest neighbor site to an extended impurity
center, for the same choice of parameters as in Fig. 3.9 (but supposing c → 0). Note an
overall enhancement of electronic density compared to that on remote sites from impurity
(dashed line) and a much stronger effect of the low-energy resonance (the arrow)
Fig. 3.11. The dimensionless function F (ε) (solid line) used in Eq. (3.65) to calculate the
suppression parameter ηsup, at the same conditions as in Fig. 3.9, compared to the integrand
in the uniform gap equation, Eq. (3.64) (dashed line) and its asymptotics 1 (dash-dotted
line)

where the matrices F̂ 0
j = N−1

∑
k α

2
j,kθ

(
ε2D − ξ2k

)
Ĝ

(0)
k mainly differ from Ĝ0

j

by the absence of ∝ τ̂3 term, like the cases in Eqs. (3.23), (3.24) and F̂ 0
δ is

the same as in Eq. (3.26). Using here Eqs. (3.55) and (3.58), one arrives at the
expression:

ηext = −2v2E

εD∫
0

Im
[
g1(2f0g0 + f20 + g21)/DE

]
dε

εD∫
0

Im g1 (ε) dε

, (3.65)

where only the E -channel terms contribute to the numerator (see Fig. 3.11 to
compare it with the denominator).

Numeric analysis of this expression for the above chosen perturbation para-
meters results in ηext ≈ 0.033. This is much smaller than the above mentioned
value, Eq. (3.29) for the point-like impurity in d -wave system: ηs = π2v2/(1+
+π2v2) (assuming v equal to vA, this would give ηs ≈ 0.89), and, in view of
the said in the beginning of this Section, it looks more plausible for description
of SC state in doped HTSC systems. The most evident physical reason for so
drastic reducement is the separate action of the extended impurity center along
different symmetry channels, so that the stronger perturbation, vA, is effective
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for the N-diagonal characteristics (DOS and LDOS) while the N-non-diagonal
ones (as SC order) are only defined by the weak perturbation, vE . However,
as will be shown in the next Section, a much stronger effect either on local
DOS and d-wave order parameter can be obtained if the extended impurity
perturbation is spin-dependent.

3.5. Magnetic effect
from non-magnetic impurities

It was recognized above that non-magnetic impurities have
practically no effect on SC characteristics of traditional materials, while even
low concentration of paramagnetic ions can completely destroy their SC order.
But in the case of SC copper oxides, an apparent violation of this so well
theoretically based phenomenological principle was detected. Thus, introdu-
cing non-magnetic Zn2+ ions instead of Cu2+ into the cuprate planes has
a suppression effect on HTSC not weaker but rather stronger than that by
magnetic Ni2+ ions [32]. This triggered an idea of viewing the non-magnetic
impurity ions in HTSC as extremely strong scatterers [40] so that their pertur-
bation potential Vimp is the biggest energy parameter, treated in the unitary
limit: Vimp/W ≫ 1. This concept was extensively elaborated [52, 68, 102], the
principal conclusions being the finite density of quasiparticle states (DOS) at
the Fermi level: ρ (ε→ 0) → ρu ̸= 0, and the universal value of quasiparticle
conductivity σ (ω → 0)→ σu ̸= 0 (to be discussed in more detail in Ch. 5). Ho-
wever, apart from the still existing controversies about those predictions [15], it
should be noted that, unlike dopants, the foreign impurity centers are formed
in the CuO2 plane by homovalent substitution (as Zn2+ or Ni2+ for Cu2+), and
it is problematic how they could produce such a strong perturbation potential.
Also we notice that the heterovalent non-magnetic scatterers by dopants can
not produce such effects [106].

This Section presents an alternative approach to the problem of foreign
impurities. It will be shown below that irrespectively of the type (magnetic or
non-magnetic) of the cathion substitute in CuO2 plane, the resulting center
generally acts on charge carriers as magnetic. In accordance with the general
concept, such center should in fact strongly suppress SC order either of s-
or d-type, as was first qualitatively stated yet by [110]. We note that simi-
lar views on the effect of Zn impurities in HTSC cuprates were expressed
in several publications [38, 117, 130], though still focused on unitary scatte-
ring. Below we consider the problem of isolated non-magnetic impurity ion
in a CuO2 plane and its local effects on the d-wave SC order parameter,
the LDOS, and the itinerant spin polarization. Our treatment does not need
using the unitary limit for perturbation, nevertheless the effects can be quite
strong.
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3.5. Magnetic effect from non-magnetic impurities

Fig. 3.12. Effective magnetic perturba-
tion for charge carriers on nearest neigh-
bor sites to the non-magnetic impurity
substitute for Cu2+ in CuO2 plane

Fig. 3.12 shows a cathion impurity
substitute for Cu in a CuO2 plane, li-
ke real Zn, Fe, or Ni impurities in high-
Tc compounds, and this center presents
a notable geometric similarity to the ex-
tended center, Fig. 3.8 from the previous
Section. However, there is also a notable
difference between the two centers in the
mechanism of perturbation on electronic
quasiparticles. Associating the charge car-
riers mostly to O− holes, we conclude that
the main perturbation by the present ty-
pe of impurity (regardless of being mag-
netic or non-magnetic) is due to the fact
that its neighbor O sites occur in a non-
zero exchange field by Cu2+ ions [86,176],
which is equivalent to the effect of mag-
netic impurity in a common superconductor. On the other hand, there are
no reasons to consider any sizeable spin-independent perturbation from such
isovalent impurity. The respective model Hamiltonian consists in three terms:

H = Hsc +Hc +Hint,

where Hsc is given by Eq. (3.4) but supposing VL → 0. The first perturbation
term Hc = −hSz models the (AFM) correlation between the impurity center
and its environment, where h ∼ Jdd, the Cu–Cu exchange constant, and S
is the spin of a fictitious “magnetic impurity”. It can be seen as a cluster
of four 1/2 spins of Cu nearest neighbors to real non-magnetic impurity. In
reality, its quantization axis z is only defined over time periods no longer
than τs ∼ ~ξs/ (aJdd) ∼ 10−13 s for experimentally measured spin correlation
length ξs ∼ a/

√
x [27] and doping levels x ∼ 0.1 (this also agrees with the

NMR data by [117]). A similar estimate also follows if ξs ∼ kmin is related
to Eqs. (1.35) and (1.36), using the observable values c2 ∼ 2 × 10−2 and√
J∆J ∼ 10 meV [53]. However this τs is much longer than typical electronic

times ∼~/µ ∼ 10−15 s for HTSC compounds. For h > 0 we have ⟨Sz⟩ ≡ s and
0 < s < S, which accounts for the short-range AFM order, whereas s → 0 in
the paramagnetic limit h≪ kBT .

The spin-dependent interaction between charge carriers and impurity can
be also separated into three parts:

Hint = HMF
int +H

∥
int +H⊥

int, (3.66)
where

HMF
int =

Js

N

∑
k,k′

∑
σ=±

αj,kαj,k′σa†k′,σa−k,σ
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is the “mean-field” (MF) polarization of carrier spins by the impurity center,
and

H
∥
int =

J

N

∑
k,k′

∑
σ=±

αj,kαj,k′σ (Sz − s) a†k′,σak,σ,

HMF
int =

J

N

∑
k,k′

∑
σ=±

αj,kαj,k′Sσa
†
k′,−σak,σ,

are their interactions with longitudinal and transversal fluctuations of S. In
the paramagnetic limit: s → 0, Eq. (3.66) is reduced to the common Kondo
interaction [95, 122]. For definiteness, the Cu-O p-d exchange parameter J
is considered positive. The functions αj,kare formally the same as given by
Eq. (3.39) for extended impurity center in Sec. 3.4, but the distinctive features
of the perturbation, Eq. (3.66), are: i) additional degrees of freedom by spin
S, and ii) coupling of S to the local AFM correlations.

In principle, this impurity center can produce yet another perturbation,
due to a possible role of AFM correlated Cu2+ spins in the SC coupling between
charge carriers. Lacking one such spin would locally perturb the ∆kτ̂1 term in
Hsc by some expansions in αj,kαj,k′ . This can influence the SC order, alike
the simpler case of point-like perturbation of s-wave SC coupling in Sec. 3.3.
However, for simplicity, we do not consider here this kind of perturbation.

The GF matrix Ĝk,k′ = ⟨⟨ψk|ψ†
k′⟩⟩ in absence of impurity perturbation

(J = 0) is m-diagonal: Ĝk,k′ = δk,k′Ĝ
(0)
k . The same expression holds for the

m-diagonal GF Ĝk,k in presence of single impurity, whose effect ∼ 1/N is
negligible for this quantity. However it is only this small impurity effect that
gives rise to a m-non-diagonal GF’s Ĝk,k′ . They are found from the equation
of motion

Ĝk,k′ = JN−1
∑
k′′,j

αj,kĜk

(
sĜk′′,k′ + Ĝ

(z)
k,k′ + Ĝ

(−)
k,k′

)
αj,k′′

including three scattered GF’s: the MF one Ĝk′′,k′ , the longitudinal Ĝ(z)
k′′,k′ =

= ⟨⟨ψk′′ (Sz − s) |ψ†
k′⟩⟩ and the transversal Ĝ(−)

k′′,k′ = ⟨⟨ψk′′S−|ψ†
k′⟩⟩ with the

“spin-inverted” spinor ψ†
k =

(
a†k,↓, a−k,↑

)
. The two last terms are analogous to

the well known Nagaoka’s Γ-term [122, 187] and treating them with a similar
decoupling procedure gives:

Ĝ
(z)
k,k′ =

JΣ2

N

∑
k′′,j

αj,kĜkĜk′′,k′αj,k′′ ,

Ĝ
(−)
k,k′ =

J

N

∑
k′′,j

αj,kĜk (ε+ h) X̂k′′Ĝk′′,k′αj,k′′ ,

where
Σ2 = ⟨S2

z ⟩ − s2,
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X̂k = S (S + 1)− s (s+ 1)− Σ2 +

(
1 + 2

ξk
Ek

)
τ̂3,

and one energy argument within Ĝ(−)
k,k′ is shifted: ε→ ε+ h, due to the AFM

stiffness.
Finally, we obtain the decoupled equation of motion:

Ĝk,k′ =
1

N

∑
k′′,j

αj,kĜk

[
Js+ J2

(
Σ2Ĝj + X̂j

)]
Ĝk′′,k′αj,k′′ , (3.67)

where Ĝj are the same as in Sec. 3.4 and

X̂j =
1

N

∑
k

α2
j,kĜk (ε+ h) X̂k.

Then a standard iteration of Eq. (3.67) yields in the result:

Ĝk,k′ =
1

N

∑
j

αj,kĜkT̂jĜk′αj,k′ , (3.68)

with the partial T-matrices

T̂j =
[
Js+ J2

(
Σ2Ĝj + X̂j

)][
1− Js− J2

(
Σ2Ĝj + X̂j

)]−1

(cf. to the simpler forms, Eqs. (3.45), (3.46) in Sec. 3.4). By the definition
of present model, the parameter Js is positive. It is interesting to trace the
behavior of T̂j in the two characteristic limits for AFM correlations between
Cu2+ spins.

In the paramagnetic limit: h→ 0, s→ 0, we have

Σ2 → S (S + 1)

3
,

X̂j →
2S (S + 1)

3
− 1

N

∑
k

α2
j,k

(
1 + 2

ξk
Ek

)
Ĝkτ̂3.

In neglect of the small last term we arrive at:

T̂j → J2S (S + 1) Ĝj

[
1− Js− J2

(
Σ2Ĝj + X̂j

)]−1
,

generalizing the known results [4,187] for the case of extended impurity center.
Another limit, fully polarized, h→∞, s→ S, corresponds to

Σ2 → 0, X̂j → 0

and results in
T̂j → JS

(
1− JSĜj

)−1
, (3.69)

which is only due to the effect of MF magnetic scattering and is already similar
to the simple forms, Eqs. (3.45), (3.46). The obvious validity condition for
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this limit, JS ≫ kBT , well applies in the SC phase at T < Tc ∼ ∆/kB,
so we use the fully polarized approximation, Eq. (3.69), for the T-matrices
in what follows. When considered within the context of the general model,
Eq. (3.4), for impurity perturbation, it implies the important change of the
matrix structure: from ∝ τ̂3 to ∝ τ̂0. As will be seen below, this change causes
a strong modification of the impurity effects.

Thus, the variation of LDOS, Eq. (3.8), compared to the uniform value
ρ (ε), Eq. (3.7), is:

ρn (ε)− ρ (ε) =
1

πN

∑
k,k′ ̸=k

ImTr ei(k−k′)nĜk,k′ =

=
∑
j

ImTr Ĝj (n) T̂jĜj (n),

where the matrices Ĝj (n) = N−1
∑

k e
iknα2

j,kĜ
(0)
k appear accordingly to

Eq. (3.68). It attains its maximum at n = δ, nearest neighbor sites to the
impurity, where the main contribution comes from j = 1:

ρδ (ε)− ρ (ε) ≈ ImTr Ĝ1 (δ) T̂1Ĝ1 (δ). (3.70)

The relevant GF’s are obtained in similarity with Eq. (3.33):

Ĝ1 (δ) ≈ α2
1ρN (g0 + g3τ̂3),

so that resulting ρδ(ε) can display a resonance at an energy εres, defined by
the denominator of T̂1:

Re
{
[1− uAg0 (εres)]2 − u2Ag23

}
= 0,

with the spin-dependent perturbation parameter uA = JSρNα2
1 in the A-

channel. The remarkable feature of the present model, Eq. (3.69), is that the
resonance energy εres goes to zero, if the impurity perturbation parameter
J is close to Jcr = 1/

(
Sα2

1g3ρN

)
, and then the peak in LDOS becomes

very sharp (cf. the theoretical curve for ρδ (ε) in Fig. 3.14 at the choice
J = 0.2 eV ≈ 0.97Jcr with the observed peak in the related tunnel conductivi-
ty [129]). This refers to a fine tuned rather than unitary (as is necessary in the
cases of Secs. 3.2 and 3.4) perturbation for obtaining a low energy impurity
resonance.

Also we find here difference in the local effect on SC correlation, which
is characterized by the same average ∆n = (VSCW/4µ) ⟨an+δ1,↓an+δ2,↑⟩ as
in the preceding Sec. 3.4, and the suppression parameter ηS = 1 − ∆0/∆ is
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3.5. Magnetic effect from non-magnetic impurities

Fig. 3.13. The dimensionless function F (ε) entering Eq. (3.71) (cf. to that in Fig. 3.11 for
spin-independent perturbation)
Fig. 3.14. Local DOS on nearest neighbor O sites to Zn impurity site as a function of energy,
ρ (ε), presents a sharp, almost zero energy resonance at the specific choice of perturbation
parameter J ≈ 0.85Jcr

formally given by the same Eq. (3.52), but with the partial T-matrices defined
by Eq. (3.69). Again, it is only contributed by the E -channel terms:

ηS = −
2

0∫
−∞

dεImTr F̂ 0
2 T̂

0
2 F̂

0
2 τ̂1

0∫
−∞

dεImTr F̂ 0
δ τ̂1

−

− 2uE

εD∫
0

Im
{
g1
[
2f0 − uE

(
2f0g0 + f20 + g21

)]
/DE

}
dε

εD∫
0

Im g1 (ε) dε

, (3.71)

where the resonant denominator DE = (1− uEg0)2 − u2E
(
g21 + g23

)
and the

spin-dependent perturbation parameter uE = JSρNα2
2. But when this function

(see Fig. 3.13) is compared with its analogue, Eq. (3.52), for spin-independent
perturbation, it is seen that the suppression effect is much more pronounced
in the present case. The evident reason for this is the difference in structure
of DE in Eq. (3.71) compared to that in Eq. (3.46). This difference is directly
related to the above mentioned change of the perturbation matrix structure,
which makes it possible to DE present already resonances in the important
energy range ε ∼ ∆, unlike the case of Sec. 3.4.

In fact, numeric integration in Eq. (3.71) with the same set of parameters
as used above for LDOS (corresponding to uE ≈ 0.15) shows a considerable
suppression of local SC order: ηsup ≈ 0.69, that is orders of magnitude

83



CHAPTER 3. Impurity states in superconducting systems

stronger than obtained for equal spin-independent perturbation in Sec. 3.4.
The dependence ηsup (J) is generally non-monotonous, anyhow it should be
stressed that no unitary limit JSρN ≫ 1 is needed to get such a strong effect.

The decay of this maximum effect with separation R from the impurity is
given, in similarity with Eq. (3.71), by

ηsup (R) =
VSC
π∆

0∫
−∞

dεImTrF̂2 (R) T̂2F̂2 (R) τ̂1, (3.72)

Here the matrix
F̂j (R) =

1

N

∑
k

eikRαj,kĜk,

and for R ≫ ξ± = a
√
W/ [8 (µ± ε)] it is mainly contributed by two saddle

points in the complex k-plane: ±ξ−1
± − iR−1, hence all its matrix elements

decay asymptotically like cos (R/ξ±) /
√
R/ξ±, and the non-diagonal elements

contain yet the anisotropic factor (∆/ε) cos 2ψ where ψ = arctanRy/Rx.
However, for the energies ε ∼ εD relevant here, such anisotropy is less
pronounced than that in the limit ε→ 0 considered by [16].

Integration in Eq. (3.72) results in the asymptotics

ηsup (R) ≈ ηsup
a

R

√
W

8µ

∑
i=±

(ui + fi cos 2ψ + hi cos 4ψ), (3.73)

where hi ≪ fi ∼ ui ∼ 1. This angular dependence resembles that for LDOS
around Zn impurity, suggested from continuous Bogolyubov—de Gennes
equations by [66], while the anomalously slow radial decay should enhance
the overall suppression of SC order.

Besides the considered local suppression of the order parameter, related
to the non-diagonal (in Nambu indices) elements of GF’s Ĝk,k′ , there are also
local effects related to their diagonal elements.

The j = 1 contribution also dominates in the Kondo-like local polarization
of itinerant spins:

m (δ) ≈
µ∫

0

dεImTr ei(k−k′)nĜ1 (δ) Ĝ1Ĝ1 (δ),

which should explain the observed enhancement of exchange fields on 63Cu
[176] and 89Y [110] nuclei close to Zn impurities. A more detailed treatment
of these phenomena can be done in similarity to the above analysis of j = 2, 3
contributions to the local order parameter.

The proposed model can be equally applied to isovalent substitutes for
Cu, which are magnetic themselves, as Ni2+ or Fe2+. But, since the net MF on
neighbor O sites in this case is due to incomplete AFM compensation of ex-
change fields by different magnetic ions, the perturbation parameter JS may be
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weaker than that for non-magnetic Zn2+ and so the resulting suppression of SC
order, as is observed in the experiment by [32]. Similar theoretical conclusions
were also obtained on local magnetic moments formed by such non-magnetic
impurities [39].

Thus, the developed microscopic model reasonably describes the spin de-
pendent perturbation on charge carriers in CuO2 planes, produced by a non-
magnetic substitute for Cu. It results in an almost complete suppression of
d-wave order parameter at nearest neighbor sites to the impurity atom is ob-
tained, as a result of parallel alignment of carrier spins in the exchange field JS
by non-compensated Cu2+ spins. This strong effect is achieved with moderate
JS values. It decays with distance from impurity rather slowly, which can
explain the fast destroying of SC order in cuprates already at low Zn concent-
ration. The model also provides explanation for other local effects, such as a
sharp resonance of LDOS and local polarization of charge carrier spins close
to impurity.

3.6. Concluding remarks

The presented analysis shows that impurity centers can produce
various effects on electronic spectrum of superconductors, either in its normal
(N-diagonal) and anomalous (N-non-diagonal) parts. The most obvious effect,
similar to that in the normal state, is the creation of localized or resonance
quasiparticle states, with respective features in the DOS (and also in LDOS).
In particular, a characteristic low energy impurity resonance can be observed
in the quasiparticle DOS of d -wave superconductor with impurities when the
corresponding perturbation potential VL reaches the value comparable to the
width W of the main electronic band. Another effect, specific for the super-
conducting state, is observed in the local suppression of SC order parameter
(N-non-diagonal). As seen from Sec. 3.2, this effect may also exist in absence
of single-impurity resonance in DOS and can even induce a weaker N-diagonal
effect, but of completely different structure than that by direct N-diagonal
perturbation. The interrelation between the two indicated types of impurity
effects is clarified at consideration of more general class of local perturbations,
as by the extended centers in Secs. 3.4 and 3.5, showing the separation of N-
diagonal and non-diagonal effects between different symmetry channels of the
impurity point group. Like the situation in traditional superconductors, the
impurity effects in high-Tc systems are much more pronounced if the impurity
scattering potential depends on carrier spin and this enhancement is related to
the specific balance between the N-diagonal and non-diagonal sectors of impu-
rity scattering in this case. As will be seen from the following Chapters, these
local effects can essentially influence the global parameters of SC state itself
in the doped systems.
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Many of the above results were obtained yet before the advent
of HTSC era. The latter, as was already mentioned, posed the
problems of metallization in the doped 2D system and also of its
transition to the SC state. We note again that our interest is not
in the pairing mechanism itself, either conventional (phonon)
or exotic, but in the very possibility (and criteria) of formati-
on of SC condensate in a rather strongly disordered medium.
Such is the medium where the number of charge carriers ne-
ver exceeds the number of scattering centers. At the same ti-
me, there is a plenty of papers (see, e.g., the review articles
by [145] and by [109]) studying the physical properties of SC
systems with variable number of free carriers but leaving asi-
de the issue that doping is inseparably related to disorder and
random Coulomb fields. In common metals, the Fermi wave
number kF and the quasiparticle mean free path ℓ are, as a
rule, independent quantities and always satisfy the condition
kFℓ≫ 1 [51]. But in the doped degenerate semiconductors (and
in HTSC compounds), though the values kF and ℓ are formally
determined by different parameters, the carrier concentration
cc and the scatterer concentration cs, the equality cc = cs = c
leads to the condition kFℓ ∼ 1, characteristic to the so called
“bad” metals. In contrary to semiconductors where the tendency
to metallization with growing number of carriers competes with
the tendency to their localization, superconductors display yet
another tendency, that to pairing of carriers and formation of
SC condensate, subject to fluctuations which can self-destroy
it (see below in Ch. 6). The outcome of all these competing
tendencies is determined by the following important factors:

i) the system dimensionality, which is lowered in the layered
copper oxides, and

ii) the fact that the attraction between carriers is effective
over a considerable energy range, comparable to or even surpas-
sing (at low c) the Fermi energy (contrasting with a narrow BCS
shell around Fermi surface in conventional superconductors).



4.1. Physical description of doping process

It was shown in Ch. 2 how the insulator-metal transition can be descri-
bed in doped layered 2D (or quasi-2D) systems. Below we analyze a more
complicated doping process on the base of model of Ch. 3, including the SC
pairing and its main consequence, the anomalous components of Nambu matri-
ces for GF’s. The main specifics of the present consideration is the unification
of dopant and scattering effects of impurities at the condition when x ≈ c.
This defines the problem of superconductivity in a 2D (or quasi-2D) system
with doping dependencies for chemical potential, µ = µ (x), and for SC gap,
∆ = ∆(x), and with explicit effects of localization. An important result of
this analysis is that, besides the characteristic doping level xmet for metalli-
zation and SC transition, there is also a maximum value xmax, determined
by the ratio between the scattering parameter VL and pairing parameter VSC,
such that superconductivity itself can only exist within the limited doping
interval xmet < x < xmax. For simplicity, we begin here from the case of s-
wave symmetry of SC order and the developed techniques will be extended to
the d -wave case, more relevant for HTSC’s, in the following Chapters.

4.1. Physical description of doping process

Let us return to the simplest Hamiltonian, Eq. (3.6), for a
planar SC system but with an explicit account taken of the dopant function
of impurities, so that their concentration is related to the chemical potential
through the number equation:

x =
1

N

∑
k,σ

⟨
a†k,σak,σ

⟩
= 1 +

1

π

∞∫
−∞

dε

e(ε−µ)/T + 1
ImTr Ĝ (ε− µ) τ̂3. (4.1)

Here we used the identity
⟨
a†k,↓ak,↓

⟩
= 1−

⟨
ak,↓a

†
k,↓

⟩
, in order to reproduce the

elements of GF matrix Ĝk, and restored the absolute energy scale, permitting
the explicit account of the doping dependence of chemical potential µ. Another
specification is related to the Cooper instability of electronic ground state,
which is commonly introduced into the more general four-fermion interaction
Hamiltonian

Hint =
1

N

∑
k,k′

Vk,k′a†k,↓a
†
−k,↑ak′,↑a−k′,↓,

by dividing the anomalous operator product into the sum of two terms:

ak,↑a−k,↓ = ⟨ak,↑a−k,↓⟩+ φk. (4.2)

Usual approach to superconductivity, ascending to [18] and [29], sets Vk,k′ =
= −VSC = const for k,k′ within a narrow energy shell of width εD around
the Fermi surface and accounts in Eq. (4.2) only the c-number “condensate”
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CHAPTER 4. Metallization and s-wave superconducting order

term ⟨ak,↑a−k,↓⟩, which then enters the gap equation for the (s-wave) order
parameter (generalizing Eq. (3.4) for the uniform SC system):

∆ =
VSC
N

∑
k

⟨ak,↑a−k,↓⟩ θ(ε2D − ξ2k). (4.3)

Below in this Chapter, we consider the limit, more characteristic for HTSC
systems, when the Debye energy parameter εD can be bigger of other energy
scales, W and µ (in contrast to the traditional SC systems). Then we present
the gap equation, Eq. (4.3), in the form similar to the number equation,
Eq. (4.1):

∆ =
VSC
π

∞∫
−∞

dε

e(ε−µ)/T + 1
ImTr Ĝ (ε− µ) τ̂1. (4.4)

Of course, validity of the above approach is determined by the usual mean-
field criterion, supposing fluctuations of the anomalous average small enough.
However, in consideration of SC systems obtained from doping metals, at vari-
able doping, this criterion is not necessarily fulfilled. Therefore it makes sense
to retain also the last term in Eq. (4.2), the operator φk, which describes
fluctuations of the order parameter ∆. We call these fluctuations Bose-like,
since it will be seen below that in the limit x → 0, T → 0 they behave as
Bose operators. In absence of magnetic field and currents, the value of ∆ can
be taken real. Then the further extension of the Hamiltonian HSC, Eq. (3.6),
involving also the Bose-like degrees of freedom, reads:

H ′
SC = HSC −

VSC
N

∑
k,k′

φ†
kφk′ . (4.5)

It is important that, even in absence of dopant scattering (if VL → 0), the Fermi
and Bose-like operators in the Hamiltonian, Eq. (4.5), are not independent.
This is seen from the non-zero commutators:[

ψk,
∑
k′k′′

φ†
k′φk′′

]
=
∑
k′

(
φk′ τ̂+ + φ†

k′ τ̂−

)
ψk, (4.6)

giving rise to processes of Andreev scattering of quasiparticles by fluctuations
of the order parameter, and:[

φk, ψ
†
k′ τ̂3ψk′

]
= 2δk,k′φk, (4.7)

defining the binding energy of isolated electron pairs in the limit of empty band
(at x → 0) due to interactions with virtual band excitations. The following
calculation of GF matrix is complemented by the self-consistency with respect
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to the number equation (4.1) and the gap equation (4.3), forming a closed
set for definition of the spectrum parameters µ and ∆ as functions of given x
and T (and also of the Hamiltonian parameters VSC and VL). This permits to
define in principle the phase states of the doped electronic system. We shall
see below that considering of the Bose-like excitations (the bound two-particle
states) only make sense when ∆ → 0, which corresponds to the limit x → 0
(see the next Section), and they can be simply ignored when considering the
SC phase at high enough doping level, x > xmet.

