Department for Astrophysics and Elementary Particles
  1. D. Grassano, O. Pulci, V.O. Shubnyi, V.P. Gusynin, S.G. Sharapov, A.V. Kavokin, A.A. Varlamov, "Detection of topological phase transitions through entropy measurements: the case of germanene", Phys. Rev. B 97, 205442 (2018).
  2. V.O. Shubnyi, V.P. Gusynin, S.G. Sharapov, A.A. Varlamov, "Entropy per particle spikes in the transition metal dichalcogenides", Fizika Nizkikh Temperatur, Vol. 44, No.6, 721-726 (2018).
  3. E.V. Gorbar, V.P. Gusynin, and O.O. Sobol, "Electron states in the field of charged impurities in two-dimensional Dirac systems", (review paper) Fizika Nizkikh Temperatur, V.44, No.5, 491--524 (2018).
  4. Y.M. Galperin, D. Grassano, V.P. Gusynin, A.V. Kavokin, O. Pulci, S.G. Sharapov, V.O. Shubnyi, A.A. Varlamov, "Entropy signatures of topological phase transitions", JETP, V.54, 1057 (2018).
  5. D.O. Oriekhov, E.V. Gorbar and V.P. Gusynin, "Electronic states of pseudospin-1 fermions in dice lattice ribbons", Fizika Nizkikh Temperatur, V.44, No.12, 1678 (2018).
  6. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Consistent hydrodynamic theory of chiral electrons in Weyl semimetals", Phys. Rev. B 97, 121105 (2018).
  7. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Anomalous transport properties of Dirac and Weyl semimetals", Low Temperature Physics 44, 635 (2018).
  8. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Hydrodynamic electron flow in a Weyl semimetal: role of Chern-Simons terms", Phys. Rev. B 97, 205119 (2018).
  9. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Collective excitations in Weyl semimetals in the hydrodynamical regime", J. Phys.: Condens. Matter 30, 275601 (2018).
  10. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Non-local transport in Weyl semimetals in the hydrodynamic regime", Phys. Rev. B 98, 035121 (2018).
  11. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Non-Abelian properties of electron wave packets in Dirac semimetals A3Bi (A=Na, K, Rb)", Phys. Rev. B 98, 045203 (2018).
  12. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, "Electronic properties of strained double-Weyl systems", Annalen der Physik (Berlin) 530, 1800219 (2018).
  13. O.O. Sobol, E.V. Gorbar, M. Kamarpour, S.I. Vilchinskii, "Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis", Phys. Rev. D 98, 063534 (2018).
  14. O.I. Matsyshyn, A.I. Yakimenko, E.V. Gorbar, S.I. Vilchinskii, V.V. Cheianov, "p-wave superfluidity in mixtures of ultracold Fermi and spinor Bose gases", Phys. Rev. A 98, 043620 (2018).
  15. Y.I. Izotov, G. Worseck, D. Schaerer, N.G. Guseva, T.X. Thuan, K.J. Fricke, A. Verhamme, I. Orlitova"Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios", MNRAS, V. 478, Issue 4, 4851-4865 (2018).
  16. D. Schaerer, Y.I. Izotov, K, Nakajima, G. Worseck, J. Chisholm, A. Verhamme, T.X. Thuan, S, de Barros, "Intense C III] λλ1907, 1909 emission from a strong Lyman continuum emitting galaxy", Astronomy and Astrophysics, V. 616, id. L14, 5pp.(2018).
  17. L. Jenkovszky, I, Szanyi, Chung-I Tan, "Shape of proton and pion cloud», Eur. Phys. J. A 54, 116 (2018).
  18. W. Broniowski, L. Jenkovszky, E, R, Arriola and I. Szanyi, «Hollowness in pp and bar pp scattering in a Regge model», Phys. Rev. D 98, 074012 (2018).
  19. R. Fiore, L. Jenkovszky, R. Schicker, «Exclusive diffractive resonance production in proton-proton collisions at high energies», Eur. Phys. J. C 78, 468 (2018).