4.2. Doping dependent
superconductivity in uniform system

The general treatment of the system of equations (4.1) and (4.4)
is hard enough but it can be much easier in the two limiting situations: i) that
of disordered normal system, VSC = 0, VL ̸= 0, and ii) that of uniform SC
system, VSC ̸= 0, VL = 0.

The case i) was already considered in Ch. 3, when analyzing the insulator-
metal transition in doped semiconductors. Hence we consider here in more
detail the case ii).

In this case, the GF matrix Ĝk is reduced to the unperturbed Ĝ0
k (the

fluctuation term in Eq. (4.5) does not influence it in the uniform system). Let
us also take for simplicity the SC pairing range unrestricted (the effect of finite
value of εD will be discussed later). Using the explicit form, Eq. (3.7), for Ĝ0

k
and the integration rule, Eq. (3.15), we present the number equation (4.1) at
T = 0 as

x = 1 +
1

π

0∫
−∞

Im
[
g0µ

(√
ε2 −∆2

)
+ g0µ

(
−
√
ε2 −∆2

)]
dε, (4.8)

where the function

g0µ (ε) =
1

N

∑
k

1

ε− ξk
=
ρN
2

ln
−µ− ε

W − µ− ε
(4.9)

generalizes Eq. (2.39), admitting µ and ε to take complex values. But in a
uniform system they are real, then Eq. (4.8) gives

x = 1− 1

W

[√
(W − µ)2 +∆2 −

√
µ2 +∆2

]
. (4.10)

Next, we present the gap equation (4.4) as

1 =
VSC
π

∞∫
−∞

Im
[
g0µ

(√
ε2 −∆2

)
− g0µ

(
−
√
ε2 −∆2

)]
√
ε2 −∆2

dε, (4.11)
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and obtain in a similar way to Eq. (4.10):

1 =
λ

2
ln
W − µ+

√
(W − µ)2 +∆2

−µ+
√
µ2 +∆2

, (4.12)

with the dimensionless SC coupling constant λ = VSCρN . The relations equi-
valent to Eqs. (4.10) and (4.12) were also obtained by [60] through the field-
theoretical methods. Their exact solutions are given by the simple expressions

µ =
Wx− εb (1− x)

2
,

∆ =

√
x(2− x)εb (2W + εb)

2
,

(4.13)

where εb = 4/ [ρN (exp (2/λ)− 1)] is the binding energy for a single pair (single
Bose-like excitation). Thus, the chemical potential for fermions proves to be
negative at their small enough concentration, so that µ at x → 0 gets fixed
at half the binding energy (alike, e.g., the situation in common low-doped
semiconductors where it is fixed at half the energy of local impurity level [160]).
This indicates the possibility for Bose—Einstein condensation of pairs into the
superfluid (SF) state (unlike the Cooper condensation into the SC state). In
this condition, the value ∆ obtained from Eq. (4.13) should be considered
rather as a formal parameter of the theory than the real measure of Cooper
correlations between Fermi quasiparticles.

The chemical potential µ grows with doping and turns zero when the
concentration reaches the value xSF−SC = εb/ (w + εb). With further growth
of doping, at x > xSF−SC, the value of µ becomes positive, manifesting the
crossover from superfluidity of separate pairs in the real space to superconducti-
vity of Cooper pairs in the inverse space. Meanwhile, the value of ∆ (now
understood as the SC order parameter) does not experience any sharp changes
at this crossover, still varying as∼

√
x. One can trace this evolution of electronic

phase state with growing doping level x, considering the quasiparticle DOS
calculated from Eq. (3.8).

At low doping, x < xSF−SC (that is, at µ < 0), we obtain DOS for the SF
phase as:

ρ (ε) = ρSF (ε) =
ρN
2

ε√
ε2 −∆2

θ
(
ε2 − ε2g

)
, (4.14)

alike the BCS function ρs (ε) given by Eq. (3.20), but with the spectrum gap
εg =

√
µ2 +∆2 = (εb + xW ) /2 characteristic for the SF state (Fig. 4.1). Since

this SF gap exceeds the SC gap: εg > ∆ at any µ ̸= 0, the gapped DOS at
x < xSF−SC has no edge divergence proper to the SC phase (cf. to Fig. 4.1).
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4.2. Doping dependent superconductivity in uniform system

Fig. 4.1. DOS for uniform system with
s-wave pairing between charge carriers,
plotted at different values of the ratio
x/xSF−SC (shown by numbers aside each
curve). The excitation spectrum always
presents a gap (its edge shown by a vertical
dashed line) and all the states with positi-
ve energy are empty at T = 0. Note that
the DOS value at the gap edge is finite for
x < xSF−SC and divergent for x > xSF−SC,
and that in the latter case a drop to half
its value occurs at εg (shown by arrows)
due to prevailing SF correlations at higher
energies

The asymptotic value ρSF (ε≫ εg) → ρN/2, half the value for normal 2D
metal, relates to the pairing of carriers into composite bosons.

When x reaches xSF−SC, the gap εg becomes equal to the order parameter
∆ and the edge divergence develops in DOS, manifesting the “transition” to SC
phase. But the SC phase, emerged at x < xSF−SC, is still peculiar since the BCS
dependence ρBCS (ε) is only restored within the energy interval ∆ < ε < εg,
while being half of this function at ε > εg, reminiscent of the SF correlations.
Finally, at x≫ xSF−SC, the conventional BCS spectrum is established within
the entire relevant region of energies.

As it was mentioned in the preceding Section, the binding energy for
composite bosons can be obtained alternatively from the Bose-like GF:

F (ε) =
1

N

∑
k,k′

⟨⟨
Φk|Φ†

k′

⟩⟩(−)
. (4.15)

The use of commutator GF’s is justified here by the fact that the equations of
motion for them are controlled by the well defined averages in their r.h.s.:⟨[

Φk,Φ
†
k′

]
−

⟩
=

δk,k′ξk√
ξ2k +∆2

,

like the situation with bosonic GF’s, Eq. (1.15), for spin excitations in Ch. 1.
At x → 0, we have from Eq. (4.13) the tendency of ∆2/ξ2k → 0, uniformly in
k, so the above averages tend to coincide with those for true Bose operators
(at least for not too small k giving relevant contribution to Eq. (4.15)).

In this limit, using the commutation relation, Eq. (4.7), we obtain explici-
tly the Bose-like GF as:

F (ε) =
1

VSC + 2/g0µ (ε/2)
, (4.16)
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and the bound state (the pole of Eq. (4.16) should correspond to ε = 0, since
this is the only possible occupied bosonic level at T = 0. Then the explicit form
of Eq. (4.9) for g0µ (0) leads to the conclusion that the chemical potential related
to the pole is: µ = −W/ [exp (2/λ)− 1] = −εb/2, in agreement with Eq. (4.13)
in the limit x → 0. On the other hand, the edge of the continuous spectrum
for F (ε) coincides with the onset of non-zero Im ln [1−W/ (µ+ ε/2)], at
ε = −2µ = εb, exactly the binding energy. Finally, it should be noted again
that the above considered Bose-like excitations have no direct effect on the
fermion dynamics described by the GF Ĝk.

Now we are in a convenient position to go to a central point of this
Chapter — a synthesis of the two limiting situations, that of Sec. 2 and that di-
scussed above, considering the general case of VL ̸= 0, VSC ̸= 0, and x ≈ c ̸= 0.
In order to combine the impurity scattering effects with the relations between
doping x and the electronic spectrum parameters µ and ∆, we shall need a
certain re-formulation of the basic equations.

4.3. Pairing vs impurity scattering

To describe the system in presence of both disorder and SC
pairing, VL ̸= 0, VSC ̸= 0, as given by the general Hamiltonian, Eq. (4.5),
one needs to define the GF matrix Ĝk from the matrix GE’s, respective for
the energy ranges of extended or localized states (analogous to Eqs. (2.14) or
(2.16) for normal systems). Generally, this should be done in self-consistency
with the definition of parameters µ and ∆ by the number and gap equations,
Eqs. (4.1) (supposing now x = c) and (4.3), which include the matrices Ĝk

themselves. The resulting excitation spectrum will display collective effects of
impurity scattering, alike those for normal systems in Chs. 1, 2, and, in the
same manner as for normal systems, these collective effects are predefined by
the characteristics of single impurity states discussed in Ch. 3.

Let us start from the simplest truncated forms of m-diagonal GF,
Eqs. (3.13) and (3.14), and study the the resulting spectrum of collective ex-
citations in particular models for Ĝ(0)

k and T̂ (0).
In the case of T-matrix for a non-magnetic impurity in the s-wave system,

Eq. (3.21), which has no impurity resonance within the gap, the dispersion
equation for band-like excitations [31]

Redet Ĝ−1
k = 0 (4.17)

follows explicitly from Eq. (3.13) as:

(
ε2 −∆2

)(
1− cv2W

2π (1 + v2)
√
∆2 − ε2

)2
− (ξk + δµ)2 = 0. (4.18)
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Here the constant shift term δµ = cv2W/
[
2π
(
1 + v2

)]
beside ξk can be

safely absorbed into a renormalized chemical potential, while the factor beside(
ε2 −∆2

)
is irrelevant for the resulting GF and DOS which simply coincide

with those for the unperturbed system, Eqs. (3.11), (4.14). This fact can be
considered as another manifestation of Anderson’s theorem [12] at the level of
linear approximation in impurity concentration (or T-matrix level). Moreover,
it even persists if one would try to improve this linear approximation, passi-
ng to the self-consistent T-matrix (SCTMA) form [105] (cf. to Eq. (2.27) and
presenting the GF as

Ĝ−1
k =

(
Ĝ

(0)
k

)−1
− Σ̂, (4.19)

with the SCTMA self-energy matrix

Σ̂ = c

(
1− V̂ 1

N

∑
k

Ĝk

)−1

V̂ , (4.20)

in analogy to Eq. (2.27) in the normal case. Then explicit calculation in
Eq. (4.20) results in

Σ̂ =
cv2W

1 + v2

(̃
ε− ∆̃τ̂1

)
2π
√

∆̃2 − ε̃2
+ δµτ̂3,

where the self-consistently renormalized energy ε̃ and gap ∆̃ are related to
their initial values as

ε

ε̃
=

∆

∆̃
= 1 +

cv2W

2π (1 + v2)
√

∆̃2 − ε̃2
,

and this leads the resulting SCTMA DOS ρ (ε) = ρN Im ε̃/
√

∆̃2 − ε̃2 again to
simple coincidence with the non-perturbed function, Eq. (3.20).

Nevertheless, such behavior and, in particular, the conservation of edge
singularity in DOS is not generally compatible with the loss of translational
invariance in the doped SC system. Comparing to the impurity effects in the
spectrum of normal quasiparticles considered in Ch. 2, one should rather expect
that the sharp edge features are somehow smoothened by the effects of impurity
scattering (even if non-resonant).

In fact, it is shown below in Ch. 8 that a more realistic DOS for the s-wave
SC with non-magnetic impurities, obtained with use of GE’s (that is beyond
the single impurity framework of SCTMA), presents yet a tiny “tail” of in-gap
fluctuation states due to clusters of three or more impurities (with amplitude
∼c3 or less), rapidly decaying within the gap (Fig. 4.2).

We can also find non-trivial impurity effects (like those in normal systems,
Ch. 2) in non-uniform SC systems, if the T-matrix provides a real impurity
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Fig. 4.2. Weak impurity effect on DOS in s-wave superconductor consists in the restriction
of edge singularity of Fig. 4.1 to a finite value and in appearing of a small “tail” of in-gap
fluctuation states inwards the gap (see details in Ch. 8)
Fig. 4.3. Localized peak at ε0 (see Eq. (4.22)) in the s-wave gap resulted from impurity
perturbation of SC pairing at sufficiently low concentration of such defects

resonance within the s-wave gap, as for the impurity perturbation of SC pairing
discussed in Sec. 3.3. Then, using the linear approximation in c by Eq. (3.48),
one obtains the following dispersion equation for the energy range of band-like
states:

ε2
(
1− cvVg√

∆2 − ε2 − 2v∆

)2
−

(
∆− cvVg∆−W

√
∆2 − ε2/2√

∆2 − ε2 − 2v∆

)2
−

−

(
ξk −

cvWVggas
2π

√
∆2 − ε2√

∆2 − ε2 − 2v∆

)2
= 0, (4.21)

with the parameters v and Vg defined in Eq. (3.49) and gas in Eq. (3.17). It is
seen that the gap edge (that is the solution for ξk = 0) still remains at ε = ∆,
unshifted even in presence of the impurity resonance. However this resonance
does contribute to DOS at ε < ∆, as follows already from the non-renormalized
formula, Eq. (3.14):

ρ (ε) = − c

πN

∑
k

ImTr Ĝ
(0)
k T̂ (0)Ĝ

(0)
k .

Using here Eqs. (3.11) for Ĝ(0)
k and (3.48) for T̂ (0) gives the in-gap DOS as

ρ (ε) ≈ Im
cvVgε

πN
(√

∆2 − ε2 − 2v∆
)∑

k

ε2 +∆2 + ξ2k(
ε2 −∆2 − ξ2k

)2 ≈ cε0∆ δ (ε− ε0),

(4.22)
that is a delta-like peak at ε = ε0 = ∆

√
1− 4v2.
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4.4. Phase diagram of doping vs scattering

This simplest picture of the impurity effect in the linear in c approximation
gets modified with an account of inter-impurity interactions, defining a finite
linewidth Γ0 of the peak (see Fig. 4.3). Leaving a more detailed discussion of
these interactions in SC systems for Ch. 8, we only notice here that, alike the
situation in normal systems in Figs. 2.4 and 2.5, a true estimate of Γ0 cannot
be obtained from the SCTMA procedure of sort of Eqs. (4.19), (4.20), but
roughly follows from the non-renormalized approach through the condition∣∣∣∣∣Re vVgε0

√
∆2 − ε20

Γ0

1

N

∑
k

eik·n

ε20 −∆2 − ξ2k

∣∣∣∣∣ ∼ 1, (4.23)

where |n|is of the order of the mean inter-impurity distance r ∼ ac−1/2, in
analogy to Eqs. (2.23), (2.24) for the normal metal. Then we readily obtain
from Eq. (4.23) the estimate Γ0 ∼ c1/4v2

√
1− 4v2∆exp

(
−a/ξcc1/2

)
, which

grows with concentration c of defects (here not to be confused with the doping
concentration!) and can produce a merger of the localized peak with the edge
of main DOS at c ∼ (∆/εF)

2 / ln
(
v−4εF/∆

)
.

Returning to the non-uniform system with the Hamiltonian, Eq. (4.5), we
have to notice that it yet presents the concentrational dependence of the gap
value (the SC order parameter), due to the impurity perturbation VL (apart
from that suggested by Eq. (4.13), due to the dependence of chemical potential
on dopant concentration). This issue will be considered in more detail below
in Ch. 6. Now we turn to discuss the general characteristics of the SC state in
presence of this kind of disorder resumed in the corresponding phase diagram.

4.4. Phase diagram of doping vs scattering

As was already mentioned in Sec. 4.1, the phase state (at T = 0)
is defined by the three independent parameters: VSC, VL, and c, which would
require a 3D plot for the phase diagram, involving various competing tendencies
in a rather complicate way. A simpler task is to plot its 2D sections, e.g.,
by setting a certain relation between VSC and VL. In particular, a suitable
choice is provided by the linear relation between the corresponding energies:
εb+εloc = ε0 = const, which we suppose to hold below in this section. Thus we
shall plot the system phases in the coordinates “reduced doping”: x = cW/ε0
(varying from 0 up to the values ≫ 1) and “scattering-to-pairing”: y = εloc/ε0
(varying within 0 ≤ y ≤ 1), as shown in Fig. 4.4.

Let us begin analysis of resulting phase diagram from the SF phase. This
phase can be identified with the region of negative chemical potential, µ < 0,
delimited by the points (x = 1, y = 0) (SF transition in the uniform system
with attraction, considered in Sec. 4.2) and (x = 0, y = 1) (since the chosen
y-axis corresponds to an “empty” system with decreasing attraction, we have
µ = ε0 (y − 1) /2 ≤ 0 along this axis). In the self-consistent approximation, the
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CHAPTER 4. Metallization and s-wave superconducting order

Fig. 4.4. Qualitative phase diagram in nor-
malized variables “doping” x = c/(cb + cloc)
and “scattering-to-pairing” y = εb/(εb + εloc).
The solid lines show the boundaries between
normal phases, insulating I and metallic M,
superfluid (SF), and s-wave superconducting
(SC) phases. The dash-dotted line indicates
the possible phase trajectory at growing do-
ping in an initially antiferromagnetic insulator
(see in the text)

boundary of the SF phase at 0 < y < 1 should be calculated from the general
Eqs. (4.1), (4.4) with use of solutions of Eq. (4.11). However, the simplest
interpolation for this boundary is the straight line: y = 1−x, confining the SF
phase to the triangle 0 < y < 1−x. Outside the SF phase, either superconduc-
ting, normal metallic, and insulating (SC, M, and I) phases can exist, and we
estimate their boundaries from linear interpolations between the concentration
dependencies for µ, ∆, and ΓF = Γk=kF in the limits y = 0 and y = 1 (using
the results of Ch. 2 and Secs. 4.2, 4.3). Thus, the boundary between I and M
phases at y = 1 (the normal system with impurities) corresponds to x ≈ 1
(c ≈ cloc), then an extrapolation of the law: cloc ∼ εloc/W , to the values of
y < 1 gives the boundary line: y = x (provided chemical potential is positive,
µ > 0). So within the approximation made, the I phase occupy the triangle,
delimited by the lines y = 1− x, y = 1, and y = x.

At least, the transition from SC to M phase can be associated with the
condition ΓF ∼ ∆, when the spectrum gap gets washed out because of impurity
broadening. In other words, that means that the Cooper pair lifetime becomes
shorter of the time necessary for a Fermi quasiparticle to travel by the coherence
length. At x≫ 1 we have µ ≈ c/ρN in either limits y = 0 and y = 1, so this can
be though plausible also for the whole interval 0 < y < 1. Then, approximating
Eq. (4.13) as ∆2 ≈ cεbW and ΓF ∼ Im cW/ [ln (εloc/µ) + iπ], one arrives at
the equation:

y ≈ 1− π2x[
ln2 (εloc/µ) + π2

]2 . (4.24)

Its solution (shown by the line SC-M in Fig. 4.4) decreases with x as: y ≈ 2x×
× exp

[
−
(
π2x

)1/4], and, if we suppose Eq. (4.24) to be valid even at x ∼ 1,
the triple point t1 between the I, M, and SC phases will be reached at x =
= y = ycr ≈ 1− 1/π2 (shown by a circle in Fig. 4.4, in reality, this point may
lay somewhat lower). Another triple point, t2, at x = y = 1/2, corresponds to
the meeting of the SF, SC, and I phases.
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4.5. Concluding remarks

Of course, the diagram in Fig. 4.4 is only a qualitative sketch which can be
improved through a detailed numerical treatment of Eqs. (4.1), (4.4), (4.11),
nevertheless some important physical properties of the doped SC system can
be already indicated. In particular, a horizontal scan below the triple point
(that is at not too weak SC pairing, as shown by the horizontal dashed line in
Fig. 4.4) defines two critical concentrations, x1 and x2, manifesting the onset
and subsequent breakdown of superconductivity with monotonously growing
doping. This is the well known feature of most high-Tc materials where the
critical temperature vs doping, Tc (c), reveals a bell-shaped form [134]. Note
that the actual value of y for such a scan is defined by the particular choice
of a “host-dopant” pair, and if y exceeds the critical value ycr no SC transition
will take place with growing doping at all. But if this transition is possible
(at y < ycr), the most probable situation will correspond to x1 ≪ x2. This
latter feature is also in a reasonable agreement with the bulk of experimental
observations.

However, it may seem somewhat puzzling that this same scan would also
imply a possiblity for SF phase at lowest doping, x ≪ 1, not observed in real
metal-oxide compounds. Here two possible explanations can be invoked. Firstly,
when the Bose—Einstein condensation energy εb is such low, the corresponding
transition temperature TSF ∼ εb/kB may be also below the range explored
up to now. On the other hand, the attraction VSC itself may vanish in these
materials at doping levels x below some low critical value xcr < x1, when the
initial long-range AFM order is not yet destroyed (see Sec. 1.5). Thus in a real
situation, when the parameter VSC and respectively the value 1 − y are only
“switched on” at x > xcr, the phase trajectory with growing doping x, before it
reaches the SC phase at x = x1, could pass entirely within the I phase: starting
from a horizontal segment y ≈ 1 at 0 < x < xcr and then turning downwards
at xcr < x < x1 as the pairing is “switched on” (shown by the dash-dotted line
in Fig. 4.4).

4.5. Concluding remarks

A self-consistent definition of the chemical potential and SC
order parameter through the averages of GF’s, including explicit effects of
quasiparticle scattering by impurities, is found in a good formal agreement with
the results of field-theoretical analysis and providing an additional information
about upper limits of existence of SC state with respect to doping level. A more
detailed analysis of the general equations in a more realistic situation of d -
wave symmetry of SC order parameter, also providing a number of microscopic
characteristics of the excitation spectrum, will be the subject of the following
Chapters.
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The analysis of formation of the SC state in function of Hamil-
tonian parameters and doping level, as presented above in Ch. 4,
can be naturally extended to the case of d -wave order parame-
ter. There is a convincing experimental evidence for this kind
of symmetry to exist in real perovskite HTSC compounds [171]
and it also agrees with microscopical derivations in the simplest
tight-binding scheme for the square CuO2 lattice. However, the
d -wave symmetry in general implies an essential difference from
the isotropic s-wave case, either in the structure of energy spect-
rum for a uniform system and in the properties of localized exci-
tations near single impurity centers, as was already displayed
in Sec. 3.2. Such circumstance would make one to expect the
practical treatment of the self-consistent doping and pairing
problem in this case to be much more difficult technically than
in the case of Ch. 4, if not impossible at all. Fortunately, this
was not found true in reality [106] and the respective theoretical
scheme looks completely easy and methodologically interesting
for practical uses.

Evidently, there is no reasons to expect any difference in the
system behavior with rising doping level c before the metalli-
zation threshold cmet is reached, and the corresponding results
of Ch. 4 should still apply there. Therefore we shall focuse in
this Chapter only on the specifics of the d -wave SC state at the
doping concentration c well beyond the threshold cmet, when
the chemical potential µ can be safely put equal to the Fermi
energy εF and related to the doping concentration as µ ≈ c/ρN .
An issue of principial importance is whether and when it is pos-
sible to reconcile the very existence of SC order at sufficient im-
purity doping with the disorder effects by impurity scattering,
since it was even claimed that anisotropic d -wave pairing might
not survive in presence of chaotically distributed isotropic scat-
terers [3, 56]. However, the following analysis shows that these
opposite symmetries of SC pairing and impurity scattering are
not a prohibitive factor at all, at least for not too high impurity
concentrations.



5.1. Uniform d-wave state

5.1. Uniform d-wave state

Let us begin from the analysis of the uniform d -wave SC state
in absence of impurity scattering, VL → 0, in analogy with Sec. 4.2. The ge-
neral framework defined in Sec. 3.1 now uses the long wave approximation
for the d -wave symmetry factor γk = 2 (cos akx − cos aky) /

(
a2k2F

)
in the gap

function, Eq. (3.2), as it was already indicated in Sec. 3.2, and the gap function
is presented as ∆k ≈ ∆cos 2φk. Then in the gap equation, Eq. (3.4), considered
at T = 0 and with Ĝ(0)

k substituted for Ĝk, we do the trivial energy integration
with use of the delta function: Im

(
ε2 − ξ2k −∆2

k − i0
)−1

= πδ
(
ε2 − ξ2k −∆2

k

)
,

and present it as

1 =
λ

4π

2π∫
0

dφ cos2 2φ

εD∫
−εD

dξ√
ξ2 +∆2 cos2 2φ

(5.1)

with the constant λ as in Eq. (4.12). Integrating this first in ξ, we have
εD∫

−εD

dξ√
ξ2 +∆2 cos2 2φ

= 2arcsinh
εD

|∆cos 2φ|
≈ 2 ln

2εD
∆ |cos 2φ|

,

(since ∆≪ εD). Doing next the angular integration:
2π∫
0

dφ cos2 2φ ln
2εD

∆ |cos 2φ|
= π

(
ln

4εD
∆
− 1

2

)
, (5.2)

we arrive at the gap parameter:

∆ = 4εDe
−2/λ−1/2. (5.3)

It is usual to compare this value with the critical temperature Tc of SC transiti-
on, found from the same gap equation, Eq. (3.4), under the condition ∆k ≡ 0:

2

λ
=

εD∫
0

dξ

ξ
tanh

ξ

2kBTc
≈ ln

2γEεD
πkBTc

,

so that
kBTc =

2γEεDe
−2/λ

π
. (5.4)

From comparison of Eqs. (5.3) and (5.4) we conclude that the characteristic
ratio r = 2∆/kBTc in this case is 2/

√
e times the s-wave BCS value rBCS =

= 2π/γE ≈ 3.52, reaching ≈ 4.27. To compare with, a similar derivation for
the “square” geometry of Fermi surface [106]

1 =
λ

π∆3

∆∫
0

η2dη

εD∫
0

dξ√
ξ2 + η2

=
λ

3
ln

2εDe
1/3

∆
,
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CHAPTER 5. d-wave superconducting order in doped metals

gives yet bigger value: r = e1/3rBCS ≈ 4.92. So, even such a simple estimate di-
rectly gives a noticeably bigger r value for d -wave than for s-wave symmetry, as
many times confirmed by experimental observations. The value of ∆, Eq. (5.3),
is one of the basic characteristics of the uniform d -wave SC state, and its
modification in the non-uniform superconductor provides an example of self-
averaging quantity which can be effectively studied through the proper GF
matrices, either self-consistent or presented by group expansions.

Another important self-averaging quantity is the integrated SPGF matrix
Ĝ itself, related to the global density of states ρ (ε), Eq. (3.7), or to the local
one, Eq. (3.8), which coincide in the non-perturbed system. In presence of im-
purity (and dopant) scattering, the above presented description in Sec. 3.2 of
the low-energy resonance should be reconsidered when the concentration of
scatterers is high enough:

c & c∆ ∼ ρN∆/v2, (5.5)

which can be in fact the case for all the doping levels above the metallization
threshold xmet, Eq. (2.52), for actual material parameters VL and VSC in high-
Tc metal-oxide systems.

In this situation, Ĝ can be essentially modified compared to Ĝ(0) and ge-
nerally this is expressed in a rather complicated way by the corresponding
group expansion, being a matrix analogue to Eqs. (2.11) or (2.17) (see below
in Ch. 8). To simplify the task, one can begin from an SCTMA treatment, like
that already used in Sec. 4.3 for the s-wave SC doped system, with necessary
modifications introduced for the d-wave case.

5.2. Density of states in self-consistent approach

Here we develop the self-consistent treatment for a d -wave
SC with local (impurity/dopant) scatterers, described by the Hamiltonian,
Eq. (3.4), using exact integration of relevant GF matrices (for a given geometry
of Fermi surface) and comparing the respective coefficients at Pauli matrices.
This approach is free of infrared logarithmic divergencies, appearing in the in-
tegrals of perturbation theory in the Born limit [64], and thus permits to avoid
applying heavy field theory methods for white-noise scattering potential [123],
whose adequacy to the case of discrete random dopants is not clear.

In analogy with Eq. (4.19), we define the self-consistent approximation for
m-diagonal SPGF:

Ĝ
(sc)
k =

{[
Ĝ

(0)
k

]−1
− Σ̂(sc)

}−1

, (5.6)

through other self-consistent matrices:

Σ̂(sc) = −cV̂
[
1 + Ĝ(sc)V̂

]−1
(5.7)
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and
Ĝ(sc) =

1

N

∑
k

Ĝ
(sc)
k , (5.8)

and then parametrize the self-energy matrix, Eq. (5.7):

Σ̂(sc) = Σ0 +Σ1τ̂1 +Σ3τ̂3, (5.9)

where Σi (i = 0, 1, 3) are generally some complex-valued functions of energy.
Then integration in Eq. (5.8) within the circular approximation, Eq. (2.38),
results in a similar expansion for the self-consistent GF matrix:

Ĝ(sc) = G0 −G1τ̂1 −G3τ̂3. (5.10)

Here the two coefficient functions are

G0 (ε) = ρNg0d (ε− Σ0) and G3 (ε) = ρNgas (ε− Σ0),

while the self-consistent value of G1 (ε) is readily shown to be in fact zero,
preserving the same matrix structure for Ĝ(sc) as for Ĝ(0).

Indeed, substituting Eq. (5.10) into Eq. (5.7), we arrive at

Σ̂(sc) =
cVL

D + V 2
LG

2
1

[VL (G0 −G1τ̂1)− (1 + VLG3) τ̂3]. (5.11)

with D = (1 + VLG3)
2− V 2

LG
2
0. Comparing Eqs. (5.11) and (5.9), we conclude

that Σ1 = −cV 2
LG1/

(
D + V 2

LG
2
1

)
, hence G1, as a function of (supposedly vani-

shing) Σ1, is: G1 ≈ −Σ1D/
(
cV 2

L

)
.

Otherwise, from the direct integration in Eq. (5.8) with use of Eqs. (5.6)
and (5.9), we have

G1 =
ρN
2π

2π∫
0

dφ

W−µ∫
−µ

dξ
∆cos 2φ+Σ1

(ε− Σ0)
2 − (ξ +Σ3)

2 − (∆ cos 2φ+Σ1)
2 .

This defines another expression for G1 (Σ1), which also vanishes at Σ1 → 0 as
G1 ≈ −Σ1f (ε− Σ0) but the coefficient f (ε− Σ0) diverges at ε−Σ0 → 0 as ∝
ln (ε− Σ0). Such behavior is in evident discrepancy with the former expression
where D/

(
cV 2

L

)
→ const at ε− Σ0 → 0. The only consistent solution for this

discrepancy is in that both G1 and Σ1 are exactly zero.
The latter conclusion for d -wave systems with impurities is extremely im-

portant. Physically, it means that, within the SCTMA framework, the scatte-
ring by dopants does not influence the d -wave order parameter, and this can be
simply related to the fact that the s-wave symmetry of impurity perturbation
VL is orthogonal to the d -wave symmetry of SC pairing VSC. But it also applies
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CHAPTER 5. d-wave superconducting order in doped metals

to more realistic models of dopant perturbation in HTSC (e.g. to plaquette-
or dumbbell-like centers in Sec. 1 or to extended centers in Secs. 3.4 and 3.5).
Hence the apparently “harder” d -wave system in fact turns equivalent to the
“easier” s-wave system from Ch. 4!

Thus, 1 the self-consistency problem for the d -wave SC case can be reduced
to a single equation for the relevant self-energy Σ0 (ε):

Fε (Σ0) = 1− v2g20d (ε− Σ0)−
cv2

Σ0ρN
g0d (ε− Σ0) = 0, (5.12)

where the parameter v is defined as in Eq. (3.27) and the specific functional
form of Fε (Σ0) depends on the particular expression for the function g0d (ε).
One such expression, through the elliptic K-integral, is given by Eq. (3.34),
and the alternative is the arcsine form, obtained in the “square” geometry,
Eq. (3.36) [106]:

g0d (ε) ≈ ε
(
1

µ̃
+
iπ

∆
arcsin

∆

ε

)
. (5.13)

In fact, it was this form used for treatment of Eq. (5.12) by [102] who then
supposed that in the unitary limit for impurity perturbation, v →∞, the unity
term can be dropped in that equation. This enables to relate the self-energy
to the local GF G0 = ρNg0d as: Σ0 = −c/G0 (inverse to the common relation
Σ0 ≈ cv2G0/ρ

2
N in the Born limit, v ≪ 1). The straightforward consequence

of such a surprising relation is that, in a d -wave superconductor with unitary
scatterers, the self-energy should tend to a finite limiting value: Σ0(ε→ 0)→
→ −iγ0, and so the DOS:

ρ (ε→ 0)→ ρ0 =
c

πγ0
, (5.14)

which turns to be in the present notations ρ0 ≈
√
πcρN/∆ (within to some

logarithmic corrections and neglecting the terms ∼∆/µ̃ beside unity). A similar
conclusion for the case of Born scatterers was made earlier by [64], and their
predicted finite DOS reads in these notations as

ρ0 ≈
2ρ2N∆

πcv2
exp

(
−ρN∆
2cv2

)
. (5.15)

This finite limit should be interpreted as a spontaneous breakdown of the
d -wave symmetry in presence of scatterers and a qualitative rearrangement of
the low energy excitation spectrum, including appearance of strongly locali-
zed quasiparticle states (in spite of absence of such localization in the simp-
le T-matrix treatment [17, 139]). The decade of 90-ies produced an extensi-
ve theoretical discussion on reality of such SCTMA behavior, and astoni-
shing variety of results was obtained, including power law convergence to

1 Taking also in mind that the self-consistency corrections are irrelevant for Σ3 (ε) ≈
≈ const at ε ∼ ∆.
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5.2. Density of states in self-consistent approach

zero: ρ (ε→ 0) ∝ εα, with universal [149] or non-universal [15, 123] values
of the exponent α, different finite limits [64, 102, 185] and even divergence
ρ (ε→ 0) ∝ ε ln (1/ε) [132]. On the other hand, numerous experimental studi-
es have been done to check the principal conclusion from existence of fi-
nite ρ0 in the unitary limit, the so-called universal values of quasipartic-
le electrical conductivity σ0 =

(
e2/π2~

)
vF/v∆ [102] and heat conductivity

κ0/T = (k2B/3)
(
v2F+v

2
∆

)
/vFv∆ [48], and also the results of these measurements

are still contradictory.
It should be stressed that the whole theoretical construction uses two main

premices:
i) the assumption that certain impurities in high-Tc superconductors are

extremely strong scatterers (some theoretical works use as high values as
VL/t ∼ 102÷103 to adujst the theoretical predictions to observable data);

ii) the assumption that solutions of self-consistent equations in linear order
in impurity concentration can be applied either to extended and localized states
in the spectrum (since the finite ρ0 should relate to the localized states).

However, in our opinion, both these assumptions have no sufficient justifi-
cation. In fact, from the physical common sense, one cannot expect the impuri-
ty perturbation to be much stronger than electronic interactions in the generic
crystal, that is only the values v no more than few units are compatible with the
system structural stability. Therefore, it looks more reasonable to restrict pos-
sible perturbations to the range between the Born limit and the above indicated
intermediate regime. Also, there is a theoretical consensus on that the self-con-
sistency procedure is only well defined for extended electronic states [51], which
assure effective averaging of effects of different impurity scatterers, say, along
the mean free path. This suggests a need for a more careful and more general
treatment of impurity effects in d -wave superconductors. Below we consider in
more detail whether the finite DOS at zero energy necessarily follows from the
SCTMA solution in this case and what alternatives it can have.

First we notice that Eq. (5.12) can be formally resolved with respect to
g0d as

g0d =
−c±

√
c2 + (2Σ0ρN/v)

2

2Σ0ρN
. (5.16)

and the Lee’s choice in the unitary limit is related to the minus sign while the
Gor’kov and Kalugin’s choice in the Born limit to the plus sign. However, a con-
sistent treatment should retain both these options for any value of perturbation
parameter v, and the essential non-linearity of g0d (ε− Σ0) as a function of Σ0,
for any of its above referred forms, can produce yet multiple solutions for Σ0 (ε)
in each case. Finally, a single physical solution for any given energy ε should
be selected on the basis of SCTMA validity criterion. The latter consists in
that the considered quasiparticle states have a well defined extended character,
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Fig. 5.1. Contour plots of |Fε (Σ0)|, Eq. (5.12), in function of complex self-energy Σ0 for two
different energies ε at the choice of c = ρN∆ and three different perturbation parameters:
unitary limit v = 10 (upper row), intermediate regime v = 1 (middle row), and Born limit
v = 0.35 (bottom row). There are always two roots shown by white circles and denoted
SCTMA1 and SCTMA2, and at ε → 0 the first of them tends to zero, close to the real axis,
while the other tends to a finite imaginary limit

which justifies the effective averaging over chaotic configurations of impurity
scatterers (this analysis will be done in the following Sec. 5.3).

The numerical solutions of Eq. (5.12) (using the arcsine form for g0d) in the
complex plane of self-energy Σ0 for different values of energy ε and perturbation
parameter v are summarized in Fig. 5.1. It is seen that there are two roots in
each case, denoted SCTMA1 and SCTMA2. The SCTMA2 root tends to a finite
and imaginary value at ε→ 0, and, and passing to the unitary or Born limits in
v, one reproduces respectively the Lee’s and Gor’kov and Kalugin’s predictions
in a unified way. At the same time, the SCTMA1 root tends to zero at any value
of v, suggesting a zero limit for the DOS. This general behavior is essentially
the same for any functional form, either Eq. (3.27) and Eq. (5.13), of the god
function in Eq. (5.12). Hence, at any regime of impurity perturbation, there
is an alternative to the finite limit of low-energy DOS, consistently calculated
within the SCTMA framework!
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5.2. Density of states in self-consistent approach

One additional comment is in order to the self-consistent equation with
multiple solutions, like that in Fig. 5.1. It is seen there that the SCTMA2 root
have a much wider “attraction basin” than the SCTMA1 one, especially at very
low energies. This can prevent one to detect the alternative solution when run-
ning a numeric routine for this equation, as probably was the case for several
numerical SCTMA studies which found finite DOS at zero energy [15,185].

The comparative analysis of validity of the two suggested SCTMA soluti-
ons will be done in the next Sec. 5.3, where it will be shown that each of them
have its specific validity domain, beyond the area of impurity resonance, while
no one of them is a good approximation within this area. Now we only specify
the low energy behavior of each solution and then try to build a “pragmatic”
combination of the two, in order to obtain a correctly normalized quasiparticle
DOS.

The low energy limit for the SCTMA2 solution, Σ0 (ε→ 0) = −iγ0, is
obtained accordingly to Eq. (5.12) as a root of:

1 + v2
[
2K

(
−∆2

γ20

)
+
γ0
2µ̃

]2
+

cv2

ρNγ0

[
2K

(
−∆2

γ20

)
+
γ0
2µ̃

]
= 0, (5.17)

in “circular” geometry, or

1 + v2γ20

(
π

∆
arcsinh

∆

γ0
− 1

µ̃

)2
− cv2

ρN

(
π

∆
arcsinh

∆

γ0
− 1

µ̃

)
= 0, (5.18)

in “square” geometry. In accordance with the aforesaid, the numeric solution
of Eq. (5.18) for γ0 in function of perturbation parameter v (shown in Fig. 5.2
for the choice of c = ρN∆) reproduces the Lee’s limit already for v & 3 and
the Gor’kov and Kalugin’s limit for v . 0.5 and thus justifies the attribution
of regimes in Fig. 5.1. The result for Eq. (5.17) is essentially the same.

The behavior of the SCTMA2 solution at finite energies ε can be obtained
from Eq. (5.12) only numerically, and the related DOS, as shown in Fig. 5.3,
grows slowly from the residual value ρ0 at ε . εres and then at ε > εres
goes closely to the result of simple T-matrix approximation of Sec. 3.2, which
suggests reliability of SCTMA2 in this energy range.

For the alternative SCTMA1 solution, Eq. (5.12) admits an analytical
approximation 2 by using the logarithmic asymptotics, Eq. (3.35), for the elli-
ptic K-integral (or, similarly, arcsinx ≈ −i ln (2ix) for the arcsine form at
|x| ≫ 1, [106]):

G0 (ε) ≈
ρ2Nε

cv2 ln (4icv2/ρNε)
. (5.19)

2 But only valid at extremely low energies.
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CHAPTER 5. d-wave superconducting order in doped metals

Fig. 5.2. Residual self-energy γ0 = limε→0 iΣ(ε) for the SCTMA2 solution, calculated from
Eq. (5.18) with the choice of µ̃ = 10∆ in function of the perturbation parameter v (open
circles). The dashed lines show the limiting behaviors: exponential in the Born limit, γ0/∆ ≈
≈ 4 exp

(
−ρN∆/cv2

)
, and a constant value in the unitary limit

Fig. 5.3. Construction of the self-consistent DOS (solid line) adjusted to the two different
SCTM solutions beyond the region of impurity resonance εres of width Γres. The impurity
parameters are chosen as v = 1 and c = 0.2ρN∆. The SCTM1 solution is shown by the
dashed line, the SCTM2 solution by the dash-dotted line, and the short-dash line shows the
common T-matrix solution from Fig. 3.4

The corresponding analytic function for the low-energy DOS is:

ρ (ε) ≈
ρ2Nε

cv2 ln2 (4cv2/ρNε)
, (5.20)

and, for the instance in Fig. 5.3, the numerical SCTMA1 solution attains
this function only at energies as low as ε . 10−3∆. However, it is just this
function that describes the asymptotic vanishing of DOS, even faster than the
non-perturbed function, Eqs. (3.34), (3.35), or the simple T-matrix function,
Fig. 3.4. Also it vanishes faster than the power laws, ρ (ε) ∝ εα with α ≤ 1,
proposed by [123] and [15] or with α = 1 by [149], using other than SCTMA
approaches. That fast vanishing can be seen as a certain narrow “quasi-gap”
(not to be confused with the pseudo-gap observed at T > Tc in the underdoped
regime) around the Fermi energy. Beyond this quasi-gap, a plausible matchi-
ng between the two SCTMA solutions, over the interval of broadening Γres of
the resonance εres, can be done by the simple T-matrix function, in order to
preserve the overall normalization of DOS [107]∫

dε [ρ (ε)− ρN ] = 0. (5.21)

Notice that Eq. (5.21) is already satisfied if ρ (ε) is chosen in the simple T-
matrix form (short-dash line in Fig. 5.3). Hence it is also satisfied if the posi-
tive and negative areas between that and SCTMA (solid line) curves in the
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5.3. Validity of self-consistent description

energy intervals beyond the Γres range are equal, as approximately realized by
the construction in Fig. 5.3. This provides the saught “compromise” SCTMA
solution for DOS.

In principle, the obtained self-energy matrix Σ̂(sc) can be directly inserted
into Eq. (5.6), in order to use the resulting Ĝ(sc)

k for correction of the gap equati-
on, Eq. (3.39). However, at the relevant energies ε ∼ εD for this calculation, it
does not make sensible difference to use the simple T-matrix result Ĝk. The
respective impurity scattering effects on the gap parameter ∆ will be consi-
dered below in Ch. 6.

5.3. Validity of self-consistent description

It was indicated above that the physical solution for quasipartic-
le spectrum in non-uniform system can be chosen from the SCTMA solutions
by the validity criterion for extended states, which is qualitatively given by the
IRM criterion. This criterion was already used above for analysis of normal
excitation spectra in disordered systems, as magnons in Sec. 1.4 or electronic
quasiparticles in Sec. 2, formulated by Eq. (2.22). However, when applying it
to a doped superconductor (or superconductor with impurities), one has first
to redefine the quasiparticle basic characteristics. Thus, excitation of a Bo-
golyubov quasiparticle with the nominal wave vector k over the BCS ground
state changes the system energy by Ek and hence its momentum by pk =
= ~Ek/|∇kEk|. Then the related wavelength is λk = 2π~/pk = 2π|∇kEk|/Ek,
generally different from the free particle value 2π/k. Next, the mean free path
ℓk is defined as the group velocity |∇kEk| /~ times the lifetime ~/ImΣ (Ek),
so that the IRM criterion ℓk ≫ λk can be presented as

Ek ≫ ImΣ (Ek). (5.22)

In fact, the dispersion law is here renormalized due to impurity scattering, in
a similar way to Eq. (2.25) for the normal systems [31], the renormalized value
Ẽk being related to the pure crystal value Ek =

√
ξ2k + η2k by

Ẽk − ReΣ
(
Ẽk

)
= Ek. (5.23)

Using here the simple T-matrix solution, Σ = cv2ρ−1
N god/

(
1− v2g2od

)
, we have

in the long-wave limit:

Ẽk ≈
ρN∆

cv2 ln (4cv2/ρNEk)
Ek,

Im
(
Ẽk

)
≈ cv2

ρN∆
Ẽk ≈

Ek

ln (4cv2/ρNEk)
.
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Thus the criterion (5.22) is only fulfilled for low enough concentration of
scatterers: c < c∆ ≡ ρN∆/v2, and this can be considered the validity condition
for simple T-matrix approximation.

At higher impurity concentrations we need to pass to the SCTMA soluti-
ons of the preceding Sec. 5.2 and to renormalize the dispersion law Ẽk and
self-energy Σ

(
Ẽk

)
in a way specific for each solution [140]. We notice that,

since the SCTMA self-energy only depends on the energy, not on the wave
vector, Eq. (5.23) should hold for any relation between the radial and tangential
components, ξk and ηk (for given Ek), leading to their respective renormali-
zation as

ξ̃k − ReΣ
(
ξ̃k

)
= ξk, η̃k − ReΣ (η̃k) = ηk.

Then for the SCTMA1 solution 3 we have the long-wave dispersion law within
logarithmic accuracy as:

Ẽ
(1)
k ≈ c

c∆
Ek ln

4∆

Ek

(note the difference with the above simple T-matrix result). Respectively, its
renormalized components are:

ξ̃
(1)
k ≈ c

c∆
ξk ln

4∆

Ek
, η̃

(1)
k ≈ c

c∆
ηk ln

4∆

Ek
,

and the related damping:

Γ
(1)
k = ImΣ(1)

(
Ẽ

(1)
k

)
≈ πEk

2 ln (4∆/Ek)
.

Using this in the IRM criterion, Eq. (5.22), we obtain the SCTMA2 validity
condition:

Ek ≪ ∆exp

(
−
√
πc∆
2c

)
, (5.24)

which defines a narrow enough vicinity of the Fermi energy where this solution
makes sense.

Applying the same treatment to the SCTMA2 solution, which formally
defines the low energy dispersion law Ẽ

(2)
k ≈ Ek and the damping Γ

(2)
k =

= ImΣ(2)
(
Ẽ

(2)
k

)
≈ cv2ρ−1

N g0, we obtain the condition:

Ek ≫
cg0
c∆

∆, (5.25)

so that this solution turns to be valid only far enough from the nodal points,
where it provides the correct limit of pure d-wave DOS. However, this solution
is clearly eliminated near the nodal point. Thus, we come to the conclusion

3 In elliptic K-form.
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5.3. Validity of self-consistent description

Fig. 5.4. Real and imaginary parts of the
self-energy Σ(ε) (in units of ∆) obtai-
ned for two different SCTMA solutions
from Sec. 5.2 at the choice of perturbati-
on parameters c = ρN∆, v = 1. Note the
tendency of ReΣ(1)(ε) to ε (dashed line)
at ε → 0. Comparison of these data with
the IRM criterion. Eq. (5.22), suggest that
only the SCTMA1is valid in closeness to
the Fermi energy

that the only SCTMA solution, valid in the close vicinity of the Fermi energy,
is the SCTMA1 solution given by Eq. (5.16). The general relations between
two SCTMA solutions in different energy ranges are presented in Fig. 5.4.

Notably, the two estimates, Eqs. (5.24), (5.25), do not necessarily assure
the overlap between the two validity regions, so that for c≫ c∆ there can exist
some intermediate energy range where neither of SCTMA solutions applies.
This range roughly corresponds to the broad linewidth of the known impurity
resonance εres [106] where DOS cannot be rigorously obtained even with use
of the next terms from GE series, and where it was interpolated by the simple
T-matrix form between the two SCTMA asymptotics in the previous Sec. 5.2.

Finally, we notice that other known non-perturbative solutions for d -wave
disordered systems with DOS vanishing at ε → 0 as a certain power law:
ρ(ε) ∼ εα [123, 149], also have to satisfy IRC since they use field theoretic
approach, only compatible with band-like states. But it can be easily shown
that this criterion can be only fulfilled for such DOS if the power is α > 1,
while the reported values are α = 1/7 [123] and α = 1 [149].

In fact, let the renormalized components of dispersion law (in the low
energy limit) behave as ξ̃k ∼ (k − kF)ν ∝ ξν , η̃k ∝ ην with a certain ν > 0,
then the simplest estimate for d -wave DOS is

ρ (ε) ∝ ε
∫
dη

∫
dξδ

(
ε2 − ξ̃2 − η̃2

)
∝

∝ ε
∫
EdEδ

(
ε2 − Ẽ2

)
= ε

∫
EdEδ

(
ε2 − E2ν

)
∝ ε(2−ν)/v,

that is the DOS exponent α = (2− ν) /v. In the considered field models, DOS
defines the quasiparticle broadening Γk = u2ρ

(
Ẽk

)
, with the Anderson model

disorder parameter u. Then the criterion, Eq. (5.22), is reformulated as

Ẽ ≫ u2ρ
(
Ẽ
)
,
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CHAPTER 5. d-wave superconducting order in doped metals

and leads to the condition Ẽ ≫ const·Ẽ(2−ν)/v, and in the limit Ẽ → 0 this is
only possible if (2− ν) /v > 1, that is α > 1.

So, the above considerations essentially restrict possible candidate soluti-
ons for quasiparticle spectrum in the disordered d -wave superconductor and
in fact suggest Eq. (5.16) as the only known consistent low energy solution for
the problem.

5.4. Concluding remarks

The above self-consistent GF analysis of a d -wave SC system
with a finite concentration of impurity scatterers shows the essential restruc-
turing of the quasiparticle spectrum (seen in the behavior of respective DOS),
compared to the simplest T-matrix approximation, at impurity concentrations
above the characteristic value c∆ = ρN∆/v

2 (which can be quite low). This
analysis also demonstrates that, apart from the known low energy impurity
resonances, there should exist an important DOS anomaly, which recovers the
d -wave symmetry of host superconductor but at very low quasiparticle energies.
It explains the difficulties with experimental verification of the true type of
impurity effects in such system, discrepancies between various theoretical app-
roaches, and ambiguities in numerical studies of these effects. The further de-
velopment of theory for low energy quasiparticles in doped superconductors,
examining possibilities for breaking down the d -wave symmetry locally and
for subsequent strong localization of quasiparticle excitations on appropriate
impurity clusters, will be presented in the last Ch. 8. But before that, we dedi-
cate the next Ch. 6 to the more detailed study of doping and impurity effects
on the proper SC characteristics of the considered materials, the gap function
and gap parameter.
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In the course of study of impurity effects on quasiparticle densi-
ty of states, we considered the gap parameter ∆ in the Hamil-
tonian as a given constant. However, in presence of impurities
one should also reconsider the self-consistent calculation of this
value, taking into account either the doping dependence of the
chemical potential µ (x) and the impurity scattering effect on
GF matrix Ĝk in the general gap equation, Eq. (3.4). The for-
tunate possibility to “decouple” the problems of impurity effects
in DOS (related to the low temperature physics) and in the gap
parameter (related to the SC transition) follows from the fact
that they are referred to essentially different spectrum regions:
to a close vicinity of the Fermi energy, |ε| . ∆ in the first case
and to a much broader area, |ε| . εD, in the latter one.

In this Chapter we also turn to the consequent analysis
of different mechanisms of dopant effect on the SC gap in the
d -wave HTSC systems. Firstly, in Sec. 6.1, we shall trace how
the interplay between the doping dependent chemical potential
µ (x) and the supposedly doping independent range εD of SC
pairing potential (while the GF matrices Ĝk being still appro-
ximated by their non-perturbed values Ĝ(0)

k ) produces a specific
doping dependence of the gap parameter ∆(x). This dependen-
ce will be further detailed by the explicit including of the self-
energy effects (in the simplest linear approximation in c) into
the matrix Ĝk in Sec. 6.2. Then, in development of the analyses
in Ch. 3 of local perturbations of the SC order due to impurity
scattering, we consider how these perturbations result in the
characteristic non-uniformity of the gap structure, intrinsic to
many real doped HTSC systems [129], and how they can even-
tually bring to a collapse of the very SC state. To this end,
we extend the scope of GF analysis to more involved GF mat-
rices by two-particle excitations (TPGF’s) and show that the
before introduced concepts of equations of motion and group
expansions remain quite suitable for them.



CHAPTER 6. Doping and impurity effects on d-wave superconductors

6.1. Chemical potential and gap equation

Let us return to the analysis of a uniform (VL = 0) SC system
with varying doping level x, like that in Sec. 4.1, but with anisotropic pairing
function. In this Chapter, we consider the doping levels already above the
metallization threshold x > xmet, so that the effects of bound states are simply
included by the µ (x) function of Eq. (4.13). Then, as far as x≪ 1, it is known
that even weak coupling VSC (below the critical value Vc ≈ W/4) is already
sufficient for Cooper pairing, with d -wave symmetry favored against p- and
s-waves [87]. To study this pairing in function of x, we present the number and
gap equations (4.1) and (4.4), at T = 0 in a similar way to Sec. 5.1:

x = 1 +
1

N

∑
k

ξk√
ξ2k +∆2

k

, (6.1)

1 =
VSC
2N

∑
k

γd (k)
2 θ
(
ε2D − ξ2k

)√
ξ2k +∆2

k

. (6.2)

Next we again use the long-wave limit for the d -wave pairing factor: γd (k) ≈
≈ cos 2φk, and pass to integration accordingly to the rule (2.9) (supposing the
chemical potential µ positive). This leads, as in Sec. 4.1, to a set of coupled
analytical equations for µ and ∆. Thus, integration in the number equation,
Eq. (6.1), results in

x = 1− 2− µρN
π

E

[
−
(

ρN∆

2− µρN

)2]
+
µρN
π

E

(
−∆2

µ2

)
(6.3)

(to compare with Eq. (4.10) for the s-wave case). Eq. (6.3) is exact for any
finite µ and ∆, but in the typical situation when ∆ρN ≪ µρN ≪ 1 one can
approximate the elliptic integrals at small arguments: E (z) ≈ π (1− z/4) /2,
which leads to the doping dependence of chemical potential as:

µ (x) ≈ xρ−1
N −

ρN∆
2

8x
. (6.4)

The last term in Eq. (6.4) defines the SC pairing effect on µ, and it is negligible
for high enough doping levels, x≫ ∆ρN . This condition just defines the validity
of Eq. (6.4), whereas at lower doping, x . ∆ρN , the pairing effect turns to be
important and can make the chemical potential negative, alike the s-wave case
of Sec. 4.2. Treating Eqs. (6.3) and (6.4), one should also take in mind that
the gap parameter is doping dependent itself: ∆ = ∆(x).

Before going to analyze the latter dependence from the gap equation (4.4)
(or (6.2)), remind first how this equation generates the simple s-wave BCS gap
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formula:

∆ =
VSC
2π

µ∫
0

dεImTr Ĝτ̂1 = ∆λ

εD∫
0

dξ√
ξ2 +∆2

= ∆λarcsinh
εD
∆
.

It yields in ∆ = 2εDe
−1/λ, with the same λ as in Sec. 3.2. It was implicitly

supposed here that εD ≪ µ, but such calculation for doped systems can be
modified if the range of radial (that is, in ξk) integration can vary with the
doping level.

Thus, it is the usual BCS shell, −εD ≤ ξk ≤ εD, for sufficiently high do-
ping, when µ > εD, and, from Eq. (6.4), this corresponds to the doping levels
x > x∗ ≈ εDρN . Then, using the integration scheme of Eqs. (5.1), (5.2), and
(5.3) for d -wave pairing, we obtain the same gap parameter as in Sec. 5.1:

∆ = 4εDe
−2/λ−1/2 ≡ ∆max, (6.5)

which is doping independent.
Otherwise, for lower doping, x < x∗, when µ < εD (but still µ ≫ ∆), the

actual integration shell gets reduced from below: −µ ≤ ξk ≤ εD, since there
are no accessible quasiparticle states beyond µ which could contribute to the
gap equation. Now, applying the scheme of Eq. (5.2) separately to integrals
over two unequal layers of the shell, −µ ≤ ξk < 0 and 0 < ξk ≤ εD, we find
that the factor εD in the former expression should be replaced by √εDµ:

∆ = ∆max

√
µ (x)

εD
. (6.6)

Here the doping dependence is generated by that of the chemical potential
µ (x), Eq. (6.4). When the latter equation is resolved together with Eqs. (6.5)
and (6.6) (for respective doping ranges), the resulting function shown in
Fig. 6.1 is almost indistinguishable from a simple linear:

µ (x) ≈ (x− x∗∗) ρ−1
N , (6.7)

for all x ≫ x∗∗ = (∆maxρN )
2 /x∗ (this is the actual validity domain for

Eq. (6.4). The related doping dependence of the gap parameter

∆(x) ≈ ∆max ×
{√

(x− x∗∗) /x∗, x∗∗ ≪ x < x∗,
1, x∗ < x,

(6.8)

is shown in Fig. 6.2. We notice that the square root law is just similar to the
result of Eq. (4.13) for the s-wave doped system and the principal difference
from the usual BCS expression is in the doping dependence of the chemical
potential, whereas the saturation at higher doping is evidently due to using
the finite Debye energy value εD.
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Fig. 6.1. Doping dependence of the chemical potential µ (x). Inset shows how this function
passes to negative values at x < xSF−SC (to compare with the dashed line for the extrapolated
Eq. (6.4)
Fig. 6.2. Doping dependence of the d -wave gap parameter. Inset: interpolation between the
linear law, Eq. (6.11) and the square root law, Eq. (6.8) (compare to the inset in Fig. 6.1
and notice that µ ∼ ∆ just at x ∼ x∗∗)

Also we can reconsider the characteristic ratio r = 2∆/kBTc as a function
of doping. Taking into account the experimentally well known linear depen-
dence Tc ∝ x − xmet in the underdoped regime (but with x∗∗ ≪ xmet), this
ratio should grow quite steeply with decreasing doping as it is in fact observed
in real doped SC oxides.

Finally, when the doping level x drops down to x . x∗∗ (so that Eq. (6.4)
is no more valid), the function µ (x) can become even smaller than ∆(x). Then
for integration over the thinner layer of the shell we can use the alternative to
Eq. (5.2) as: 2π∫

0

dφ cos2 2φarcsinh
µ

∆ |cos 2φ|
≈ 4

µ

∆
, (6.9)

which leads to the relation:
∆(x) ≈

√
e∆2

max

4εD
+

4

π
µ (x). (6.10)

In this limit, the alternative approximation for the last term in Eq. (6.3):

µρN
π

E

(
−∆2

µ2

)
≈ ∆ρN

π
+
µ2ρN
2π∆

ln
∆

µ
,

permits to resolve the two doping dependences as:

µ (x) ≈
(π
4

)2
(x− xSF−SC) ρ

−1
N ,

∆(x) ≈ π

4
xρ−1

N .
(6.11)
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This linear µ (x) only slightly deviates from Eq. (6.5), reaching zero at x =
= xSF−SC ≈ x∗∗/π. The latter value can be suitably compared to that in
Sec. 4.2 and the respective binding energy for a single d -wave pair is deduced
as εb ≈ 2xSF−SCρ

−1
N = 2∆2

max/ (πεD) (it just corresponds to the result of
Sec. 4.2 if one restores unrestricted pairing, εD → 2/ρN ).

Thus, the system of Eqs. (6.3), (6.5), (6.6), and (6.10) provides the full
analytic solution of the d -wave SC in (uniformly) doped metal. In this case the
chemical potential in the limit x→ 0 takes a negative value µ→ −εb/2, alike
the s-wave case, and monotonously grows with growing x. However, taking
also in mind the impurity scattering effects as in Sec. 2.2 and referring µ to
the mobility edge in disordered system, we can expect that this growth either
in presence of d -wave SC pairing remains mostly defined by the parameters x
and xmet as given by Eq. (2.53). The gap parameter is also increasing with x
at lower doping and then reach saturation as shown in Fig. 6.2.

However, as it is shown in the next Sections, the effects of impurity di-
sorder, characterized in the Lifshitz model by the scattering potential VL and
the concentration of scatterers c, can result in an eventual decrease of ∆ with
doping. There are two different factors leading to this decrease: the quasipartic-
le finite lifetime and the local fluctuations of the order parameter. Now we pass
to consideration of the first factor and of the related c- and v-dependencies of
the gap parameter.

6.2. Impurity effect on the gap parameter

Let us include the finite scattering potential (VL ̸= 0) in the
Hamiltonian (3.4) and use the self-energy form, Eq. (4.20), for Ĝk in the gap
equation, Eq. (4.4). The main difference from the previous Secs. 5.1 and 6.1 is
that the delta-function singularity in energy integration is now substituted by
a Lorentz-like continuous function, so that the starting expression for the gap
equation in the non-uniform d -wave case takes the form

1 =
2λ

π2

2π∫
0

cos2 2φdφ

εD∫
ξmin

dξ

0∫
−∞

qpdε

(p2 −E2 − q2)2 + 4q2p2
. (6.12)

Here E2 ≡ E2 (ξ, φ) = ξ2 +∆2 cos2 2φ is the non-perturbed d -wave dispersion
law, p = ε − ReΣ (ε), q = ImΣ (ε), and, accordingly to the reasoning of
Sec. 6.1, the lower limit for radial integration is ξmin = min (εD, µ). We limit
ourselves to the case of weak impurity potential, v ≪ 1, when the simple T-
matrix approximation for the self-energy: Σ(ε) ≈ cv2ρ−1

N g0d (ε), well applies
for all energies ε. A further simplification is obtained setting cρ−1

N ≈ µ, in
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accordance with Eq. (6.3) at c ≈ x, and linearizing the g-function:

g0d (ε) ≈
{
(ε−∆) /2µ+ iπ/2, ε > ∆,
iπε/2, ε < ∆.

Then the energy dependent terms in the denominator of Eq. (6.12) are:

p ≈ ε
{
α, ε > ∆,
1, ε < ∆,

q ≈ πc

2c∆

{
∆, ε > ∆,
ε, ε < ∆,

where the factor α = 1−v2/2 and c∆ is the same as defined in Eq. (5.5). Hence
we have:

0∫
−∞

qpdε

(p2 − E2 − q2)2 + 4q2p2
≈

πc

2c∆

∆∫
0

εdε

(ε2 − E2 − q2)2 + 4q2p2
=

=
1

4αE

(
π

2
+ arctan

E2 − q2

2Eq

)
. (6.13)

It is readily seen that in the uniform limit v → 0, when q → 0 and α→ 1, the
above expression converts into π/ (4E) and leads Eq. (6.12) to the former result
of Eq. (6.11) for the gap parameter. For finite perturbation, the argument of
arctan in Eq. (6.13) is great for all E values except the narrow range of width
∼q. Then, using the approximation: arctanA ≈ π/2 − 1/A for A ≫ 1, and
excluding the above referred narrow area from integration in Eq. (6.12), we
can approximate it as:

1 ≈ λ

2πα

2π∫
0

dφ cos2 2φ

εD∫
√
q2−∆2 cos2 2φ

dξ

[(
1

E
− 4q

π

1

E2 − q2

)
−

− q

(
θ
(
a2µ2 − E2 + q2 − 2Eq

)
|E2 − a2µ2 − q2|

+

)]
. (6.14)

The most important correction to the result of Eq. (6.5 (to the lowest order in
q/ξmax ≪ 1) comes from the last term in the brackets so that the corresponding
contribution to the left-hand-side of Eq. (6.14) is estimated as

− q

4πα

2π∫
0

dφ cos2 2φ

ξmax∫
0

dξ

ξ2 +∆2 cos2 2φ
≈ − q

2α∆
.
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6.3. Non-uniform effects in local d-wave superconducting order

Fig. 6.3. Dependence of d -wave gap parame-
ter on concentration of dopants and scatterers
(supposedly equal, x = c), obtained from the
numerical solution of Eq. (6.15) at the choice
of SC pairing VSCρN = 1 (for bandwidth W =
= 2 eV) and impurity scattering parameter
(the same as in Fig. 6.2) v = 0, 0.25, and
0.5. It can be noted that ∆(x) is progressively
lowered with growing v, especially at x > x∗

In this approximation, the dependence of gap parameter ∆ on concentrations
of dopants x and scatterers c (which do not necessarily coincide) follows from
the equation

2

λ
≈ ln

4min
(
εD, ρ

−1
N (x− xmet)

)
√
e∆

− πcv2

4∆ρN

x− xmet

x− xmet − cv2
, (6.15)

and it reproduces the result of Eq. (6.5) in the limit v → 0. As seen from
Fig. 6.3, the function ∆(x, c) progressively decays with growing scattering
parameter v, especially at x > x∗ where it can be described by the approximate
analytic expression

∆(x, c) ≈ 4εD√
e
exp

[
− 2

λ
− π

√
ecv2

16 (x∗ − xmet)

x− xmet

x− xmet − cv2

]
. (6.16)

This decay can be compared with the known result by [4] on decaying criti-
cal temperature of SC transition with growing impurity scattering, though the
present problem of impurity effects in the fully gapped quasiparticle spectrum
may be more involved technically than that in the limit of vanishing gap
parameter. There is yet another effect of suppression of SC order due to impuri-
ty scattering, specific for the physical nature of the SC order parameter and
having no analogies in the normal electronic systems. This is the effect of intrin-
sic inhomogeneities of local order parameter in doped superconductors which
requires consideration of other type of GF matrices, the two-particle ones, to
be presented in the next Section.

6.3. Non-uniform effects
in local d-wave superconducting order

We have seen that the effect of dopants and impurities on the SC
order can be detected in the uniform value of average gap parameter ∆ which
generally grows with doping level x and decreases with impurity scattering VL.
The latter factor can be also responsible for another effect on this order, con-
sisting in that local values of the gap parameter on each nth site in the lattice,
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CHAPTER 6. Doping and impurity effects on d-wave superconductors

∆n, reveal specific fluctuations around the average value ∆. Such fluctuations
are seen in atomically resolved tunnel microscopy images on Bi2Sr2CaCu2O8+δ

compound, either optimally doped and underdoped [100]. But when passing to
theoretical treatment of this sort of effects, a special care is necessary in order
to choose properly the self-averaging GF’s that describe the observable values
in the disordered system.

Actually, the SPGF Ĝk,k′ , Eq. (3.5), is self-averaging only for k′ = k
(m-diagonal) when it defines the global gap parameter ∆, accordingly to
Eq. (3.23). And calculation of the local value ∆n, Eq. (3.22), through the m-
non-diagonal SPGF’s, as given in Sec. 3.2, is well defined, strictly speaking,
only if the site n is close to a single impurity scatterer in crystal, which relates
to the limit c→ 0 and the system in this limit is non-random. In the random
system (at finite c), the example of self-averaging quantity fully defined by
m-diagonal SPGF’s is given by N−1

∑
n∆n = ∆, the global gap parameter.

The random fluctuations of local gap parameter (either by amplitude and
phase) in the doped material [106] represent the next level of impurity effects.
They are developing from local perturbations of SC gap by impurity scatte-
ring, described in Ch. 3, and become important with growth of c, accompany-
ing formation of the SC order and leading eventually to its breakdown in
the overdoped regime. The example of related self-averaging quantity is the
average fluctuation, and its consideration needs to involve the TPGF’s. More
specifically, it is the variance of such fluctuations, naturally defined as

δ2 =
1

N

∑
n

[⟨
∆2

n

⟩
− ⟨∆n⟩2

]
(6.17)

and expressed by means of averages of Fermi operators as

δ2 =
V 2
SC

N3

∑
n

∑
{ki}

ei(k1+k2−k3−k4)·nγk1γk2 ×

× [⟨a−k1,↓ak3,↑a−k2,↓ak4↑⟩ − ⟨a−k1,↓ak3,↑⟩ ⟨a−k2,↓ak4↑⟩]. (6.18)

After the summation over n in Eq. (6.18) and by using Eq. (2) at T = 0, one
gets

δ2 =
V 2
SC

π2N2

∑
k1,k2,q

γk1γk2+q

π µ∫
0

dε Im ⟨⟨a−k1,↓ak2,↑| a−k2−q,↓ak1+q,↑⟩⟩ −

−
µ∫

0

dε Im ⟨⟨a−k1,↓| ak1+q,↑⟩⟩
µ∫

0

dε Im ⟨⟨a−k2−q,↓| ak2,↑⟩⟩

. (6.19)

Hence, the fluctuations of order parameter generally involve both single-par-
ticle and two-particle GF’s, and the latter can be also calculated from certain
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6.3. Non-uniform effects in local d-wave superconducting order

equations of motion corresponding to general Eq. (4). However, the algebraic
structure of these equations turns to be different from those for the above
considered 2× 2 Nambu-matrix SPGF’s.

The simplest illustration of this procedure is obtained in the case of unper-
turbed (homogeneous) crystal, VL = 0, where of course the fluctuations should
be absent 1. We can present the TPGF in Eq. (6.19) as the first element of the
four-component vector:

f1,2,2′,1′ =



⟨⟨
a−k1,↓ak2,↑

∣∣∣a−k2−q,↓ak1+q,↑

⟩⟩⟨⟨
a†k1,↑ak2,↑a−k2−q,↓ak1+q,↑

⟩⟩⟨⟨
a−k1,↓a

†
−k2,↓

∣∣∣a−k2−q,↓ak1+q,↑

⟩⟩⟨⟨
a†k1,↑a

†
−k2,↓

∣∣∣a−k2−q,↓ak1+q,↑

⟩⟩

, (6.20)

where the shortened indices are used: 1→ k1, 2→ k2, 1
′ → k1+q, 2′ → k2+q.

Evidently, this vector in a homogeneous crystal is non-zero only for q = 0
(relating to m-diagonal TPGF’s), when the equation of motion for it takes a
simple matrix form:

Ĝ−1
1,2f1,2,2,1 = d1,2. (6.21)

It includes the 4× 4 dynamical matrix:

Ĝ−1
1,2 =


ε− ξ1 − ξ2 −∆1 −∆2 0
−∆1 ε+ ξ1 − ξ2 0 −∆2

−∆2 0 ε− ξ1 + ξ2 −∆1

0 −∆2 −∆1 ε+ ξ1 + ξ2


which is expressed in a more compact form through direct products of 2 × 2
matrices:

Ĝ−1
1,2 = ε− (ξ1τ̂3 +∆1τ̂1)⊗ τ̂0 − τ̂0 ⊗ (ξ2τ̂3 +∆2τ̂1),

(compare to the 2 × 2 matrix
(
Ĝ

(0)
k

)−1
= ε − ξkτ̂3 − ∆kτ̂1 in Eq. (3.6) for

SPGF’s). All the 4×4 algebraic operations on such direct products are simpli-
fied with use of the following simple identity:

(τ̂i ⊗ τ̂j) (τ̂k ⊗ τ̂l) = (τ̂iτ̂k)⊗ (τ̂j τ̂l). (6.22)

The right hand side of Eq. (6.21) is a constant 4-vector:

d1,2 =
1

2E1E2


∆1∆2

ξ1∆2

∆1ξ2
ξ1E2 + ξ2E1

,
1 Unless the system is especially close to the critical point of SC transition.
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following from the identities:

⟨a−k,↓ak,↑⟩ = ∆k/ (2Ek),
⟨
a†k,σak,σ

⟩
= (Ek + ξk)/(2Ek).

The general solution for m-diagonal TPGF 4-vector from Eq. (6.21) is obvi-
ously:

f1,2,2,1 = Ĝ1,2d1,2,

and the straightforward calculation gives its first component as:

⟨⟨a−k1,↓ak2,↑| a−k2,↓ak1,↑⟩⟩ = ∆1∆2ε×

× ε
2 + (ξ1 − ξ2)2 − (E1 − ξ1)2 − (E2 − ξ2)2[
ε2 − (E1 + E2)

2
][
ε2 − (E1 − E2)

2
] . (6.23)

Then the contribution from the two poles in the right hand side of Eq. (6.7) into
the first energy integral in Eq. (6.19) is simply ∆1∆2/ (E1E2) which exactly
cancels that from the product of SPGF terms, and one gets δ2 = 0 as expected.
This confirms the evident fact that the order parameter ∆ is homogeneous in
the case of homogeneous crystal.

In presence of impurity scattering, at VL ̸= 0, the main contribution to non-
zero variance δ2, Eq. (6.19), comes from the m-non-diagonal TPGF’s (in ana-
logy to the contributions from m-non-diagonal SPGF’s to local perturbation
of SC order, Eq. (3.24), or LDOS, Eq. (3.61), near single impurity):

δ2 ≈
V 2
SC

πN2

∑
k1,k2,q̸=0

γk1γk2+q×

×
µ∫

0

dε Im ⟨⟨a−k1,↓ak2,↑| ak1+q,↑a−k2−q,↓⟩⟩. (6.24)

As will be seen below, this TPGF contribution is linear in the scatterer concent-
ration c, while that from m-non-diagonal SPGF’s in Eq. (6.19) is ∼ c2, accordi-
ngly to Eq. (3.25). The equation of motion for the m-non-diagonal TPGF 4-
vector is written in terms analogous to Eq. (6.21) as

Ĝ−1
1,2f1,2,2′,1′ = −

1

N

∑
p

[
eiq·pV̂ f1′,2,2′,1′ + e−iq·pŴf1,2′,2′,1′

]
, (6.25)

introducing the 4× 4 scattering matrices:

V̂ = VLτ̂3 ⊗ τ̂0, and Ŵ = VLτ̂0 ⊗ τ̂3

(related to momentum transfers in the first and second arguments of TPGF
respectively). Continuing the chain of equations for the “scattered” TPGF’s in
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6.3. Non-uniform effects in local d-wave superconducting order

Fig. 6.4. Schematics of principal scattering processes V̂ and Ŵ on an m-non-diagonal TPGF
f1,2,2′,1′ (Eqs. (6.25)—(6.27)), leading to its expression through the m-diagonal f1′,2′,2′,1′
which defines the dominant contribution to the variance of local SC order parameter

the right-hand-side of Eq. (6.26), one arrives in a shortest way at m-diagonal
TPGF’s after successive scattering processes 1 → 1′ and then 2 → 2′ (or vice
versa, see Fig. 6.4), on the same impurity site p:

Ĝ−1
1′,2f1′,2,2′,1′ = −

1

N
e−iq·pŴf1′,2′,2′,1′ + ..., (6.26)

and
Ĝ−1
1,2′f1,2′,2′,1′ = −

1

N
e−iq·pV̂ f1′,2′,2′,1′ + ..., (6.27)

(the dropped terms in Eqs. (6.26) and (6.27) contribute to δ2 in higher orders
in c). The final solution in this approximation for non-diagonal TPGF:

f1,2,2′,1′ =
c

N
Ĝ1,2

(
V̂ Ĝ1′,2Ŵ + Ŵ Ĝ1,2′ V̂

)
Ĝ1′,2′d1′,2′ , (6.28)

defines the contribution to Eq. (6.24) of the lowest order in concentration c and
perturbation VL as: ∼c (VSCVL)2. This calculation is facilitated by diagonali-
zation of the dynamical matrices Ĝi,j (with i, j = 1, 1′, 2, 2′) under special
4-rotations:

Ûi,jĜ−1
i,j Û

−1
i,j = ε− Eiτ̂3 ⊗ τ̂0 − Ej τ̂0 ⊗ τ̂3 ≡ Λ̂−1

i,j , (6.29)

so that the explicit diagonal form of the latter is:

Λ̂−1
i,j =


ε− Ei − Ej 0 0 0

0 ε+Ei − Ej 0 0
0 0 ε− Ei + Ej 0
0 0 0 ε+ Ei + Ej

.
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The rotation matrix is Ûi,j = (uiτ̂3 + viτ̂1)⊗(uj τ̂3 + vj τ̂1), with the well-known
BCS coherence factors u2j = (Ej + ξj) /2Ej = 1 − v2j . It is easy to see from
Eq. (6.22) that each product τ̂α ⊗ τ̂β transforms under this rotation into[

(uiτ̂3 + viτ̂1) τ̂α (uiτ̂3 + viτ̂1)
−1
]
⊗
[
(uj τ̂3 + vj τ̂1) τ̂β (uj τ̂3 + vj τ̂1)

−1
]
,

and we have in particular

Ûi,j [(ξiτ̂3 +∆iτ̂1)⊗ τ̂0] Û−1
i,j = Eiτ̂3 ⊗ τ̂0,

Ûi,j [τ̂0 ⊗ (ξj τ̂3 +∆j τ̂1)] Û
−1
i,j = Ej τ̂0 ⊗ τ̂3,

which leads to Eq. (6.29). This is nothing but an evident generalization of the
Bogolyubov canonical transformation [29] for two-particle states. Then each G-
matrix in Eq. (6.28) can be presented as Ĝi,j = Û−1

i,j Λ̂i,jÛi,j and the integration
in energy and separation of imaginary part in Eq. (6.24):

µ∫
0

dε Im f1,2,2′,1′ =
c

N
Û−1
1,2

µ∫
0

dε Im Λ̂1,2

(
V̂1,2,1′,2Λ̂1′,2Ŵ1,2,1′,2′ +

+ Ŵ1,2,1,2′Λ̂1,2′ V̂1,2,1′,2′
)
Λ̂1′,2′Û1′,2′d1′,2′ ,

only refer to the diagonal Λ-matrices, while the matrices V̂i,j,l,k = Û−1
i,j V̂ Ûl,k

and Ŵi,j,l,k = Û−1
i,j Ŵ Ûl,k (as well as Ûi,j and d1′,2′) are real and energy

independent. Using the standard relation for retarded GF’s
1

x− i0
= P

1

x
+ iπδ(x)

(where P is the symbol of principal part), we obtain the contribution to this
integral from the imaginary part of the product of Λ-matrices as a sum of delta-
functions of sort δ(ε − Ei − Ej), δ(ε + Ei − Ej), and δ(ε − Ei + Ej), 2 times
certain momentum dependent factors. After trivial energy integration of delta-
functions, we stay with momentum integration in k1, k2 and q of these factors.
Of course, their general structure is rather cumbersome but a simplification can
be obtained if one takes into account that most of the momentum integration
corresponds to the areas where Ei ≫ ∆i (as usual for the gap equations),
permitting to neglect all the “small” coefficients vi and set ui ≈ 1. This is
equivalent to setting the matrices Ûi,j → 1, V̂i,j,l,k → V̂ , Ŵi,j,l,k → Ŵ (so that
all turn to be diagonal), then the final expression for squared fluctuation is:

δ2 ≈
cV 2

SCV
2
L∆

2

N3

∑
1,2,q

γ1γ1′γ
2
2′

E1′E2′

[
2θ(µ−E1 − E2)

(E1 − E1′)(E1 − E1′ + E2 − E2′)
−

− θ(µ− E1′ − E2)

(E1 − E1′)(E2 − E2′)

]
. (6.30)

2 But not δ(ε+ Ei + Ej), since the variables ε,Ei, Ej are all positive in this integral.
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6.3. Non-uniform effects in local d-wave superconducting order

This multidimensional integral is still very complicated, nevertheless it should
result in a positive value (by the initial definition, Eq. (6.17). An analytical
approximation can be done supposing the square geometry, Eq. (3.36), of Fermi
surface for momentum variables dki = dξidηi/(~2vFv∆) (i = 1, 2) and dq =
= dξdη/(~2vFv∆), setting Ei ≈ ξi, Ei′ ≈ ξi + ξ, γi = ηi/∆, γi′ = (ηi + η)/∆,
and then separating the η-integral:∫

dφdφ1dφ2γ1γ1′γ
2
2′ ≈

≈ 4

(~v∆)3∆4

∆∫
−∆

dη

∆∫
−∆

dη1

∆∫
−∆

dη2η1(η1 + η)(η2 + η)2 =
32∆3

(~v∆)3
,

from the ξ-integral:

1

(~vF)3

∼εD∫
∼∆

dξ

∼εD∫
∼∆

dξ1

∼εD∫
∼∆

dξ2
1

ξ2(ξ1 + ξ)(ξ + ξ)
∼ 1

(~vF)3∆
.

This provides the qualitative estimate δ2 ∼ cV 2
SCV

2
L∆/W

3. Generally, we esti-
mate the variance of the gap to grow with c as

|δ| = ∆(c)

√
c

cmax
, (6.31)

where the dependence ∆(c) is given by Eq. (6.17) and cmax ∼ W 3∆max/
(VSCVL)

2 (∆max corresponds to the maximum gap value in Figs. 6.2 and 6.3)
defines the upper critical concentration for d -wave SC at T = 0. A more quanti-
tative estimate can be obtained from numerical calculation of the integral,

Fig. 6.5. Squared ratio “gap variance/ave-
rage gap” in function of concentration c
of dopant scatterers from Eq. (6.30) at
the choice of parameter values W = 2 eV,
VSC = 0.5 eV, εD = 0.2 eV and VL =
= 0.16 eV

Eq. (6.30), and its result as a functi-
on of c (including the dependence µ(x),
Eq. (6.3), for x = c) is presented in
Fig. 6.5. It is seen that the fluctuati-
ons of the order parameter grow by
the same law as the gap parameter
∆ itself at low densities of scatterers.
Then, with growing doping, δ becomes
larger than ∆ which can be associated
with destruction of macroscopic super-
conductivity. This occurs at c ∼ 0.27
at the choice of the model parameters
W, VSC, εD close to the experimental
values and of VL = 0.16 eV. This be-
havior is in a rather good quantitative
agreement with the experiments.
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The further extension of this analysis, resolving also the phase fluctuations
of SC order, can be done in a similar way, but considering separately the real
and imaginary parts of the local gap parameter

Re ⟨∆n⟩ ≡ ⟨xn⟩ =
VSC
2N

∑
k,k′

ei(k−k′)nγkθ
(
ε2D − ξ2k

)⟨
ak,↑ak′,↓ + a†k′,↓a

†
k,↑

⟩
,

Im ⟨∆n⟩ ≡ ⟨yn⟩ =
VSC
2iN

∑
k,k′

ei(k−k′)nγkθ
(
ε2D − ξ2k

)⟨
ak,↑ak′,↓ − a†k′,↓a

†
k,↑

⟩
,

(compare to Eq. (3.22)) and constructing the corresponding variance

δ2φ =

∑
n

⟨
y2n
⟩

4
∑

n ⟨x2n + y2n⟩
(6.32)

(by analogy with the phase of macroscopic Ginzburg—Landau wave function:
∆n → |ψn| eiφn). Then the numerator and denominator in Eq. (6.32) can be
presented in terms of combinations of first and fourth elements of the above
considered 4-vector f1,2,2′,1′ given by Eq. (6.28). This approach should be parti-
cularly important for extension of the theory to finite temperatures, in order to
establish the dominant type of fluctuations due to static disorder (and related
random phase shifts) which can be responsible for the breakdown of SC order
at T → Tc and to clarify their possible role in the persistence of pseudogap in
the density of states ρ (ε) at T > Tc.

Finally, the TPGF treatment can be applied even to the analysis of non-
superconducting fluctuations as, for instance, those of common diagonal order
(electronic density), related to the functions

⟨⟨
a†k1,σ

ak2,σ

∣∣∣ a†k2+q,σ′ak1−q,σ′

⟩⟩
,

or spin density,
⟨⟨
a†k1,↑ak2,↑ − a

†
k1,↓ak2,↓

∣∣∣ a†k2+q,↑ak1−q,↑ − a†k2+q,↓ak1−q,↓

⟩⟩
,

but these characteristics are generally much more robust to the impurity effects
and do not experience fluctuation induced breakdown.

6.4. Impurities and suppression of the order parameter

After developing the theoretical procedure for the average of
fluctuations of the SC order parameter, one can also think about describing
the local characteristics of such fluctuations as, e.g., their correlation function:

δ2 (R) =
V 2
SC

πN2

∑
k1,k2,q̸=0

γk1γk2+qe
iq·R×

×
µ∫

0

dε Im ⟨⟨a−k1,↓ak2,↑| a−k2−q,↓ak1+q,↑⟩⟩, (6.33)
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so that Eq. (6.11) represents its particular case, δ2 (0) = δ2. However, the
technical difficulties in this case, compared to the single-particle functions like
Eq. (3.59), seem excessive to try practical calculation of this straightforward
formula.

Nevertheless, a simpler and more intuitive physical approach can be pro-
posed, considering the phenomenological local deviation δ (n) of the order pa-
rameter from its average value ∆(x) as a sum of deviations due to nearby
scatterers at random points p:

δ (n) = δ0
∑
p

exp

[
−|n− p|2

ξ2c

]
. (6.34)

Here each particular deviation decays in a Gaussian way within the range of
SC coherence length ξc, and the parameter δ0 is adjusted in order to provide
the reasonable average in impurity configurations: δ2 (n)− δ (n)2 = δ2. In this
approximation, the correlation function is presented, instead of the microscopi-
cal Eq. (6.33), by

δ2 (R) = δ (n) δ (n+R)− δ (n)2. (6.35)

The average in impurity configurations is explicitly performed using the
random occupation numbers cn which take the values 1 with probability c
and 0 with probability 1− c, so that Eq. (6.34) is rewritten as

δ (n) = δ0
∑
m

cm exp

[
−|n−m|2

ξ2c

]
(6.36)

and the bar average only refers to the occupation numbers, accordingly to the
evident rules

cm = c2m = c, cmcm′ ̸=m = c2.

Then the averages of lattice sums like Eqs. (6.34), (6.35) are expressed as∑
m

cmfm = c
∑
m

fm,

∑
m,m′

cmcm′fmgm′ = c (1− c)
∑
m

fmgm + c2

(∑
m

fm

)(∑
m

gm

)
,

for arbitrary non-random functions fm and gm. The relevant lattice sums are
easily calculated using the formula

∞∑
n=1

exp
(
−xn2

)
=
θ3 (0, e

−x)− 1

2
,
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where the elliptic theta-function θ3 (0, e−x) [2] is well approximated as

θ3
(
0, e−x

)
≈
{
1 + 2e−x, x & 1,√
π/x, x . 1.

Then we immediately arrive at

δ (n) ≈ cδ0
[
θ3

(
0, e−a

2/ξ2c
)]2

and
δ2 (n)− δ (n)2 ≈ c (1− c) δ20

[
θ3

(
0, e−2a2/ξ2c

)]2
. (6.37)

Comparing this with the microscopical variance δ2 from the preceding Sec. 6.3,
we can express the fitting parameter as δ0 ≈ ∆/

[√
cmaxθ3

(
0, e−2a2/ξ2c

)]
. A si-

milar estimate for the correlation function, Eq. (6.35), is possible at long dis-
tances, R≫ ξc, where the sum can be approximated by the Gaussian integral:

δ2 (R) = c (1− c) δ20
∑
m

exp

[
−n

2 + |n−R|2

ξ2c

]
≈

≈ c (1− c) δ20
∫
dr exp

[
−r

2 + |r−R|2

ξ2c

]
≈

≈ πc (1− c) δ20e−2R2/ξ2c . (6.38)

This result clearly demonstrates that the correlation radius for fluctuations of
SC order is just ξ0 ≈ ξc/

√
2. It is obviously expected from the initial model,

Eq. (6.35), and can be compared with the direct observations by STM mi-
croscopy [100] in Figs. 6.6, 6.7 (see color plate).

Together with the previously obtained estimate for the average fluctuati-
on, Eq. (6.37), it permits to analyse the practically important issue of specific
pinning forces induced by these fluctuations in the doped HTSC materials. The
local depressions of the SC order parameter generate attractive forces on Abri-
kosov vortices in the mixed state of such material and can essentially perturb or
even completely destroy the common triangular lattice ground state of vortex
system as was clearly demonstrated by [69] through direct observations with
Scanning Tunneling Microscopy on the cuprate material Bi2Sr2CaCu2O8+δ (see
Fig. 6.8).

We have seen that the effect of dopants and impurities on the SC order can
be detected in the uniform value of average gap parameter ∆ which generally
grows with doping level c and decreases with impurity scattering. However,
the latter factor also produces another effect on this order, which can be seen
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Fig. 6.6. Non-uniform structure of the d-wave order parameter in Bi2Sr2CaCu2O8+δ [100].
The shown area is 560× 560 Å, a — underdoped, b — as grown



Fig. 6.7. Atomic resolution pictures of SC order parameter in the Bi2Sr2CaCu2O8+δ samples
as in Figs. 6.6, a, b but over a narrow area delimited by thin lines in Fig. 6.6, a



6.5. Concluding remarks

a b
Fig. 6.8. Pinning effect by the fluctuations of SC order parameter on Ab-
rikosov magnetic vortices in Bi2Sr2CaCu2O8+δ seen in Scanning Tunne-
ling Microscopy by [69]: a — B = 6T ∼ 26Φ0/27× , b — B = 2T ∼
∼ 7Φ0/7×

in specific fluctuations of the local value of gap parameter on nth site in the
lattice, ∆n, around the average value ∆. But when passing to treatment of this
sort of effects, a special care is required in order to choose from different possible
GF’s the proper self-averaging ones, that describe the observable values in the
disordered system.

6.5. Concluding remarks

The analysis presented above shows that the disordered structu-
re of doped HTSC systems is crucial for many of their characteristic properties
and for existence of SC order itself.

The numerical calculation of the integrals, Eqs. (6.17) and (6.30), as a
function of c at different values of VL is presented in Fig. 6.5. It is seen that the
fluctuations of the order parameter grow by the same law as the gap parameter
∆ itself at low densities of scatterers (see Fig. 6.2). Then, with growing do-
ping, δ becomes larger than ∆ and superconductivity becomes destroyed. This
occurrs at c ∼ 0.27 at the choice of the model parameters W, VSC, εD close
to experimental values and of VL = 0.16 eV (see the caption to the Fig. 6.5).
This behavior is in a rather good quantitative agreement with the experiments.
Also, it can be estimated, that the optimal value of SC critical temperature is
of the order of 100 K for the parameters given in the caption to Fig. 6.3.
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7.1. Specifics of superconducting
state in ferropnictide compounds

The recent discovery of superconductivity (SC) with rather
high critical temperature in the family of doped ferropnicti-
de compounds [89, 90], has motivated a great interest to these
materials (see the reviews by [85, 146]). Unlike the extensively
studied cuprate family [58], that present insulating properties
in their initial undoped state, the undoped LaOFeAs compound
is a semimetal. As was established by the previous physical
and chemical studies (see, e.g., [125, 162]), this material has
a layered structure, where the SC state is supported by the
FeAs layer with a 2D square lattice of Fe atoms and with
As atoms located out of plane, above or below the centers
of square cells (Fig. 7.1). Its electronic structure, relevant for
constructing microscopic SC models, have been explored wi-
th high-resolution angle-resolved photoemission spectroscopy
(ARPES) techniques [47, 95]. Their results indicate the multi-
ple connected structure of Fermi surface, consisting of electron
and hole pockets and absence of nodes in both electron and
hole spectrum gaps [47], suggesting these systems to display
the so-called extended s-wave (also called s±-wave) SC order,
changing the order parameter sign between electron and hole
segments [116].

To study the band structure, the first principles numeric
calculations are commonly used, outlining the importance of
Fe atomic d -orbitals. The calculations show that SC in these
materials is associated with Fe atoms in the layer plane, re-
presented in Fig. 7.1 by their orbitals and the related hopping
amplitudes. The dominance of Fe atomic 3d orbitals in the den-
sity of states of LaOFeAs compound near its Fermi surface was
demonstrated by the local density approximation (LDA) calcu-
lations [35,67,116,144,153,178]. It was then concluded that
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the multi-orbital effects are important for electronic excitation spectrum in
the SC state, causing formation of two spectrum gaps: by electron and hole
pockets at the Fermi surface. To explain the observed SC properties, it is sug-
gested that these materials may reveal an unconventional pairing mechanism,
beyond the common electron-phonon scheme [28, 41, 98, 152]. In general, the
total of 5 atomic orbitals for each iron in the LaOFeAs compound can be
involved, however the ways to reduce this basis are sought, in order to simplify
analytical and computational work. Some authors as [44, 170] have sugges-
ted that it is sufficient to consider only the dxz and dyz orbitals. Building
such minimal coupling model based on two orbitals, one is able to adjust the
model parameters (hopping energy and chemical potential) to obtain the Fermi
surface with the same topology that in the first principles calculations of band
structure. Even though it fails to reproduce some finer features of the electronic
spectrum [65, 111], this minimal coupling scheme is favored by its technical
simplicity to be chosen as a basis for study of impurity effects in LaOFeAs
which could be hardly tractable in more involved frameworks.

Having established the SC state parameters, an important class of prob-
lems can be considered about the effects of disorder, in particular by impurities,
on the system electronic properties, and this issue has been also studied for
doped ferropnictides. Alike the situation in doped perovskite cuprates, here
impurity centers can either result from the dopants, necessary to form the ve-
ry SC state, or from foreign atoms and other local defects in the crystalline
structure. Within the minimal coupling model, an interesting possibility for
localized impurity levels to appear within SC gaps in doped LaOFeAs was
indicated, even for the simplest, so-called isotopic (or non-magnetic) type of
impurity perturbation, see [181,184]. This finding marks an essential difference
from the traditional SC systems with s-wave gap on a single-connected Fermi
surface, were such perturbations, as discussed in Ch. 3, do not produce locali-
zed impurity states and thus to have no sizeable effect on SC order, accor-

Fig. 7.1. Schematics of a FeAs
layer in the LaoFeAs compound
with dxz (white) and dyz (dark)
Fe orbitals and the Fe-Fe hoppi-
ng parameters in the minimal coup-
ling model. Note that the hoppings
between next near neighbors (t3,4)
are mediated by the As orbitals (out
of Fe plane)
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dingly to the Anderson theorem [12]. In presence of localized quasiparticle
states by isolated impurity centers, the next important issue is the possibility
for collective behavior of such states at high enough impurity concentrations.
This possibility was studied long ago for electronic quasiparticles in doped
semiconducting systems by [72] and also for other types of quasiparticles in
pnononic, magnonic, excitonic, etc. spectra under impurities by [79], establi-
shing conditions for collective (including coherent) behavior of impurity exci-
tations with striking effects in observable properties of such systems. As also
shown in Ch. 3, the high-Tc doped cuprates with their d -wave symmetry of
SC order only can display impurity resonances in the spectrum of quasipartic-
les [17, 139], not their true localization, that hinders notable collective effects
on their observable properties. As to our knowledgement, no other consistent
study on collective impurity effects besides that by the authors [137] is known
for the doped ferropnictide systems up to the moment, and this defines the
main emphasis of the present Chapter.

Namely, we develop below an analysis of these systems, using the Green
function (GF) techniques, similar to those for doped cuprate SC systems (see,
e.g., [136]), the minimal coupling model by two orbitals for ferropnictide elect-
ronic structure, and the simplest isotopic type for impurity perturbation. The
structure of quasiparticle spectrum near in-gap impurity levels at finite impu-
rity concentrations, conditions for emergence of specific branches of collective
excitations in this region of the spectrum, and expected observable effects of
such spectrum restructuring are discussed.

7.2. Impurity in-gap states
and in-gap quasiparticle bands

For the minimal coupling model of Fig. 7.1, the hopping Hamil-
tonian Ht is written in the local orbital basis as:

Ht = −
∑
n,σ

[
t1

(
x†n,σxn+δx,σ + y†n,σyn+δy,σ + h.c.

)
+

+ t2

(
x†n,σxn+δy ,σ + y†n,σyn+δx,σ + h.c.

)
+

+ t3

(
x†n,σxn+δx+δy ,σ + x†n,σxn+δx−δy,σ +

+ y†n,σyn+δx+δy ,σ + y†n,σyn+δx−δy ,σ + h.c.
)
+

+ t4

(
x†n,σyn+δx+δy ,σ + y†n,σxn+δx+δy ,σ −

−x†n,σyn+δx−δy ,σ − y†n,σxn+δx−δy,σ + h.c.
)]
. (7.1)

where xn,σ and yn,σ are the Fermi operators for dxz and dyz Fe orbitals with
spin σ on n lattice site and the vectors δx,y point to its nearest neighbors
in the square lattice. Passing to the operators of orbital plane waves xk,σ =
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7.2. Impurity in-gap states and in-gap quasiparticle bands

= N−1/2
∑

n e
ik·nxn,σ (with the number N of lattice cells) and analogous yk,σ,

and defining an “orbital” 2-spinor ψ†(k, σ) = (xk,σ, yk,σ), one can expand the
spinor Hamiltonian in quasimomentum:

Ht =
∑
k,σ

ψ†(k, σ)ĥt(k)ψ(k, σ). (7.2)

Here the 2×2 matrix
ĥt(k) = ε+,kσ̂0 + ε−,kσ̂3 + εxy,kσ̂1 (7.3)

includes the Pauli matrices σ̂i and the energy functions

ε±,k =
εx,k ± εy,k

2
, (7.4)

with
εx,k = −2t1 cos kx − 2t2 cos ky − 4t3 cos kx cos ky,

εy,k = −2t1 cos ky − 2t2 cos kx − 4t3 cos kx cos ky,

εxy,k = −4t4 sin kx sin ky.

An optimum fit for the calculated band structure within the minimum
coupling model is attained with the following set of hopping parameters (in
|t1| units): t1 = −1.0, t2 = 1.3, t3 = t4 = −0.85, and with the choice of the
Fermi energy (chemical potential at zero temperature) εF = 1.45 [144]. The ĥt
matrix is diagonalized by the standard unitary transformation:

Û(k) =

(
cos θk/2 − sin θk/2
sin θk/2 cos θk/2

)
,

with θk = arctan (εxy,k/ε−,k), transforming it from the orbital to subband
basis:

ĥb(k) = Û †(k)ĥt(k)Û(k) =

(
εe,k 0
0 εh,k

)
. (7.5)

The energy eigenvalues in Eq. (7.4):

εh,e(k) = ε+,k ±
√
ε2xy,k + ε2−,k, (7.6)

correspond to the two subbands in the normal state spectrum that respectively
define electron and hole pockets of the Fermi surface. There are two segments of
each type, defined by the equations εe,h(k) = µ, as shown in Fig. 7.2. We note
that both functions cos θk and sin θk change their sign around these segments,
corresponding to their “azimuthal dependencies” around characteristic poi-
nts of the Brillouin zone (Fig. 7.2), so that integrals of these functions with
some azimuthal-independent factors over the relevant vicinity of Fermi surface
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Fig. 7.2. Electron (−) and hole (+)
segments of the Fermi surface in the
normal state of model system with
electronic spectrum by Eq. (7.5).
The center of first Brillouin zone is
displaced by (π/2a, π/2a) to fully
include all the segments around
four characteristic points Γ, X, M,
and Y in this zone

practically vanish and are neglected beside such integrals of fully azimuthal-
independent functions in the analysis below.

The adequate basis for constructing the SC state is generated by the
operators of electron and hole subbands:

αk,σ = xk,σ cos θk/2− yk,σ sin θk/2,

βk,σ = yk,σ cos θk/2 + xk,σ sin θk/2,
(7.7)

giving rise to the “multiband-Nambu” 4-spinors Ψ†
k =

(
α†
k,↑, α−k,↓, β

†
k,↑, β−k,↓

)
and to a 4× 4 extension of the Hamiltonian Eq. (7.2) in the form:

Hs =
∑
k,σ

Ψ†
kĥs(k)Ψk, (7.8)

where the 4× 4 matrix
ĥs(k) = ĥb(k)⊗ τ̂3 +∆kσ̂0 ⊗ τ̂1,

includes the Pauli matrices τ̂i acting on the Nambu (particle-antiparticle) indi-
ces in Ψ-spinors and ĥb(k) is defined by Eq. (7.5). The simplified form for the
extended s-wave SC order is realized with the definition of the gap function by
constant values, ∆k = ∆ on the electron segments and ∆k = −∆ on the hole
segments.

The electronic dynamics of this system is determined in similarity with
Chs. Introduction, 2, 3 by the (Fourier transformed) GF 4×4 matrices [49,79,
136]:

Ĝk,k′ = ⟨⟨Ψk|Ψ†
k⟩⟩ = i

0∫
−∞

dteiεt/~⟨{Ψk(t),Ψ
†
k′(0)}⟩, (7.9)

whose energy argument ε is understood as ε − i0 and ⟨{A(t), B(0)}⟩ is the
quantum statistical average with Hamiltonian H of the anticommutator of
Heisenberg operators. From the equation of motion:

εĜk,k′ = ~δk,k′ σ̂0 ⊗ τ0 + ⟨⟨[Ψk, H] |Ψ†
k′⟩⟩, (7.10)
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7.2. Impurity in-gap states and in-gap quasiparticle bands

the explicit GF for the unperturbed SC system with the Hamiltonian Hs,
Eq. (7.8), is diagonal in quasimomentum, Ĝk,k′ = δk,k′Ĝ0

k and

Ĝ0
k =

ετ̂0 + εe(k)τ̂3 +∆τ̂1
2De,k

⊗ σ̂+ +
ετ̂0 + εh(k)τ̂3 −∆τ̂1

2Dh,k
⊗ σ̂−, (7.11)

where σ̂± = (σ̂0 ± σ̂3) /2 and the secular denominators Di,k = ε2− ε2i (k)−∆2

for i = e, h. In what follows, we use the energy reference to the Fermi level
εF and approximate the segments of Fermi surface by some circles of radius ki
around the characteristic points Ki in the Brillouin zone, so that the dispersion
laws εj(k) = εF + ξj,k permit to linearize the quasiparticle dispersion close to
the Fermi level as ξj,k ≈ ~vj (|k−Kj | − ki). Generally, the Fermi wavenumbers
kj and related Fermi velocities vj for j = e and h can somewhat differ at a
given choice of hopping parameters and chemical potential, but, for simplicity,
we shall neglect this difference and consider their single values kj = kF and
vj = vF.

We pass to the impurity problem where the above Hamiltonian is added by
the local perturbation terms due to non-magnetic impurities [181] on random
sites p in Fe square lattice with an on-site energy shift V :

Himp = V
∑
p,σ

(
x†p,σxp,σ + y†p,σyp,σ

)
. (7.12)

Without loss of generality, the parameter V can be taken positive, and for GF
calculations, this perturbation is suitably expressed in the multiband-Nambu
basis:

Himp =
1

N

∑
p,k,k′

ei(k
′−k)·pΨ†

kV̂k,k′Ψk′ . (7.13)

through the 4 × 4 scattering matrix V̂k,k′ = V Û †
kÛk′ ⊗ τ3. As follows from

the above expression for Ûk, this matrix involves either “intraband” and “in-
terband” elements [127]. The latter type of scattering could lead to a possible
transformation from the s± to a competing s++ SC order (with the same sign
of order parameter on both Fermi pockets) under impurity effect [50]. However,
as shown below, such a possibility is effectively eliminated for the chosen local
perturbation type, due to the specific quasimomentum k-dependence of the
scattering elements, unlike their constance postulated by [50].

Along the lines of Sec. 2.1 and Sec. 3.2 and within the approach by [79,136],
the solution for the GF matrix, Eq. (7.9), with the perturbed Hamiltonian
Hs +Himp can be obtained in the forms proper for band-like (extended) or
localized states. They result from the basic equation of motion:

Ĝk,k′ = δk,k′Ĝ0
k +

1

N

∑
p,k′′

ei(k
′′−k)·pĜ0

kV̂k,k′′Ĝk′′,k′ , (7.14)
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analogous to Eq. (3.14), by proper iterating routines for the “scattered” GF’s
Ĝk′′,k′ . Thus, the algorithm of fully renormalized form, suitable for band-like
states, results in:

Ĝk =

[(
Ĝ0

k

)−1
− Σ̂k

]−1

, (7.15)

with the self-energy matrix Σ̂k expressed by the related GE:

Σ̂k = cT̂k

(
1 + cB̂k + ...

)
. (7.16)

Here c =
∑

pN
−1 is the impurity concentration (per Fe site) and the T-matrix

results from all the multiple scatterings by a single impurity:

T̂k = V̂k,k +
1

N

∑
k′ ̸=k

V̂k,k′Ĝ0
k′ V̂k′,k+

+
1

N2

∑
k′ ̸=k,k′′ ̸=k,k′

V̂k,k′Ĝ0
k′ V̂k′,k′′Ĝ0

k′′ V̂k′′,k + ... . (7.17)

The next term to the unity in the brackets in Eq. (7.16):

B̂k =
∑
n

(
Âne

−ik·n + ÂnÂ−n

)(
1− ÂnÂ−n

)−1
, (7.18)

describes the effects of indirect interactions in pairs of impurities, separated by
vector n, in terms of interaction matrices Ân = T̂k

∑
k′ ̸=k e

ik′·nĜk′ . Again, as in
Sec. 2.1, besides this restriction on summation, multiple sums in the products
like ÂnÂ−n never contain coincident quasimomenta. The terms omitted in
Eq. (7.16) correspond to groups of three and more impurities.

The non-renormalized form, suitable for localized states, follows from the
alternative iteration routine for Eq. (7.14) applied to all the scattered GF’s,
resulting in:

Ĝk = Ĝ0
k + Ĝ0

kΣ̂
0
kĜ

0
k, (7.19)

with the non-renormalized self-energy GE matrix:

Σ̂0
k = cT̂ 0

(
1 + cB̂0

k + ...
)

(7.20)

which, again in analogy with Sec. 2.1, differs from the above renormalized one
by absence of restrictions in quasimomentum sums for interaction matrices
Â0

n = T̂ 0
∑

k e
ik·nĜ0

k and their products.
At the first step, we restrict GE to the common T-matrix level, providing

the conditions for localized quasiparticle states with in-gap energy levels to
appear at single impurities [170], and study certain (narrow) energy bands of
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7.2. Impurity in-gap states and in-gap quasiparticle bands

specific collective states that can be formed near these levels at finite impurity
concentrations. At the next step, the criteria for such collective states to really
exist in the disordered SC system follow from the analysis of non-trivial GE
terms (see Sec. 8.4). It should be noted that presence of renormalized GF’s
Ĝk′ in the above interaction matrices is just necessary for adequate treatment
of interaction effects over the in-gap bands.

The T-matrix, Eq. (7.17), is readily simplified taking into account that
V̂k,k = V σ̂0 ⊗ τ̂3 and introducing the integrated Green function matrix:

Ĝ0 =
1

N

∑
k

ÛkĜ
0
kU

†
k = ε [ge(ε)σ̂+ + gh(ε)σ̂−]⊗ τ̂0.

This diagonal form (that is, restricted only to the “intraband” matrix elements)
follows directly from the aforementioned cancellation of the integrals with
cos θk and sin θk that appear in the “interband” matrix elements of ÛkĜ

0
kU

†
k.

Therefore, we do not consider below that SC order can change its type under
the impurity effects.

Respectively, the functions gj(ε) = N−1
∑

kD
−1
j,k for j = e, h are approxi-

mated near the Fermi level, |ε− εF| . ∆, as:

gj(ε) ≈ −
πρj√

∆2 − ε2
. (7.21)

Here ρj = mja
2/(2π~2) are the Fermi densities of states for respective

subbands (in parabolic approximation for their dispersion laws), and by the
assumed identity of all the segments of Fermi surface they can be also consi-
dered identical ρj = ρF. The omitted terms in Eq. (7.40) are of higher orders
in the small parameter |ε|/εF ≪ 1.

Then the momentum independent T-matrix is explicitly written as:

T̂ =
V

1 + v2
vε
√
∆2 − ε2τ̂0 −

(
∆2 − ε2

)
τ̂3

ε2 − ε20
. (7.22)

where ε0 = ∆/
√
1 + v2 defines the in-gap impurity level [170] through the di-

mensionless impurity perturbation parameter v = πρFV , and γ2 = v2V ε20/∆
is the effective constant of coupling between localized and band quasiparti-
cles. Inside the gap, the T-matrix, Eq. (7.22), is a real function which can be
approximated near the impurity levels ±ε0 as:

T̂ = γ2
ε− ε0τ̂3
ε2 − ε20

, (7.23)

In contrary, outside the gap, it is dominated by its imaginary part:

Im T̂ =
γ2ε
√
ε2 −∆2

vε0
(
ε2 − ε20

) .
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The series, Eq. (7.16), convergence, delimited by the Mott mobility edges εc
[120], defines the energy ranges of band-like states where the self-energy matrix
can be safely approximated by the T-matrix, Σ̂k ≈ cT̂ . The dispersion laws
for corresponding bands at given quasimomentum k are defined in terms of
the dispersion of normal quasiparticles ξk = εk − εF (but in neglect of the
energy level width due to the effects of indirect interaction between impurities
by higher GE terms) from the Ĝk denominator:

Dk(ε) = det Ĝ−1
k (ε) = d̃e,k(ε)d̃h,k(ε) =

=
(̃
ε2 − ξ̃2e −∆2

)(̃
ε2 − ξ̃2h −∆2

)
, (7.24)

with the renormalized energy and momenta forms:

ε̃ = ε

(
1− cV v

1 + v2

√
∆2 − ε2
ε2 − ε20

)
,

ξ̃j = ξj −
cV

1 + v2
∆2 − ε2

ε2 − ε20
.

Then the roots of the dispersion equation Re Dk(ε) = 0 define up to 8 sub-
bands: 4 of them with energies near the roots of the non-perturbed denomina-
tors dj,k in the e- and h-segments can be called “principal” or pr-bands, they
are similar to quasiparticles in the pure crystal; and other 4, “impurity” or
imp-bands, with energies near ±ε0 in the same segments, are only specific for
systems with impurities.

The dispersion law for the pr-bands is presented in the ξ-scale as:

εpr(ξ) ≈
√
ξ2 +∆2, (7.25)

and it only differs from the non-perturbed one by the finite linewidth Γ(ε) ≈
≈ c Im T̂ , so that the validity range of Eq. (7.25) defined from the related Iof-
fe—Regel—Mott criterion [71, 120]: ξdεpr/dξ & Γ(εpr(ξ)) as ξ & c/(πρF). This
defines the mobility edge in closeness to the gap edge,

εc −∆ ∼ c2/c4/30 ∆, (7.26)

where
c0 =

(πρFε0)
3/2

akF

√
2v

1 + v2
(7.27)

is the characteristic impurity concentration such that the impurity bands
emerge just at c > c0 [138]. Their dispersion (in ξ) for the exemplar case
of positive energies and e-segment is approximated as:

εimp(ξ) ≈ ε0 + cγ2
ξ − ε0
ξ2 + ξ20

. (7.28)
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The formal upper limit energy by Eq. (7.28), ε+ = ε0 + cγ2/[2(∆ + ε0)], is
attained at ξ = ξ+ = ε0 + ∆ and the lower limit ε− = ε0 − cγ2/[2(∆ − ε0)]
at ξ− = ε0 −∆. But in fact, this dispersion law is only valid until the related
mobility edges εc,± whose onset near the imp-band edges is due to the higher
terms in the group expansion, Eq. (7.16), analyzed in detail below in Sec. 8.4,
and amounts to:

ε+ − εc,+ ∼ (εmax − ε0)
(c0
c

)4
,

εc,− − ε− ∼ (ε0 − εmin)
(c0
c

)4
.

(7.29)

These limitations restrict ξ to beyond some vicinities of the extremal
points: |ξ − ξ±| & ξ± (c0/c)

2 (narrow enough at c ≫ c0). Another limitati-
on for band-like in-gap states follows from the same analysis requiring that ξ
not be too far from these points: |ξ − ξ±| . ξ±(c/c0)

4. 1 A symmetric replica
of Eq. (7.12) near −ε0 at the e-segment is the impurity subband with the di-
spersion law −εi(ξ). Yet two more impurity subbands near the h-segment are
described in the unified ξ frame by the inverted dispersion laws ±εimp(−ξ).
The overall composition of band-like states in this frame is shown in Fig. 7.3.
It is also important to notice that the above described in-gap impurity band
structure is only justified until it is narrow enough compared to the SC gap
∆ itself. From Eq. (7.28), this requires that the impurity concentration stays
well below the upper critical value

c1 = πρF∆
√
1 + v2. (7.30)

that can amount about few percents. In what follows, the condition c≪ c1 is
presumed.

Despite the imp-subbands for opposite signs of their argument ξ in fact re-
fer to excitations around different segments (by electron and holes) of the Fermi
surface, for clarity all of them presented in Fig. 7.3 in the same ξ-reference. The
energy and momentum shifts of the extremal points by Eq. (7.28) and Fig. 7.3
are specific for the impurity effect on the multiband initial spectrum and they
contrast with a simpler situation for an impurity level near the edge of a
single quasiparticle band [79]. All the above spectrum bands would contribute
to the overall density of states (DOS) by the related quasiparticles: ρ(ε) =
= (4πN)−1ImTr

∑
k Ĝk. The more common contributions here come from the

1 This limitation does not contradict the known Mott’s postulate that band-like and
localized states in a disordered system can not coexist at a given energy [120], thus it simply
means that in a vicinity of the single-impurity level ε0 there only band-like states exist
whose energies are given by Eq. (7.28) with ξ close to ε0, but not with |ξ − ε0| ≫ ε0, and no
localized states are present there at all.
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Fig. 7.3. Dispersion laws for band-like quasiparticles in the T-matrix approximation, neg-
lecting their finite lifetime, at a specific choice of impurity parameters v = 1, c = 0.1∆2/γ2.
The argument ξ composes all specific ξj = ~vF (|k−Kj | − kF) for quasimomentum k near
each jth characteristic point in the Brillouin zone (see in the text after Eq. (7.11) so that
blue lines present the bands near electron-like segments of Fermi surface and red lines do
those near hole-like segments. The non-perturbed SC quasiparticle bands and single-impurity
localized levels are shown with dashed lines. The narrow rectangle around the top of εimp-
band delimits the region studied below in Fig. 7.7
Fig. 7.4. Density of states in the narrow in-gap band near the impurity level ε0 (dashed
line) for the case by Fig. 7.3

pr-bands and they can be expressed through the Bardeen—Cooper—Schrieffer
(BCS) DOS in pure crystal [167]: ρBCS(ε,∆) = ρFε/

√
ε2 −∆2, as follows:

ρpr(ε) ≈
(
1− cγ2

ε2 − ε20

)
ρBCS (ε,∆), (7.31)

at ε2 ≥ ε2c . The first factor in the l.h.s. of Eq. (7.31) describes a certain reducti-
on of the BCS DOS, especially when the energy argument is close to the gap
limits, due to the quantum-mechanical mixing of the pr-bands with the impuri-
ty levels.

More peculiar is the contribution to DOS from the imp-bands, written as:

ρimp(ε) ≈
ρF
v

ε2 − ε20 − cγ2√
(ε2max − ε2)

(
ε2 − ε2min

) , (7.32)

at ε2min ≤ ε2 ≤ ε2max, and presented in Fig. 7.4. Of course, the formal edge
singularities in Eq. (7.32) are in fact restricted by the levels of ρimp(ε) at
corresponding mobility edges: ε ≈ εc,±.

Both the effects of pr-band mixing and of imp-band formation can have
important repercussions in the physical behavior of the disordered SC system
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7.3. Spectral and thermodynamical effects by impurity bands

and they are considered below. The issue of more detailed calculation of criteria
for the considered quasiparticles to really exist, that is for corresponding GE’s
convergence, is left for the final Ch. 8.

7.3. Spectral and thermodynamical
effects by impurity bands

The above results on the quasiparticle spectrum in the disorde-
red SC system can be immediately used for calculation of impurity effects on
its observable characteristics.

Thus the fundamental SC order parameter ∆ is estimated from the modi-
fied gap equation:

2λ−1 =

εD∫
−εD

dξ√
(ξ + cV ) 2 +∆2

, (7.33)

where the shifted quasimomentum variable corresponds to ξ̃ as given in
Eq. (7.24) but for ε = 0. In absence of impurities, c = 0, using the BCS DOS in
this equation leads straightforwardly to the known result for its non-perturbed
value ∆0: λ−1 = arcsinh (εD/∆0) and thus to ∆0 ≈ εDe−1/λ.

For finite c, we immediately obtain the explicit gap equation as:

arcsinh

(
εD + cV

∆

)
+ arcsinh

(
εD − cV

∆

)
= 2arcsinh (εD/∆0), (7.34)

and taking into account that c |V | ≪ εD for the impurity concentrations restri-
cted to c≪ c1 (see Eq. (7.30)), arrive at its approximate solution:

∆

∆0
≈

√
1−

(
cV

εD

)2
, (7.35)

This result shows a notable stability of the extended s-wave SC order to impuri-
ty perturbation that can be compared to the result of Anderson theorem for
simple s-wave systems. Moreover, it indicates a higher stability of the extended
s-wave SC state to the above considered formation of the in-gap impurity band,
even at as high concentrations as c ∼ c1 when this band may occupy a consi-
derable part of the gap itself (though its quantitative description in this case
can deviate from that in Sec. 7.2).

To study another important dependence, that of the SC transition tempe-
rature Tc on concentration c, one has, strictly speaking, to extend the above
GF techniques for finite temperatures, but a very simple estimate can be done,
at least for c ≪ c1, supposing that the BCS relation ∆/Tc ≈ 1.76 still holds
in the presence of impurities. Then the r.h.s. of Eq. (7.35) would also describe
the decay of Tc/Tc0.
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It is of interest to compare the present results with the known Abriko-
sov—Gor’kov solution for BCS SC with paramagnetic impurities in the Born
approximation [46,155]. In that approximation, the only perturbation parame-
ter is the (constant) quasiparticle lifetime τ . In our framework, the τ−1 can be
related to ImΣ(ε) at a proper choice of energy, ε ∼ |∆− ε| ∼ ∆. Then, in the
self-consistent T-matrix approximation [136], we estimate τ−1 ∼ c∆/c1 which
leads to the relation τTc ∼ c1/c, reaching at c & c1 a qualitative agreement
with the Abrikosov—Gor’kov universal criterion for complete SC suppression
τTc < 0.567 (though in our case this criterion is not universal and depends yet
on the perturbation parameter v).

Also, a notable impurity effect is expected on the London penetration
depth λL ∼ n

1/2
s , as follows from the temperature dependence of superfluid

density:

ns(T ) =

∞∫
0

ρ(ε)dε

eε/kBT + 1
≈

≈ c

eε0/kBT + 1
+

(
1− cγ2

∆2 − ε20

)
n0s(T ). (7.36)

When compared to its unperturbed value in the pure SC system

n0s(T ) = ρF

∞∫
∆

εdε(
eε/kBT + 1

)√
ε2 −∆2

≈

≈ πρF

√
kBT∆

2
e−∆/kBT,

a considerable slowing down of the low-temperature decay of the characteristic
difference λL(T )/λL(0) − 1 is displayed (Fig. 7.5), in a reasonable agreement
with recent experimental observations for SC ferropnictides under doping [62].

Next, a similar analysis can be applied for the impurity effect on the elect-
ronic specific heat in the SC state, whose dependence on inverse temperature
β = 1/kBT is represented as:

C(β) =
∂

∂T

∞∫
0

ρ(ε)dε

eβε + 1
, (7.37)

and naturally divided in two characteristic contributions, C = Cimp+Cpr, from
ρimp and ρpr states:

Cimp(β) ≈ kBc
[

βε0
2 cosh (βε0/2)

]2
,

and
Cpr(β) ≈ kB(c1 − c)v (β∆c)

3/2 exp (−β∆c).
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Fig. 7.5. Low-temperature decay of the London penetration depth difference for a SC with
impurities (solid line) is slower than that in absence of impurities (dashed line)
Fig. 7.6. Temperature behavior of specific heat for a SC with impurities presents a crossover
from β∆ exponent (dashed line) to βε0 at low enough temperature (high enough β = 1/kBT )

The resulting function C(β) deviates from the known low temperature behavior
C0(β) ∼ exp(−β∆) for non-perturbed SC system at β > ln(c1/c−1)/(∆−ε0),
where the characteristic exponent is changed to a slower ∼exp(−βε0) as seen
in Fig. 7.6.

The same approach can be used for calculation of other observable cha-
racteristics for SC state under impurity effect, such as, e.g., heat conductivity,
differential conductivity for scanning tunneling spectroscopy or absorption co-
efficient for far infrared radiation, and these issues are just considered in the
next Section.

7.4. Impurity effects on transport
in superconducting ferropnictides

Now let us concentrate on a more detailed analysis of the band-
like impurity states and their observable effects that cannot be produced by
the localized impurity states. We use the specific form of Green functions for
superconducting quasiparticles derived in the previous Sec. 7.3 for introducing
in the general Kubo—Greenwood formalism [97] and obtaining the tempera-
ture and frequency dependences of optical and thermal conductivity and also
of thermoelectric coefficients. These results are compared with the available
experimental data and some suggestions are done on possible practical appli-
cations of such impurity effects.

The relevant kinetic coefficients for electronic processes in the considered
disordered superconductor follow from the general Kubo—Greenwood formu-
lation [97], adapted here to the specific multiband structure of GF matrices.
Thus, one of the basic transport characteristics, the (frequency and tempera-
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ture dependent) electrical conductivity is expressed in this approach as:

σ(ω, T ) =
e2

π

∫
dε
f(ε)− f(ε′)

ω

∫
dkvx(k, ε)vx(k, ε

′)×

×Tr
[
ImĜk(ε)ImĜk(ε

′)
]
, (7.38)

for ε′ = ε − ~ω and the electric field applied along the x-axis. Besides the
common Fermi occupation function f(ε) = (eβε + 1)−1 with the inverse
temperature β = 1/kBT , the above formula involves the generalized veloci-
ty function:

v(k, ε) =

(
~
∂ReDk(ε)

∂ε

)−1

∇kReDk(ε). (7.39)

This function is defined in the whole ξ, ε plane in a way to coincide with the
physical quasiparticle velocities for each particular band, Eqs. (7.9), (7.12),
along the corresponding dispersion laws: v(k, εj(k)) = ~−1∇kεj(k) = vj,k,
j = p, i. The conductivity resulting from Eq. (7.13) can be then used for
calculation of optical reflectivity.

Other relevant quantities are the static (but temperature dependent) trans-
port coefficients, as the heat conductivity:

κ(T ) =
~
π

∫
dε
∂f(ε)

∂ε
ε2
∫
dk [vx(k, ε)]

2Tr
[
ImĜk(ε)

]2
, (7.40)

and the thermoelectric coefficients associated with the static electrical conduc-
tivity σ(T ) ≡ σ(0, T ) 2, the Peltier coefficient:

Π(T ) =
~e

πσ(0, T )

∫
dε
∂f(ε)

∂ε
ε

∫
dk [vx(k, ε)]

2×

×Tr
[
ImĜk(ε)

]2
, (7.41)

and the Seebeck coefficient S(T ) = Π(T )/T . All these transport characteris-
tics, though being relatively more complicated from the theoretical point of
view than the purely thermodynamical quantities as, e.g., specific heat or Lon-
don penetration length considered in the previous Sec. 7.3, permit an easier
and more reliable experimental verification and so could be of higher interest
for practical applications of the considered impurity effects in the multiband
superconductors.

It is worth to recall that the above formulae are only contributed by the
band-like states, that is the energy arguments ε, ε′ in Eqs. (7.38), (7.39), (7.40),

2 This quantity in fact describes the normal electric conductivity by quasiparticles, ob-
served, e.g., in the flux-flow regime for magnetic vortices in the mixed state of a SC under
applied magnetic field.
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(7.41) are delimited by the relevant mobility edges. This is the main distinction
of our approach from existing treatments of impurity effects on transport in
ferropnictide superconductors using the T-matrix approximation to a solution
like Eq. (7.6) for the whole energy spectrum [50], even for its ranges where the
very concept of velocity, as Eq. (7.39), ceases to be valid.

Next, we consider the particular calculation algorithms for the expressions,
Eqs. (7.38), (7.40), (7.41), beginning from the more involved case of dynami-
cal conductivity, Eq. (7.38), and then reducing it to simpler static quantities,
Eqs. (7.40), (7.41).

The integral in Eq. (7.38) is dominated by the contributions from δ-li-
ke peaks of the ImĜk(ε) and ImĜk(ε

′) matrix elements. These peaks arise
from the above dispersion laws, Eqs. (7.9), (7.11), thus restricting the energy
integration to the band-like ranges: |ε| > εc for the pr-bands and εc,− < |ε| <
< εc,+ for the imp-bands. Regarding the occupation numbers f(ε) and f(ε′)
at reasonably low temperatures kBT ≪ ∆, ε0, the most effective contributions
correspond to positive ε values, either from pr- or imp-bands, and to negative
ε′ values from their negative counterparts, pr′ or imp′. There are three general
kinds of such contributions: i) pr−pr′, due to transitions between the principal
bands, similar to those in optical conductivity by the pure crystal (but with a
slightly shifted frequency threshold: ~ω ≥ 2εc), ii) pr− imp′ (or imp−pr′), due
to combined transitions between the principal and impurity bands within the
frequency range ~ω ≥ εc+εc,−, and iii) imp− imp′, due to transitions between
the impurity bands within a narrow frequency range of 2εc,− < ~ω < 2εc,+. The
frequency-momentum relations for these processes and corresponding peaks are
displayed in Fig. 7.7. The resulting optical conductivity reads

σ(ω, T ) =
∑
ν

σν(ω, T )

with ν = pr− pr′, imp− imp′, and imp− pr′.
For practical calculation of each contribution, the relevant matrix ImĜk(ε)

(within the band-like energy ranges) can be presented as

ImĜk(ε) = N̂(ε, ξ)Im
[
Dk(ε)

−1
]
,

where the numerator matrix:

N̂(ε, ξ) = Re
(̃
ε+ ξ̃τ̂3 +∆τ̂1

)
, (7.42)

is a smooth enough function while the above referred peaks result from zeros of
ReDk(ε). Now, the quasimomentum integration in Eq. (7.38) under the above
chosen symmetry of Fermi segments spells as∫

dk = 2(hvF)
−1

∫
dφ

∫
dξ,
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Fig. 7.7. Configuration of the poles ξj
of GF’s contributing to different types
of optical conductivity processes over one
part (electronic pocket) of the quasipartic-
les spectrum by Fig. 7.3

where the factor 2 accounts for identical
contributions from e-and h-segments.
The azimuthal integration contributes
by the factor of π (from x-projections of
velocities) and the most important ra-
dial integration is readily done after ex-
panding its integrand in particular pole
terms:
v(ξ, ε)v(ξ, ε′)Tr

[
ImĜ(ξ, ε)ImĜ(ξ, ε′)

]
=

=
∑
α

Aα(ε, ε
′)δ (ξ − ξα), (7.43)

where v(ξ, ε) = |v(k, ε)| and Ĝ(ξ, ε′) ≡
≡ Ĝk(ε

′) define the respective residues:

Aα(ε, ε
′) = πvαv

′
α

ε̃ε̃′ + ξ̃ξ̃′ +∆2∏
β ̸=α (ξα − ξβ)

.

(7.44)
Here vα ≡ v (ε, ξα), v′α ≡ v (ε′, ξα), and
the indices α, β run over all the poles

of the two Green functions. As follows from Eqs. (7.10), (7.12) and seen in
Fig. 7.2, there can be two such poles of Ĝ(ξ, ε) related to band-like states
with positive ε and respective quasi-momentum values denoted as ξ1,2(ε). For
energies within the pr-band, ε > εc, they are symmetrical:

ξ1,2(ε) ≈ ±
√
ε2 −∆2, (7.45)

while within the imp-band at εc,− < ε < εc,+, their positions are asymmetrical:

ξ1,2(ε) ≈
cγ2 ∓ 2ε0

√
(ε+ − ε) (ε− ε−)

2 (ε− ε0)
. (7.46)

Notice also that, within the imp-band, there is a narrow vicinity of ε0 of
∼c1/30 (c0/c)

3ε0 width where only the ξ1 pole by Eq. (7.46) is meaningful and
the other contradicts to the IRM criterion (so that there is no band-like states
with that formal ξ2 values in this energy range). Analogous poles of Ĝ(ξ, ε′)
at negative ε′ are referred to as ξ3,4(ε′) in what follows. Taking into account
a non-zero ImDk(ε) (for the imp-band, it is due to the non-trivial terms in
the group expansion, Eq. (7.16)), each αth pole becomes a δ-like peak with an
effective linewidth Γα but this value turns to be essential (and will be specified)
only at calculation of static coefficients like Eqs. (7.40), (7.41).

Since four peaks in Eq. (7.43) for optical conductivity are typically well
separated, the ξ-integration is trivially done considering them true δ-functions,
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then the particular terms in σ(ω, T ) follow as the energy integrals:

σν(ω, T ) = 2e2

εν,+∫
εν,−

dε
f(ε)− f(ε′)

ω

4∑
α=1

Aα(ε, ε
′), (7.47)

where ν takes the values pr − pr′, imp − pr′, or imp − imp′ and the limits
εν,± should assure that both ε and ε′ are kept within the respective band-like
energy ranges.

Thus, in the pr − pr′ term, the symmetry of the poles ξ1,2(ε) and ξ3,4(ε
′)

by Eq. (7.45) and the symmetry of pr- and pr′-bands themselves defines their
equal contributions, then using simplicity of the generalized velocity functi-
on v(ξ, ε) = ξ/ε and the non-renormalized energy and momentum variables,
ε̃ → ε, ξ̃ → ξ, the energy integration between the limits εpr−pr′,− = εc and
εpr−pr′,+ = ~ω − εc provides its explicit analytic form as σpr−pr′(ω, T ) =
= σpr−pr′(ω, 0)− σpr−pr′,T(ω). Here the zero-temperature limit value is:

σpr−pr′(ω, 0) ≈ σ0
2ωc
ω2

{√
4ω2 − ω2

c ×

× ln

[
2
ω(2ω − ωc) +

√
ω(ω − ωc)(4ω2 − ω2

c )

ω2
c

− 1

]
+

+2ω ln

[
2
ω −

√
ω(ω − ωc)
ωc

− 1

]
− 2
√
ω(ω − ωc)

}
, (7.48)

with the characteristic scale σ0 = e2/∆2 and simple asymptotics:

σpr−pr′(ω, 0) ≈ (2/3)σ0(ω/ωc − 1)3/2, ω − ωc ≪ ωc,

σpr−pr′(ω, 0) ≈ σ0(32ωc/ω) ln(2ω/ωc), ω ≫ ωc,

with respect to the threshold frequency ωc = 2εc/~, reaching the maximum
value ≈1.19σ0 at ω ≈ 2.12ωc as seen in Fig. 7.8. The (small) finite-temperature
correction to the above value:

σpr−pr′,T (ω) ≈ σ0
2ω2

ce
−β∆

β~(ω − ωc)ω
√
∆

[√
~ω
∆

(
1−

F (
√
β~(ω − ωc))√
β~(ω − ωc)

)
+

+

√
2∆

~ω −∆

(√
π

2

erf(
√
β~(ω − ωc))√
β~(ω − ωc)

− e−β~(ω−ωc)

)]
, (7.49)

involves the Dawson function F (z) =
√
πe−z

2
erf(iz)/(2i) and the error functi-

on erf(z) [2].
Calculation of the imp − pr′-term is more complicated since asymmetry

of the imp-band poles ξ1,2(ε) by Eq. (7.46) and their non-equivalence to the
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symmetric poles ξ3,4(ε′) of the pr′-band analogous to Eq. (7.45). More compli-
cated expressions also define the generalized velocity function within the imp-
band range:

~v(ξ, ε) =
cγ2 − ξ(ε− ε0)

ε(ε− ε0 − cγ2/ε0)
, (7.50)

and the energy integration limits:

εimp−pr′,− = εc,− and εpr−pr′,+ = min[εc,+, ~ω − εc].

Then the function σimp−pr′(ω, T ) follows from a numerical integration in
Eq. (7.47) and, as seen in Fig. 7.8, it has a lower threshold frequency ω′

c =
= εc + εc,− than the pr − pr′-term. Above this threshold, it starts to grow
linearly as ∼(ω/ω′

c − 1)c5/2c
−5/3
0 σ0 and, for the impurity concentrations wi-

thin the “safety range”, c ≪ c1 ∼ c
2/3
0 , becomes completely dominated by the

pr− pr′-function, Eq. (7.49) above its threshold frequency ωc.
Finally, the imp − imp′-term is obtained with a similar numerical routi-

ne on Eq. (7.47), using Eq. (7.46) either for the poles ξ1,2(ε) by the imp-
band and for the ξ3,4(ε

′) by the imp′-band and Eq. (7.50) for respective
generalized velocities while the energy integration limits in this case are
εimp−imp′,− = εc,− and εimp−imp′,+ = min[εc,+, ~ω−εc.−]. The resulting functi-
on σimp−imp′(ω, T ) occupies the narrow frequency band from ωimp−imp′,− =
= 2εc,−/~ to ωimp−imp′,+ = 2εc,+/~ (Fig. 7.8) and its asymptotics near these
thresholds and in the zero-temperature limit are obtained analytically as:

σimp−imp′(ω, 0) ≈ σ0
16c7/2γ7

3
√
2ξ7−

(
ω − ω−
ω−

)3/2
, (7.51)

at 0 < ω − ω− ≪ ω− and a similar formula for 0 < ω+ − ω ≪ ω+ only differs
from it by the change: ξ− → ξ+ and ω− → ω+.

Then the maximum contribution by the imp− imp′-term is estimated by
extrapolation of the above asymptotics to the center of the impurity band:

Fig. 7.8. General picture of the optical
conductivity showing three types of contri-
butions

|ω − ω±| ∼ |ω0 − ω±|, resulting in:
σimp−imp′,max ∼ σ0c

5c
−10/3
0 (ξ+/ξ−)

7/2.
This estimate shows that the narrow
imp − imp′-peak of optical conductivi-
ty around ω ≈ 2ε0/~ can, unlike the
“combined” imp − pr′-term, can beco-
me as intense or even more than the
maximum of “principal” pr − pr′ in-
tensity, Eq. (7.49), if the small factor
∼(c/c1)5 be overweighted by the next
factor (ξ+/ξ−)

7/2. The latter is only
possible if the impurity perturbation is
weak enough: v ≪ 1. Then the ratio
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ξ+/ξ− turns ≈(2/v)2 ≫ 1 and can really overweight the concentration factor if
the impurity concentration c reaches ∼c1(v/2)7/5 ≪ c1, that is quite realistic
within the “safety” range c ≪ 1. The overall picture of optical conductivi-
ty for an example of weakly coupled, v = 0.25, impurities at high enough
concentration c = 4c0 is shown in Fig. 7.8. The expressed effect of “giant” opti-
cal conductivity by the in-gap impurity excitations could be compared with
the well known Rashba enhancement of optical luminescence by impurity levels
at closeness to the edge of excitonic band [34] or with the huge impurity spin
resonances in magnetic crystals [79], but with a distinction that it appears here
in a two-particle process instead of the above mentioned single-particle ones.

Static kinetic coefficients

Now we can pass to the relatively simpler calculation of the
kinetic coefficients in the static limit of ω → 0. To begin with, consider the
heat conductivity, Eq. (7.40), where the momentum integration at coincidence
of the above mentioned poles ξ1.3 and ξ2.4 is readily done using the general
convolution formula:∫

LΓj (ξ − ξj)LΓ′
k

(
ξ − ξ′k

)
dξ = LΓj+Γ′

k

(
ξj − ξ′k

)
, (7.52)

for two Lorentzian fuctions LΓ(ξ) = Γ/(ξ2 + Γ2), and in the limit of ξi = ξ′k
and Γj = Γ′

k obtaining simply (2Γj)
−1, a “combined lifetime”. This immediately

leads to a Drude-like formula for heat conductivity as a sum of principal and
impurity terms, κ(T ) = κpr(T ) + κimp(T ), each of them given by:

κpr(T ) =
~(1 + v2)

πcV v

∞∫
εc

dε
∂f(ε)

∂ε

ε
(
ε2 − ε20

)
√
ε2 −∆2

≈

≈ ~ρF∆2

c

√
πβ∆

2
exp(−β∆), (7.53)

and:

κimp(T ) ≈
~

π (εc,+ − εc,−)

(
c

c0

)4 εc,+∫
εc,−

dε
∂f(ε)

∂ε
ε2 ≈

≈ ~
π

(
c

c0

)4
βε20 exp(−βε0). (7.54)

Then the comparison of Eqs. (7.53) and (7.54) shows that the impurity contri-
bution to the heat conductance κimp for impurity concentrations c above the
critical value c0 turns to dominate over the principal contribution κpr at all the
temperatures (of course, below the critical transition temperature). Such strong
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Fig. 7.9. Logarithmic plots for two
contributions to the heat conducti-
vity shows domination of the im-
purity term at all the temperatures
where SC itself exists

impurity effect is combined from enhanced
thermal occupation of impurity states and
from their growing lifetime as ∼c3 against the
decreasing as ∼1/c lifetime in the principal
band.

Similar strong impurity effects should
also follow for the static electric conductivi-
ty σ(0, T ) 3 and for the thermoelectric Pel-
tier and Seebeck coefficients, Eq. (7.41). All
of them can be considered as fully due to
the corresponding impurity contributions and
the temperature dependencies of thermoelect-
ric coefficients should be non-exponential:
Π(T ) ≈ Π(0) = const, and S(T ) ≈ Π(0)/T ,

alike the non-perturbed case but at much higher level. Finally, it is important to
underline that the above predictions are only for impurity concentrations above
the critical value, c & c0, while the system transport properties should stay
almost non-affected by impurities below this concentration, c < c0. Fig. 7.9
demonstrates these differences between temperature dependencies of static
conductivities and of thermoelectric coefficients for low and high concentrati-
ons of impurities at the choice of perturbation parameter as v = 1. Such drastic
changes of transport behavior are of interest for experimental verification in
properly prepared samples of SC ferropnictides with controlled concentration
of specific impurities.

7.5. Concluding remarks
Resuming, the Green function analysis of quasiparticle spectra

in an SC ferropnictide with impurities of simplest (local and non-magnetic)
perturbation type permits to describe formation of impurity localized levels
within SC gap and, with growing impurity concentration, their evolution to
specific bands of extended quasiparticle states, approximately described by
quasimomentum but mainly supported by the impurity centers. Explicit dis-
persion laws and densities of states are obtained for the modified main bands
and impurity bands. Further specification of the nature of all the states in dif-
ferent energy ranges within the SC gap is obtained through analysis of different
types of group expansion for self-energy matrix, revealing a complex oscillatory
structure of indirect interactions between impurity centers and, after their pro-
per summation, resulting in criteria for crossovers between localized and ex-
tended states. The developed spectral characteristics are applied for prediction

3 Note however that this static limit of Eq. (7.38) only defines the conductivity by normal
quasiparticles, seen, e.g., in normal resistivity by magnetic flux flow in the mixed state, but
otherwise short circuited by the infinite static conductivity due to supercurrents.
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of several observable impurity effects. The proposed treatment can be further
adapted for analysis of more involved types of impurity perturbations in SC
ferropnictides, including magnetic and non-local perturbations.

An essential modification of quasiparticle spectra in a SC ferropnictide
with impurities of simplest (local and non-magnetic) perturbation type is ex-
pected, consisting in formation of localized in-gap impurity states and their
development into specific narrow bands of impurity quasiparticles at impurity
concentration above a certain (quite low) critical value c0 and leading to a
number of effects in the system observable properties. Besides the previously
discussed thermodynamical effects, expected to appear at all impurity concent-
rations, that is either due to localized or band-like impurity states, a special
interest is seen in studying the impurity effects on electronic transport properti-
es of such systems, only affected by the impurity band-like states. It was shown
above that the latter effects can be very strongly pronounced, either for high-
frequency transport and for static transport processes. In the first case, the
impurity effect is expected to most strongly reveal in a narrow peak of optical
conductance at its closeness to the edge of conductance band in non-perturbed
crystal, resembling the known resonance enhancement of impurity absorpti-
on (or emission) processes near the edge of main quasiparticle band in normal
systems, here it would be possible if the impurity perturbation be weak enough.
The static transport coefficients at overcritical impurity concentrations are
also expected to be strongly enhanced compared to those in a non-perturbed
system, including the thermoelectric Peltier and Seebeck coefficients.

The above presented simplest theoretical model can be extended to include
either more realistic multiorbital structures of the initial ferropnictide system
and more general types of impurity perturbation on it (e.g., as extended centers
considered in Sec. 3.4). Of course, this can lead to some quantitative modifi-
cations of the results but their main qualitative features as possibility for new
narrow in-gap quasiparticle bands and related sharp resonant peaks in trans-
port coefficients should be still present.

The experimental verifications of these predictions would be of evident in-
terest, since they can open perspectives for important practical applications,
e.g., in narrow-band microwave devices or advanced low-temperature sensors,
but this would impose rather hard requirements on the quality and composition
of the necessary samples, they should be extremely pure aside the extremely
low (by common standards) and well controlled contents of specially chosen
and uniformly distributed impurity centers within the SC iron-arsenic planes of
a ferropnictide compound. This situation can be compared to the requirements
on doped semiconductor devices and hopefully should not be a real problem
for modern lab technologies.
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8.1. Group expansions
in superconductors with impurities

Now we pass to calculation of GF’s in SC systems at finite con-
centration c of impurity centers and analyze the explicit struc-
ture of corresponding GE’s, which are matrix analogs to the
scalar structures from Sec. 2.1.

We derive GE’s for the system defined by the Hamiltonian
Eq. (3.1), starting from the Dyson equation of motion, Eq. (3.9),
and following the routines of Sec. 2.1. Then we arrive at the fully
renormalized repersentation for the m-diagonal GF as

Ĝk = Ĝk,k =

[(
Ĝ0

k

)−1
− Σ̂k

]−1

, (8.1)

where the renormalized self-energy matrix is presented by the
GE:

Σ̂k = cT̂
(
1− cÂ0,0 − cÂ2

0,0 + cB̂k + ...
)

(8.2)

with the pair term:

B̂k =
∑
n̸=0

(
Â3

0,ne
−ikn + Â4

0,n

)(
1− Â2

0,n

)−1
,

analogous to the scalar Eq. (2.15), containing the renormalized
interaction matrix Â0,n = Ĝ0,nT̂ and local GF matrices Ĝ0,n =

= N−1
∑

k e
iknĜk and Ĝ = Ĝ0,0. The two terms, next to unity

in the brackets in Eq. (8.2), correspond to the excluded double
occupancy of the same site by impurities, the sum in n ̸= 0 desc-
ribes the averaged contribution of all possible impurity pairs,
and the dropped terms are for triples and more of impurities.

An alternative routine for Eq. (3.9) leads to the non-renor-
malized solution of the form

Ĝk = Ĝ0
k + Ĝ0

kΣ̂
0
kĜ

0
k, (8.3)
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where the non-renormalized self-energy matrix

Σ̂0
k = cT̂

(
1 + cB̂0

k + ...
)
,

B̂0
k =

(
Â0

0,ne
−ikn + Â0

0,nÂ
0
n,0

)(
1− Â0

0,nÂ
0
n,0

)−1
,

(8.4)

is again analogous to the scalar form, Eq. (2.17), containing the interaction

matrices Â0
0,n = Ĝ0

0,nT̂
0 with the respective elements T̂ 0 = −V̂

(
1 + Ĝ0V̂

)−1
,

Ĝ0
0,n = N−1

∑
k e

iknĜ0
k, and Ĝ0 = Ĝ0

0,0.
Presenting GF’s in the disordered system in a GE form generally leads

to respective expansions for the observable characteristics. For instance, the
impurity perturbed DOS is expected in the form:

ρ (ε) = ρ0 (ε) + ρ1 (ε) + ρ2 (ε) + ..., (8.5)

related to the contributions of pure crystal, isolated impurities, impurity
pairs, etc.

Also as in the case of a normal system in Sec. 2.1, usage of each GE type,
the renormalized Eq. (8.2) or the non-renormalized Eq. (8.4), is only justified
if they are convergent (at least, asymptotically). Since the matrices T̂ and Â
are energy dependent, convergence of each type of GE is restricted to certain
energy ranges, and these ranges are generally different. The general conclusion
from Sec. 1, that the renormalized GE better converges within the region of
band-like states, characterized by the wave-vector, and the non-renormalized
GE does within the region of localized states [79], also applies here. However,
to get quantitative estimates of convergence and higher order contributions
to the self-energy, operating with the matrix functions Â0,n in Eqs. (8.2) and
(8.4), a special techniques is necessary which we construct below.

8.2. Impurity clusters on s-wave density of states

In this last Chapter, let us begin the explicit analysis of GE’s in
superconductors again from the simplest case of isotropic s-wave order parame-
ter: ∆s = ∆. As was already shown in Ch. 3, there are no localized levels with
energies within the gap for this system in the single-impurity approximation
and this will correspond to ρ1 (ε) ≡ 0 in Eq. (8.9) at |ε| < ∆. However, it is
not evident that such levels could not appear due to the effects of impurity
clusters, contributing to non-zero ρl (ε < ∆) at l ≥ 2. Here we shall study this
issue using the non-renormalized GE, as better converging for localized states.
This involve integrals and traces of certain functions of the interaction matrices
Â0

0,n. For instance, the pair contribution follows from Eq. (3.7), (8.3), (8.4) as

ρ2 (ε) =
c2

πN

∑
k,n̸=0

ImTr Ĝ0
kT̂

0B̂0
kĜ

0
k. (8.6)
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Since all the matrices T̂ 0, Ĝ0
k, and Â0

0,n are real at |ε| < ∆ and the oscillating
term in B̂0

k, Eq. (8.4), disappears at summation in k, the imaginary part can be

only contributed by the resting matrix in B̂0
k: F̂0,n = Â0

0,nÂ
0
n,0

(
1−Â0

0,nÂ
0
n,0

)−1
,

had it poles at integration in the position vector n. 1
The search for such singularities and even their explicit integration are

rather simple in the formerly considered case of scalar functions for the normal
system in Ch. 2, but in the present case one might expect problems with in-
creasingly awkward combinations of non-commuting Pauli matrices, especially
when passing to the higher order GE terms. Fortunately, the analysis is simp-
lified due to remarkable algebraic properties of the specific family of 2 × 2
matrices of the form:

M̂ (x, y) = x+ y
ετ̂3 − i∆τ̂2√

∆2 − ε2
, (8.7)

defined by two real parameters x and y and forming an algebra with the
product: M̂ (x, y) M̂

(
x′, y′

)
= M̂

(
xx′ − yy′, xy′ + yx′

)
. (8.8)

It is readily verified that this product law is identical to that for the algebra Z
of common complex numbers z = x + iy, permitting to present the matrices,
Eq. (8.7), in an isomorphic form:

M̂ (x, y) = x+ Iy, (8.9)

and to treat them as “M -complex numbers”. But the “M -imaginary” element I
in Eq. (8.9) (in fact, a real matrix at |ε| < ∆) should not be confused with the
usual imaginary unity i. Once this caution is made, all the analytic methods
for complex variables can be also used for M -matrices.

Then we find that the interaction matrix Â0
0,nin Eq. (8.4), just fits Eq. (8.9)

taking a simple general M -form:

Â0
0,n = −AneIφn . (8.10)

Let us treat in more detail the 3D case, where the explicit calculation of local
GF matrix accordingly to Eqs. (2.8) and (3.9) leads to its product, Mτ̂3-form
(notice the matrices I and τ̂3 non-commuting) as:

Ĝ0n =
ρN
4

W−µ∫
−µ

dξ
ε+ ξτ̂3 +∆τ̂1
ε2 − ξ2 −∆2

π∫
0

eikn cos θ sin θdθ =

1 In fact, this vector only runs over discrete lattice sites, but if one also takes in mind a
possibility to extend the form of Eq. (8.6), including certain corrections from remote impurity
“satellites” to the closer “main pair”, it can be presented as a continuous variation of this pair
separation n, permitting to integrate in this variable.

152



8.2. Impurity clusters on s-wave density of states

=
ρN
2n

W−µ∫
−µ

dξ
ε+ ξτ̂3 +∆τ̂1
ε2 − ξ2 −∆2

sin (kF + ξ/~vF)n
kF + ξ/~vF

≈

≈ πρNe
−n/rε

kFn

(
ε+∆τ̂1√
∆2 − ε2

sin kFn+ τ̂3 cos kFn

)
=

=
πρNe

−n/r(ε)

kFn
eIkFnτ̂3, (8.11)

where the exponential decay scale r (ε) = ~vF/
√
∆2 − ε2 is long compared to

the BCS coherence length ξc = 2~vF/π∆ for energies close to the gap edge.
Also, the T-matrix, Eq. (8.4), can be presented in a τ̂3M -form as:

T̂ 0 =
kFrv
πρN

τ̂3e
Iδv , (8.12)

with the energy independent scale rv = k−1
F sin δv and the phase shift tan δv =

πv. This defines the ”amplitude” An and “phase” φn in Eq. (8.10) as:

An =
rv
n
e−n/r(ε), φn = kFn+ δv. (8.13)

Then, searching for a pair contribution, Eq. (8.6), we can represent the matrix
F̂0,n by its M -form: A2

n/
(
e−2Iφn −A2

n

)
, that is

A2
n

cos 2φn −A2
n + I sin 2φn

(A2
n − cos 2φn)

2 + sin2 2φn
, (8.14)

where either “real” and “imaginary” parts might give rise to the usual imaginary
part of the integral if the denominator turn zero. This requires two conditions
to hold simultaneously: a) sin 2φn = 0 and b) An = 1.

Since the “phase” φn is never zero, the condition a) relates to 2φn = πq
with q = 1, 2, ..., and hence

kFn = πq/2− δv. (8.15)

Then it is easy to verify that the condition b) can not be fulfilled at the distan-
ces given by Eq. (8.15) for any 0 < v <∞ and |ε| < ∆. That means absence of
poles in Eq. (8.6) and of pair contribution to the in-gap DOS: ρ2 (ε < ∆) ≡ 0.
Therefore, the statement of Anderson’s theorem for s-wave superconductors
with impurities, presented before at the single-impurity level (see Sec. 3.2),
proves to be exact even at the level of impurity pairs!

But at passing to the next GE levels we recognize that the necessary con-
dition for finite in-gap DOS, existence of zeros of matrix denominators, can be
generally satisfied, at a level dependent on the perturbation parameter v [108].
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Nevertheless, this proves not to be a sufficient condition for breaking dawn
Anderson’s theorem and in fact no impurity contribution to in-gap DOS is
found in all the orders of GE.

Thus, at the level of impurity triples, the corresponding GE term is:

ρ3 (ε) =
c3

πN

∑
k

∑
n̸=0,n′ ̸=0,n

ImTr Ĝ0
kT̂

0F̂0,n,n′Ĝ0
k, (8.16)

where the important matrix (obtained in analogy with the result by [74] for
the normal system, after dropping some oscillating terms) is:

F̂0,n,n′ = Â0
0,nÂ

0
n,n′Â0

n′,0

(
1− 2Â0

0,nÂ
0
n,n′Â0

n′,0 −

− Â0
0,nÂ

0
0,n − Â0

0,n′Â0
n′,0 − Â0

n,n′Â0
n′,n

)−1
. (8.17)

Let us search for poles of the corresponding M -form −AnAn′An′′/Dn,n′,n′′ , that
is for zeros of the denominator:

Dn,n′,n′′ = e−I(φn+φn′+φn′′ ) + 2AnAn′An′′ −A2
ne
I(φn−φn′−φn′′ )−

−A2
n′eI(φn′−φn−φn′′ ) −A2

n′′eI(φn′′−φn−φn′ ). (8.18)

Besides the dependence on energy (through the scale r (ε)) and on the per-
turbation parameter v, this form depends on 3 distances in the impurity tri-
angle: n, n′, and n′′ = |n− n′|. The latter are only relevant variables among 6
components of n,n′ for configurational integration in Eq. (8.16), that can be
done accordingly to the rule:∫

dndn′f
(
n, n′, n′′

)
= 16π2

∞∫
0

ndn

n∫
0

n′dn′
n∫

n−n′

n′′dn′′f
(
n, n′, n′′

)
. (8.19)

Here the factor 16π2 comes from integration in irrelevant Euler angles of a
“rigid” triangle and the integration limits refer to the triangle inequalities (the
interior between the planes n + n′ = n′′, n + n′′ = n′, and n′ + n′′ = n in
Fig. 8.1).

The simplest single’parameter analysis of the denominator refers to the ca-
se when the impurity triangle is equilateral, n = n′ = n′′ (the dash-dotted line
in Fig. 8.1). Also it is evident that the easiest condition for zero denominator
is reached for the energy at the very gap edge, ε→ ∆. The “complex number”
to be zero, Dn,n,n (∆) = 0, two conditions should simultaneously hold:

cos 3φn + 2A3
n − 3A2

n cosφn = sin 3φn + 3A2
n sin 2φn = 0 (8.20)
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Fig. 8.1. The space of configurations
of impurity triangles delimited to the
interior between the planes n+n′ = n′′,
n + n′′ = n′, n′ + n′′ = n. The poles
of the denominator Dn,n′,n′′ appear
at ε → ∆ for impurity configurations
(n, n′, n′′) on some trajectories around
the line n = n′ = n′′ indicated by
the values of perturbation parameter
v (for 3D system). The lowest such
perturbation, related to the E point
(n = n′ = n′′ ≈ 1.895k−1

F ), is vc ≈
≈ 0.945, while at v → ∞ the trajectori-
es approach the limiting planes

and they can be satisfied by two different choices: φn = 2π and An = 1, or
φn = π and An = 1/2. But only the latter choice is compatible with Eq. (8.16),
realized with the perturbation parameter v = vc ≈ 0.945 and inter-impurity
distance n = nc ≈ 1.895k−1

F (the E point in Fig. 8.1).
Further study shows that poles at ε → ∆ can be also produced by other

configurations of impurity triangle (forming certain trajectories around the E
point) but this always requires bigger perturbation values, v > vc, the bigger
value corresponding to the bigger trajectory ωv,∆ so that ωvc,∆ → E (Fig. 8.1).
Similarly, there is an extending system of trajectories ωv,ε for different energies,
ε < ∆, at given v > vc, the innermost of them being ωv,∆.

For practical integration accordingly to Eq. (8.19) in the close vicinity of a
pole trajectory, it is natural to consider the internal coordinates (Fig. 8.1): the
distance s along the trajectory and two independent coordinates in the perpen-
dicular plane to the given point s of trajectory, p and q, chosen just as the “real”
and “imaginary” parts of the denominator near this point: Dn,n′,n′′ ≈ p + Iq.
Then, integration near the pole trajectory gives:∫

dndn′AnAn′An′′

Dn,n′,n′′
≈ 16π2

∮
ds

∫
dp

∫
dq
J (s, p, q)

p+ Iq
, (8.21)

where J (s, p, q) = n (s, p, q)n′ (s, p, q)n′′ (s, p, q)D (n, n′, n′′) /D (s, p, q) inclu-
des the transformation Jacobian. The most important point for this Chapter
is that both “real” and “imaginary” parts of the expression, Eq. (8.21), do not
possess usual imaginary part. This follows from the evident fact that integra-
tion in a small circular area near the origin of the p, q plane can be done in
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“polar coordinates” r =
√
p2 + q2 and φ = arctan (q/p) as:

∫
r<δR

dpdq
J (s, p, q)

p+ Iq
≈

δR∫
0

dr

2π∫
0

dφJ (s, r, φ) e−Iφ, (8.22)

resulting in a real M -matrix. Of course, the crucial factor for such behavior
is the presence of additional independent variable in the denominator, physi-
cally related to the composite nature of SC quasiparticles. It never happens in
normal fermionic and bosonic systems with impurities (even if their dynamics
is also described by matrix GF’s, as for the case of disordered antiferromagnetic
crystals [79]).

The above conclusion can be readily generalized for an arbitrary M -form
integrand F̂n1,n2,...,nl−1

in the lth order GE term (at l ≥ 3) which depends on
Nl = 3 (l − 2) relevant distances n1, ..., nNl

in the configurational space. For
definite values of perturbation parameter v and energy, this integrand can have
simple poles along certain (Nl − 2)-dimensional trajectories. Then the internal
coordinates for Nl-configurational integration can be chosen as: s1, ..., sNl−2

along the trajectory, and p, q in the perpendicular plane, so that∫
dn1...dnl−1F̂n1,n2,...,nl−1

≈

≈ 16π2
∫
ds1 ... dsNl−2

∫
dpdq

J (s1, ..., sNl−2; p, q)

p+ Iq
(8.23)

near this trajectory. This integral is real by the same reasons as for Eq. (8.22).
Thus it can be concluded that perturbation of an s-wave superconductor by the
considered non-magnetic impurities, given by the Hamiltonian, Eq. (3.1), can
not produce localized quasiparticle levels within the band gap, and Anderson’s
theorem proves to be valid in any order of GE. This conclusion also remains
valid for 2D s-wave system with relevant dimensionality Nl = 2l − 3 at l ≥ 3.

Such negative result after using rather sophisticated GE techniques may
seem somewhat disappointing, but it should be noted that the general ar-
gument of Eq. (8.23), related to the dimensionality Nl of configuration space,
would not apply for the case of impurity pairs: l = 2, when N2 = 1 and there is
no place for additional independent variable in the denominator. In this case,
it was only the absence of single-impurity pole in the T-matrix, Eq. (3.15),
that prevented from contributing into Eq. (8.6). Therefore, one expects that
the GE approach can also bring non-trivial results if the localization effects
are do present in the single-impurity approximation. This may be verified for
the exemplary Abrikosov and Gor’kov effect of magnetic impurities in the s-
wave system [4] that are known to produce in-gap quasiparticle localization
[112,150].
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To make the GE analysis of this case more transparent, we insert in
Eq. (3.4) the simplest operator of magnetic impurity perturbation V̂ = Js,
realizing the mean-field and point-like limits of the more complex model,
Eq. (3.54). The corresponding T-matrix:

T̂ 0 = Js
(
1− JsĜ0

s

)−1
=

v

πρN

1− v (g0s − g1sτ̂1 + gasτ̂3)

(1− vg0s)2 − v2
(
g21s + g2as

) , (8.24)

with the dimensionless perturbation parameter v = JsπρN , indeed presents a
pole at the localized level, ε0 = ∆cos θv, where

tan θv =
2v

1− v2 (1 + g2as)
.

The M -form of Eq. (8.24) can be written near the pole as:

T̂ 0 ≈ sin4 θv
32πρNv3 sin δ

∆

ε0 − ε
τ̂3e

Iδ, (8.25)

where the phase shift cot δ = −gas (cf. to Eq. (8.12) with no pole), and then
used together with Eq. (8.11) to calculate the “amplitude” and “phase” of the
interaction matrix:

An =
rv,ε
n

e−n/r0 , φn = kFn+ δ +
π

2
, (8.26)

where the characteristic scales are:

rv,ε =
sin3 θv

32v3kF cos δ

∆

ε0 − ε
, and r0 = r (ε0) =

πξc
sin θv

.

The decisive difference from Eq. (8.13) is that the restricted scale rv ≤ k−1
F is

here changed for the unrestricted value rv,ε. Now the pole conditions for impuri-
ty pair: a) sin 2φn = 0 and b) An = 1, can be simultaneously satisfied. Accor-
dingly to a), there is a discrete set of possible distances: nq = k−1

F (πq/2− δ),
hence the possible energy levels by impurity pairs are classified by the numbers
q = 1, 2, ..., and their positions εq are given by

ε0 − εq =
∆sin3 θv
32v3 cos δ

e−nq/r0

kFnq
,

as shown in Fig. 8.2. Close enough to the single impurity level ε0, the pair levels
have big numbers, q ≫ 1 and nq ≈ πq/2kF, and they approach ε0 accordingly
to:

ε0 − εq ≈
∆sin3 θv
16πv3 cos δ

exp (−q sin θv/2kFξc)
q

, (8.27)
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Fig. 8.2. Discrete series of pair levels near the single impurity level ε0 in an s-wave super-
conductor with magnetic impurities
Fig. 8.3. Local Cartesian coordinates near each of four nodal points for d-wave supercon-
ductor and related local expansions of a position vector n

while their residues in Eq. (8.6) turn to be almost independent of q: ∝1−
− (4/πq)4. In concordance with the general discussion in Sec. 2.1, it only makes
sense to consider the level numbers up to qmax ∼ kFr ∼ akFc−1/3 (up to average
distances between neighbor impurities). Even at this limit, the exponential in
Eq. (8.27) can be still close to unity, since the huge kFξc & 102 in traditional
superconductors. Unlike the situation in normal systems (Sec. 2.1), the expo-
nent remains small for impurity concentrations down to c ∼ 10−6, when the
impurity effects are already inobservable.

If the exponential in Eq. (8.27) is approximated by unity, the respective
DOS (averaged over certain finite energy intervals) is

ρ2 (ε) ∝
c2ρN

(ε0 − ε) |εq − εq+1|εq=ε
∝ c2ρN∆

3

(ε0 − ε)3
, (8.28)

it rapidly grows at approaching the single impurity level (cf. to Eq. (2.37)
for normal system), up to the maximum value ρ2,max = ρ2 (ε0 ± Γloc) reached
near the concentration broadening Γloc. Estimating the latter value as Γloc ∼
∼ ∆c1/3 (cf. to the estimate, Eq. (2.34), for the normal 3D system), we
obtain ρ2,max ∼ cρN . Thus, the considered GE analysis permits an effective
study of the spectral effects (if they physically exist) of impurity clusters in
superconductors.
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8.3. Impurity clusters on d-wave density of states
Let us now apply the above developed techniques to the impuri-

ties in SC systems with d -wave order parameter. Here our main interest will
be concentrated on the closest vicinity of the Fermi level and the principal
questions will be whether the contributions from the next to unity terms in
Eq. (8.2) can provide a finite DOS ρ (0) (showed to be impossible in the single-
impurity approximation, Sec. 5.2) and, if so, whether it coincides with the
unitary limit prediction, Eq. (5.14). As will be seen below, the answer to the
first question is negative for non-magnetic and affirmative for magnetic impuri-
ties, but only negative to the second. The latter follows from the evident and
fundamental difference between the single-impurity states in the unitary limit
treatment [Lee, Balatsky] and the states by clusters of impurities with finite
perturbation potential, to be discussed below.

Since it will be also shown that the cluster levels close to the Fermi level can
be localized (which is not possible for the Fermi level states in self-consistent
unitary limit [Balatsky]), we shall use the non-renormalized group expansion,
like that in the preceding Sec. 8.3. Using the d -wave scattering matrix for
non-magnetic impurity, Eq. (3.27), in the limit of zero energy, T̂ (0)

d (ε → 0) =

= −vρ−1
N τ̂3, we find the interaction matrices in this limit as

Â
(0)
0n(ε→ 0) =

v

ρNN

∑
k

eik·n
ξk − i∆kτ̂2
ξ2k +∆2

k

= v (gn − ifnτ̂2). (8.29)

Though the family of matrices x+iyτ̂2 does not fit the formerly considered
Eq. (8.7), nevertheless they also form an algebra, isomorphic to that of matrices
M̂ (x, y) from Sec. 8.3 and hence to Z. This readily leads to the conditions for
poles by impurity pair clusters: g2n = 1 and fn = 0, and, if their solutions exist,
defines integration in the configuration space.

Since the functions gn and fn, Eq. (8.29), are defined by the closest vici-
nities of nodal points, we can calculate them using the local Cartesian coordi-
nates ξ and η by Eq. (3.36) and expanding the position vectors into respective
components n1 and n2 (Fig. 8.3). Then, after summation over four nodal poi-
nts, we have:

gn =
1

2π∆

∆∫
−∆

dη

W−µ∫
−µ

ξdξ

ξ2 + η2

[
sin kFn1 sin

ξn1
~vF

cos
ηn2
~v∆

+

+ sin kFn2 sin
ξn2
~vF

cos
ηn1
~v∆

]
,

fn =
1

2π∆

∆∫
−∆

ηdη

W−µ∫
−µ

dξ

ξ2 + η2

[
sin kFn1 cos

ξn1
~vF

sin
ηn2
~v∆

+

+ sin kFn2 cos
ξn2
~vF

sin
ηn1
~v∆

]
.

(8.30)
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We notice that the vicinity of a pair pole: gn ≈ 1, fn ≈ 0, corresponds
to n1 & k−1

F but n2 ≪ k−1
F in the configuration space, so that the integration

limits in ξ can be extended to infinity and the integrand can be expanded up
to (kFn2)

2, giving:

gn ≈ πξc
sin kFn1
n1

[
1− exp

(
−|n1|
πξc

)]
+O

(
k2Fn

2
2

)
,

fn ≈ kFn2 +O
(
k2Fn

2
2

)
,

(8.31)

and the explicit positions of pair poles in the configurational n1, n2 space are
given by n2 = 0 and

n1 ≈ ±
π

2kF

(
1± v − vcr

vcr − 1

)
,

once the perturbation parameter (slightly) surpasses the critical value

vcr ≈ 1 + π∆/8µ.

Then the configurational integration of the GE pair term in the vicinity
of poles can be performed passing from variables n1, n2 to gn, fn:∫

dgdf
D (n1, n2)

D (g, f)

1− g2 + f2 − 2Igf

(1− g2 + f2)2 + 4g2f2
, (8.32)

where the relevant “imaginary unity” I = iτ̂2 and the transformation Jacobian
can be approximated as

D (n1, n2)

D (g, f)
≈ 2

πk2F

vcr − 1

v − vcr
.

It is easy to see that the singularity in the denominator of Eq. (8.32) is
canceled, like the former case of Eq. (8.23) for triples of non-magnetic impuri-
ties in s-wave superconductor. Here the effect of excess dimension turns to
be possible even for impurity pairs (while excluded in s-wave system), due to
the anisotropic nature of d -wave order parameter. And the same absence of
imaginary part for group integrals of higher dimensions (impurity triples, etc.)
is assured by simple counting of degrees of freedom of cluster configurations,
like that in Eq. (8.23). Hence we conclude that there is no finite contributi-
on from arbitrary clusters of non-magnetic impurities to quasiparticle DOS at
zero energy, and the result of self-consistent approximation from Sec. 5.2 can
only obtain small enough corrections due to contributions of impurity clusters
to the real part of self-energy (renormalizing quasi-particle velocity).

However, an essential cluster contribution to zero energy DOS can be
produced by magnetic impurities with local perturbation V̂ = Js, like those
in Sec. 8.3. Replacing the s-wave local GF matrix Ĝ0

s by the d -wave one:
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Ĝ0
d(ε → 0) = −ρNgasτ̂3 in Eq. (8.24), we obtain the respective T-matrix for

magnetic impurity in d -wave system:

T̂ 0(ε→ 0) = Js
(
1− JsĜ0

d

)−1
=
uucr
ρN

ucr − uτ̂3
u2cr − u2

, (8.33)

supposing the magnetic perturbation parameter u = JsρN to differ from ucr =
= 1/gas, so that the impurity resonance does not occur exactly at the Fermi
level (cf. to Fig. 3.14). Then, like Eq. (7.25), the interaction matrix

Â
(0)
0n (ε→ 0) = −uucr

(ucrτ̂3 − u) gn + (ucrτ̂1 + iuτ̂2) fn
u2cr − u2

(8.34)

does not fit some simple algebra, but a straightforward calculation of the GE
pair term leads to an expression for T̂ 0F̂0,n, analogous to Eq. (8.17), with the
denominator of 4th grade in gn, fn:

Dn =
[(
gn + u−2

cr

)2
+ f2n − u−2

][(
gn − u−2

cr

)2
+ f2n − u−2

]
,

and the traceful numerator having the coefficient function:

N0,n =
(
u−2
cr − u−2

)2 − (u−2
cr + u−2

)
g2n +

(
u−2
cr − u−2

)
f2n.

The latter does not vanish at the poles of Dn which are located, as shown in
Fig. 8.4, at the simple circular trajectories in the space of variables gn, fn (but
since they are oscillating and decaying functions of n1,2, the pole trajectories
in the configuration space are much more complicated).

Then the general structure of zero energy limit for DOS is:

ρ (ε→ 0) = ImTr
1

πN

∑
k

[
Σ̂k (ε→ 0)− ξkτ̂3 − ηkτ̂1

]−1
≈

≈ ImTr
1

πN

∑
k

[p+ iq − ξkτ̂3 − ηkτ̂1]−1 ≈

≈ ρNq

π∆

W−µ∫
−µ

dξ

∆∫
−∆

dη
ξ2 + η2 + q2 + p2

(ξ2 + η2 + q2 − p2)2 + 4p2q2
, (8.35)

where the real part of self-energy matrix is well approximated by the single-
impurity GE term: p ≈ cuρ−1

N u2cr/
(
u2cr − u2

)
, but the imaginary part mainly

follows from the GE pair term:

q ≈ 2c2

a2ρN

∫
dnN0,nIm

1

Dn
. (8.36)
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Fig. 8.4. Trajectories in the space of variables gn, fn, corresponding to the poles of GE
denominator, Eq. (8.34)
Fig. 8.5. A typical behavior of the pair GE denominator (for the choice of parameters u = 1
and ucr = 1.12) along the n1-axis in the configurational space, where the contributions to
ImΣ̂(ε → 0) come from the areas of ∼

(
u2
cr − u2

)−1 length and ∼1 width

The pole trajectories in the configuration space (provided kFn1 and kFn2 are
not specifically close to zero) can be defined, using for gn and fn, instead of
Eq. (8.31), the long distance asymptotics:

gn ≈ πv∆ξc
sin kFn1

v2Fn
2
2 + v2∆n

2
1

{
v∆n1

[
1− exp

(
−|n1|
πξc

)
cos kFn2

]
+

+ vFn2 exp

(
−|n1|
πξc

)
sin kFn2

}
+ (n1 ↔ n2),

fn ≈ πv∆ξc
sin kFn1

v2Fn
2
2 + v2∆n

2
1

{
vFn2

[
1− exp

(
−|n1|
πξc

)
cos kFn2

]
−

− v∆ |n1| exp
(
−|n1|
πξc

)
sin kFn2

}
+ (n1 ↔ n2),

(8.37)

where (n1 ↔ n2) means the previous term with exchanged spatial arguments.
Then the direct numeric calculation shows that the pole trajectories form

some closed loops of∼π/kF size along the n1,2 axes, amounting to∼
(
u2cr−u2

)−1

(see Fig. 8.5 for the related behavior of Dn). Since each loop contributes by
∼2π/(akF) ≈ π

√
W/2µ into the integral in Eq. (8.36), the imaginary part of

self-energy can be estimated as q ∼ 2πc2W 3/2/
[√

2µ
(
u2cr − u2

)]
, and leads to

the finite value of zero energy DOS:

ρ (0) ≈ ρNq

2π∆
ln

∆2

2pq
∼ c2

(u2cr − u2)

√
W

∆
√
2µ

ln

(
u2cr − u2

)
∆(2µ)1/4

πc3/2W 5/4
. (8.38)

We recall that this result is impossible in the properly formulated self-consistent
approximation, as was shown in Sec. 5.3, and it is in a striking difference
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to the former self-consistent theory predictions, either in the unitary limit
by [102], Eq. (5.14), and in the Born limit by [64], Eq. (5.15). The non-universal
character of this effect indicates again the distinguished role of broken time-
inversion symmetry of impurity perturbation for quasiparticle localization by
impurity complexes in either s-wave and d -wave superconductors. On the other
hand, as seen from the model of Sec. 3.5, this type of perturbation can result in
real high-Tc systems even from nominally non-magnetic centers, so a finite limit
of DOS at zero energy is somehow granted. Then the overall impurity effect in
a d -wave superconductor can be seen as a superposition (almost independent)
of the above described effects from the non-magnetic part with perturbation
v and concentration c and from the magnetic part with perturbation u and
concentration cm (supposedly cm ≪ c).

Another example of practical integration of contributions into the pair
term of the group expansion from (even more complex) oscillating inter-impu-
rity interactions is presented below in Sec. 8.4.

Thus, comparing the GE DOS of localized quasiparticles by magnetic
perturbation, Eq. (8.38), and the self-consistent DOS of band-like states
by non-magnetic perturbation, Eq. (5.16) (both of them being matched in
Fig. 8.6), one concludes that the transition from localized to extended states
occurs at energies of the order of

εc ∼
c2m∆

c1/2c∆v2 (u2cr − u2)
ln2

4c1/2c∆v
2
(
u2cr − u2

)
c2m

, (8.39)

provided it is within the validity range, ε ≪ (c/c∆)∆ exp
(
−
√
c∆/c

)
, of

the logarithmic asymptotics, Eq. (5.17), for the self-consistent solution. The
same estimate for the mobility edge is also obtained from the IRM criteri-
on, Eq. (5.19). Generally, presence of localized states in the spectrum should
influence significantly the kinetic properties, such as electric and heat conducti-
vity at lowest temperatures, of a crystal with impurities. But instead of the
previously mentioned universal values σ0 and κ0, their temperature dependence
should attend an exponential law ∼exp (−εc/kBT ) at T ≪ εc/kB (though this
range can be still beyond the actual experimental access ∼10 mK [159,161].

8.4. Convergence of group expansions: extended s-wave

Let us finally analyze the criteria for the considered quasipartic-
les to really exist, especially in closeness to the limits of corresponding bands. In
particular, we choose the most characteristic and technically complete situation
for the limits of the in-gap impurity band in the extended s-wave system with
impurities from Sec. 7.2, say for definiteness, near its upper limit ε+. Supposing
the actual energy ε < ε+ to be within the range of band states, we use the fully
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Fig. 8.6. Schematic of the low-energy d-wave DOS in presence of magnetic impurities. The
mobility edge εc, Eq. (8.39) separates localized states (hatched area) with almost constant
DOS from band-like states whose DOS is close to the self-consistent value, Eq. (5.17) (dashed
line)
Fig. 8.7. Parabolic approximation (dashed line) for the dispersion law near the top of impuri-
ty band (solid line), within the region indicated by a small rectangle in Fig. 8.3

renormalized self-energy matrix, Eq. (7.16), up to the GE pair term, c2T̂ B̂k,
that will add a certain finite imaginary part Γimp(ξ) to the dispersion law
ε = εimp(ξ), Eq. (7.26). Then the related Ioffe—Regel—Mott criterion [71,120]
for the state at this energy is written as:

ε+ − ε≫ Γimp(ε). (8.40)

To simplify calculation of the scalar function Γimp(ε), we fix the energy
argument in the numerators of the T-matrix and interaction matrices at ε = ε0,
obtaining their forms:

T̂ (ε) ≈ γ2ε0
ε2 − ε20

m̂+, Ân(ε) ≈ T̂ (ε)
ε0
N

∑
k

eik·n

Dk(ε)
, (8.41)

both proportional to the matrix m̂+ = σ̂0⊗ (τ̂0 + τ̂3) with important multipli-
cative property: m̂2

+ = 2m̂+. The k-summation (integration) in Eq. (8.41)
is suitably done in polar coordinates over the circular segments of Fermi
surface. Here the azimuthal integration only refers to the phase of numerator,
resulting in a zeroth order Bessel function:

∫ 2π
0 eix cos θdθ = 2πJ0(x). Since

x = n(kF + ξ/~vF) is typically big, x ≫ 1, the asymptotical formula J0(x) ≈
≈
√

2/(πx) cos(x− π/4) applies. Then, for radial integration in ξ around the
extremum point ξ+, it is convenient to decompose this function into the fast and
slow oscillating factors: J0(x) ≈

√
2/(πk+n) cos(k+n−π/4) cos[(ξ−ξ+)n/~vF]

with the fast wavenumber k+ = kF + ξ+/~vF ≈ kF, and to write the de-
nominator in the parabolic approximation: Dξ(ε) ≈ (ξ − ξ+)2 − δ2(ε), with
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Fig. 8.8. Interaction function A2
r(ε) by

Eq. (8.43) at the choice of parameters
εmax − ε = 0.1 and ∆/εF = 5 · 10−2 dis-
plays slow sine oscillations (solid line)
and the monotonous envelope function
(dashed line). The shadowed intervals
are those contributing to ImB, accor-
dingly to the condition (re/r) sin

2 kεr >
> 1. Inset: the expansion of the rectang-
le in the main panel shows also fast os-
cillations by the cosine

δ2(ε) = 2∆(∆+ε0)
2(εmax−ε)/(cγ2) (see Fig. 8.7). Thus, the interaction matrix

Ân(ε) = An(ε)m̂+ only depends on the distance n between impurities, and,
for ε close to εmax, this dependence can be expressed as:

Ar(ε) ≈
√
rε
r
sin kεr cos kFr, (8.42)

where the length scales as it is seen from Fig. 8.8 both for the monotonous
decay:

rε =
2π

kF

[
ε0ρF (∆ + ε0)

cδ(ε)

]2
,

and for the sine factor: k−1
ε = ~vF/δ(ε), are much longer than k−1

F for the fast
cosine. The latter fast oscillation is specific for the interactions mediated by
Fermi quasiparticles (like the known RKKY mechanism), unlike the monoto-
nous or slowly oscillating interactions between impurities in semiconductors or
in bosonic systems (see [79]).

Now the calculation of Γimp(ε) = c2T (ε)ImB(ε) mainly concerns the domi-
nant scalar part of the GE pair term:

B(ε) ≈ 2π

a2

rε∫
a

r dr

1− 4A2
r(ε)

(8.43)

(since the k-dependent term in Eq. (7.18) turns to be negligible beside this).
The upper integration limit in Eq. (8.44) corresponds to the condition

that its integrand only has poles for r < rε. In conformity with the slow and
fast modes in the function, Eq. (8.43), the integration is naturally divided in
two stages. At the first stage, integration over each mth period of fast cosine,
around rm = 2πm/kF, is done setting constant the slow factors, r ≈ rm and
sin kεr ≈ sin kεrm, and using the explicit formula:

Im

π∫
−π

dx

1− 4A2 cos2 x
= Im

π√
1−A2

. (8.44)
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At the second stage, the summation of these results in m is approximated by
the integration in the slow variable:

π

kF
Im
∑
m

r
3/2
m√

rm − rε sin2 kεrm
≈ Im

rε∫
a

r3/2dr√
r − rε sin2 kεr

. (8.45)

The numerical calculation of the latter integral results in:

ImB =
r2ε
a2
f (kεrε), (8.46)

where the function f(z) is zero for z < z0 ≈ 1.3585, and monotonously grows
for z > z0, rapidly approaching the asymptotic constant value: fas ≈ 1.1478,
for z ≫ z0. Then the Ioffe—Regel—Mott criterion, Eq. (8.40), at ε so close to
εmax that kεrε ≫ z0, is expressed as:

εmax − ε≫
c2γ2

εmax − ε0
r2ε
a2
, (8.47)

and this would result in a (concentration independent) estimate for the range
of extended states within the impurity band:

εmax − ε≫ Γ0 =
(vε0)

3/2

akF

√
2πρF
1 + v2

, (8.48)

and its comparison with the full extension of this band, εmax − εmin =
= cV/

√
1 + v2, would suggest possibility for such extended states to really

exist if the impurity concentration surpass the characteristic (small) value:

c≫ c0 =
(πρFε0)

3/2

akF

√
2v

1 + v2
. (8.49)

For typical values of ρ−1
F ∼ 2 eV, akF ∼ 1, and ∆ ∼ 10 meV in LaOFeAs

system [47,67,115], and supposing a plausible impurity perturbation v ∼ 1, we
estimate c0 ≈ 8 · 10−4, manifesting important impurity effects already at their
very low content.

However, the r. h. s. of Eq. (8.47) vanishes at kεrε < z0, which occurs
beyond the vicinity of the band top:

εmax − ε > Γ0

(c0
c

)3
. (8.50)

Under the condition of Eq. (8.49), this vicinity is yet more narrow than Γ0 by
Eq. (8.48), defining the true, even wider, range of extended states.
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Fig. 8.9. Structure of the energy spectrum
near the impurity level in function of impurity
concentration

Otherwise, for c ≪ c0, the im-
purity band does not exist, then we
analyze the energy range near the
impurity level with the non-renor-
malized GE and write the approxi-
mate criterion for its convergence
as c|B0| ≪ 1. This calculation is
done in a similar way as before but
replacing the interaction function,
Eq. (8.42), by its non-renormalized
version:

A0
r(ε) ≈

√
Rε/r e

−r/r0 cos kFr,
(8.51)

with kFRε = 2π (ε0/|ε− ε0|)2 and kFr0 = 2εF/ξ0. Then the above GE
convergence criterion is assured beyond the following vicinity of impurity level:

|ε− ε0| ≫ Γc = Γ0 exp
(
−c4/30 /c

)
, (8.52)

defining the range of its broadening due to inter-impurity interactions. The
DOS function for localized states can be only estimated by the order of magni-
tude within this range, but outside this range it is given by:

ρloc(ε) ≈
c2

c
4/3
0 |ε− ε0|

, for Γc ≪ |ε− ε0| ≪ Γ0,

ρloc(ε) ≈
c2ε40
|ε− ε0|5

, for Γ0 ≪ |ε− ε0|.
(8.53)

Notably, the total number of states near the impurity level is
∫
ρloc(ε)dε ∼ c,

alike that of extended states in the impurity band by Eq. (7.32). The summary
of evolution of this area of quasiparticle spectrum in function of impurity
concentration is shown in Fig. 8.9.

The presented analysis can be in principle adapted to many other super-
conducting systems with in-gap impurity levels and possible impurity bands,
provided the criteria similar to Eqs. (8.47), (8.49) are fulfilled.

8.5. Concluding remarks

This last Chapter resumes the features of quasiparticle spectra
in superconductors with impurities that are most essential for their physical
behaviors. The treatments presented here demonstrate the technical resources
to generalize in various ways the basic forms of group expansions initially pro-
posed for simpler cases of normal systems with impurities. Here it is seen that
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more complicate algebraic structures of the related inter-impurity interaction
functions do not prevent their application for the higher order terms of group
expansions, as those in Secs. 8.3, 8.4, permitting a more complete picture of
different types of impurity effects on the superconducting order of different
symmetries, in extension of classical basic results by [12] and by [4]. The ob-
tained results can serve for two purposes:

i) to estimate the principial possibility that impurity excitations at high
enough impurity concentration can form coherent collective states, called im-
purity bands, or they always remain localized and

ii) to describe more detailed characteristics of each type of impurity states,
the dispersion law and a certain lifetime for band-like states, or the density of
localized states and, at last, the positions of boundaries between the two types
(the Mott mobility edges).

Moreover. the latter estimates set the limits of validity for the popular self-
consistent description, sometimes used indiscriminately over the whole spect-
rum range, while its combination within the range of band-like states with
the series of impurity cluster contributions within the range of localized states
assures a much better adequacy of theoretical description to the experimental
observations. Thus the consistent use of group expansions. which is one of main
technical tools in this book, inspired by the early prophetic ideas by I.M. Lif-
shitz [103] allows a deeper insight on the physics of disordered superconductors
and opens the prospects for new practical applications of all the above descri-
bed impurity effects, possibly even more diverse and effective than the long
studied doping effects in semicondoctors physics. The authors hope that such
expectations can be realized in the nearest future with oncoming physical studi-
es on increasingly growing family of doped high-Tc superconductors.
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169

The total of preceding Chapters permits us to get a broader view
on the physical consequences of introducing disordered impurity
centers in specific layered crystalline structures aimed to con-
vert them in superconductors with extraordinarily high critical
temperatures of SC transition. Besides this direct purpose, such
perturbation on the system reveals many characteristic effects
of disorder in crystalline systems, including a number of uncom-
mon features that enrich our understanding of this general field
in the condensed matter physics.

Following the principal theoretical line of study on elect-
ronic quasiparticle spectra in these compounds with a special
technique for two-time Green functions in presence of randomly
distributed point-like impurity centers, the group expansions of
different forms for different ranges of the energy spectrum dis-
tinguished by the property of quasiparticles there being Bloch-
like (extended) or localized, we can quantitatively describe phy-
sical parameters of respective quasiparticles and use them for
practical calculations of observable physical properties of such
disordered systems.

The basic results from the general framework of disordered
systems consider their excitation spectra as divided in non-over-
lapping energy ranges: those of extended and localized states,
with the border points between them called mobility edges [120].
This division gives rise to a specific topology of the spectrum for
given disordered system and its next important property is that
changing the parameters of disorder (as impurity concentration,
impurity perturbation strength and symmetry, etc.) or apply-
ing some external forces (as temperature, pressure, magnetic
field, etc.) can produce, besides evident continuous variation
of spectrum parameters (as quasiparticle effective masses and
velocities, their lifetime, etc.), also some discontinuous changes
of this spectrum topology that is topological phase transitions.
This can be compared with the well known Lifshitz toplogical
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transition on Fermi surface in metals (without disorder). For the disordered
systems, the classical example is the Anderson transition [12] where two mobili-
ty edges collapse at a certain critical strength of disorder (randomly fluctuating
at each lattice site, the so-called Anderson model of disorder) so that the range
of extended states vanishes and the spectrum remains filled with only localized
states. Other types of such topological transitions, under disorder by impurity
perturbation (identical at randomly distributed sites, the Lifshitz model [103]),
correspond to the so-called coherent restructuring of spectrum when impurity
concentration c reaches the level of overlap (in average) between the neighbor
impurity states [79]. It is manifested by appearance of a new range of extended
states near a localized level by single impurity or by splitting of an existing
extended range near an impurity resonance level and appearance of a new
localized range there, both cases topologically presenting creation of a new
pair of mobility edges. Depending on the perturbation strength and symmetry,
an alternative scenario, that of incoherent restructuring, is also possible. This
consists in a sudden extension of localized range by a localized impurity level
at its merging with an edge of initial band or by localization of all states
around a resonance level, both cases presenting a rapid shift of a respective
mobility edge (though without changes of spectrum topology). To conclude
on these processes, the distinction between two types of excitation states is
made using the above mentioned group expansions of Green functions, the ful-
ly renormalized, like that by Eq. (2.16), more adequate for extended states or
non-renormalized, like that by Eq. (2.18), better suited for localized states.

Of course, so strong variations of electronic spectra lead to essential effects
in observable properties of corresponding physical systems, important for prac-
tical applications as, e.g., in extensively explored doped semiconductors [151].
The above referred spectrum restructurings are most favored at proximity of
impurity levels to the edges of initial bands or to the band gaps (as in semicon-
ductors). Therefore they are also expected for superconducting quasiparticles
whose spectra just reveal narrow gaps of different types of spatial symmetry.
From this general point of view, we can now resume in a unified framework all
the particular results in the present book.

To begin with, the early doping stage on layered cuprate perovskites that
prepares conditions for superconducting pairing in them, Ch. 1, can be seen
as an incoherent restructuring of the bosonic excitation spectrum of antifer-
romagnetically ordered Cu spins and subsequent destroying of the long-range
magnetic order (though yet essentially assisted by the effect of non-magnetic
origin by static deformations of CuO6 octaedra near dopants). This restructu-
ring of spin subsystem has a profound impact on the subsystem of charge carri-
ers, allowing their free propagation over the crystalline lattice, as a precondition
to form a SC state. The latter is also stimulated by the persisting short-range
AFM order as a source for SC coupling between the carriers. In general terms,
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the introduced atoms act on this stage mostly as impurity scatterers for bosonic
AFM quasiparticles but mostly as dopants for the electronic spectrum.

Also, the process of metallization in a doped electronic system under Lif-
shitz type scattering potential in Ch. 2 can be resumed in this aspect as an
incoherent restructuring with a rapid advance of the mobility edge εc (by the
scattering effect) inside the principal conduction band, in competition with si-
multaneous advance of the Fermi level εF (by the dopant effect). The relevant
outcome is essentially controlled by the system dimensionality, with much
faster advance of εc (and hence no metallization) in 3D case, and, contrariwi-
se, much faster advance of εF (and effective metallization) in 2D (or quasi-2D)
case. The latter predominance of the dopant effect over the scattering effect
is just the case for the doped layered systems and it determines the following
analyses related to formation of SC ground state there. In this course, the
results essentially depend on the choice of expected SC order symmetry. Thus,
in the s-wave case, a kind of topological transition from superfluid to super-
conducting ground state with growing doping level is concluded in Ch. 4. For a
strong enough “scattering-to-pairing” relation, this transition can be splitted in
two, through an intermediate insulator state. Finally, for yet stronger scatteri-
ng parameter, the SC state gets to collapse and the growth of doping leads
only to a more usual “insulator-metal” transition.

Once a SC state has been formed in a doped system, the impurity
scatterers can produce localized or resonance levels (or none of them) within
the SC gap, depending on particular symmetries of SC order parameter and
impurity perturbation potential, as described in Ch. 3. Subsequently, at high
enough impurity concentration the gapped spectra of SC quasiparticles can be
restructured in different ways, including the coherent type as that in Ch. 7.
Notably, these restructurings are found to be more diversified than those in
normal systems. In the case of d-wave SC order relevant for doped cuprate
perovskite compounds, the specifics of such restructuring is in the possibility
for opening of a localized range near the Fermi level (though only for magnetic
type of impurity perturbation), instead of vicinity of impurity resonance level
as expected in normal systems with impurities. Nevertheless, an analog for the
common type of spectrum restructuring near the impurity level is also establi-
shed for doped SC systems, in the case of the extended s-wave symmetry of SC
order as in doped ferropnictides. The latter situation presents maybe a major
interest from the point of view of our study, since the coherent restructuring
with emergence of a narrow quasiparticle band within the SC gap described
in Ch. 7 produces especially sharp physical effects with promising practical
applications.

Even finer details of the SC ground state and related excitation spectrum
can be obtained from the same approach to GF’s, including the two-particle
ones, through specific, more advanced group expansions described in Ch. 6. Al-
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Resuming conclusions

so these analyses permit to define the validity criteria for other approximations
to the quasiparticle spectra in disordered systems, as the popular self-consisten-
cy method. In particular, the study in Sec. 5.3 reveals that there are multiple
self-consistent solutions for d-wave SC system with impurities and shows that a
proper choice between them in the so-called unitary perturbation limit differs
from the known Patrick Lee’s solution [102]. Furthermore, the quantitative
estimate for this validity limit as the respective mobility edge for incoherent
restructuring is found for the magnetic type of impurity perturbation.

Finally, the consideration of more general cluster effects for SC systems
with impurities, involving also higher order terms of group expansions, with
complex multi-oscillatory behavior of the interaction functions as described in
Ch. 8, demonstrates broad potentialities of this method in application to most
diversified types of quasiparticle spectra and perturbation potentials. We wish
to express our hope for perspectives of further development of this method
in various problems of modern condensed matter physics and for practically
useful applications of the obtained results in future technology.
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