  20. L. Jenkovszky, R. Schicker, I. Szanyi, «Elastic and diffractive scattering in the LHC era», International Journal of Modern Physics E: Vol. 27, No. 08, 1830005 (2018).
  21. T.S. Biro, Z. Schram and L. Jenkovszky, «Entropy production during hadronization of a quark-gluon plasma», Eur. Phys. J. A 54, 17 (2018).
  22. K. Krasnov, Yu. Shtanov, "Pure-connection gravity and anisotropic singularities", Universe 4, no. 1, 12 (2018).
  23. Viznyuk, S. Bag, Y. Shtanov, V. Sahni, "Versatile parametrization of the perturbation growth rate on the phantom brane," Phys. Rev. D 98, 064024 (2018).
  24. O. Savchenko and Y. Shtanov, "Magnetogenesis by non-minimal coupling to gravity in the Starobinsky inflationary model," JCAP 10, 040 (2018).
  25. V.E. Kuzmichev, V.V. Kuzmichev, "Quantum dynamics of the early universe", Ukr. J. Phys., V. 63, No. 3, p. 196–203 (2018).
  26. V.E. Kuzmichev, V.V. Kuzmichev, "The matter-energy intensity distribution in a quantum gravitational system", Quantum Stud.: Math. Found., V. 5, 245–255 (2018).
  27. A.V. Rudakovskyi, D.O. Savchenko, «New Model of Density Distribution for Fermionic Dark Matter Halos», Ukrainian Journal of Physics 63 (9), 769–776 (2018).
Department for High-Density Energy Physics
  1. J. Adam,…,G.Zinovjev et al. and ALICE Collaboration."J/$psi$ production as a function of charged-particle pseudorapidity density in p-Pb Collisions at $sqrt{s_{rm{NN}}}=$5.02 TeV". Phys. Lett. B776 (2018) 91.2
  2. J. Adam,…,G. Zinovjev et al. and ALICE Collaboration. "$Dzero$, $Dplus$, $Dstar$ and $Ds$ elliptic flow in non-central Pb-Pb collisions at $mathbf{sqrtsNN = 5.02}$ TeV" arXiv:1804.08906 [nucl-ex].
  3. J .Adam,…,G.Zinovjev et al. and ALICE Collaboration). Constraining the magnitude of the Chiral Magnetic Effect with event shape engineering in Pb-Pb collisions at $sqrt{s_{_{rm NN}}} = 2.76$ TeV. Phys. Lett. B777 (2018) 151-162; arXiv:1709.04723 [nucl-ex]..
  4. J. Adam,…,G. Zinovjev et al. and ALICE Collaboration. "Elliptic flow of electrons from heavy-flavour hadrons decay in Pb-Pb at $sqrt{s_mathrm{NN}}$ = 2.76 TeV with ALICE"". JHEP 09 (2016) 028; arXiv:1606.00321 [nucl-ex].
  5. V. Goloviznin, A. Snigirev, G. Zinovjev. "On the anisotropy of thermal di-leptons". Pisma v ZhETP 107 (2018) 554; JETP Letters 107 (2018); arXiv:1711.05459 [hep-ph].
  6. S. V. Akkelin. "Quasi equilibrium state of expanding quantum fields and two-pion Bose-Einstein correlations in pp collisions at the LHC". arXiv:1812.03905 [hep-ph]
  7. S. Acharya,…,G. Zinovjev et al. and ALICE Collaboration. [nucl-ex]. "Two particle differential transverse momentum and number density correlations in p-Pb and Pb-Pb at the LHC", arXiv:1805.04422 [nucl-ex].
  8. S. Acharya et al., ALICE Collaboration, "Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at √ s NN = 5.44 TeV", arXiv: 1805.04399 [nucl-ex].
  9. S. Acharya et al., ALICE Collaboration, "Jet fragmentation transverse momentum measurements from di-hadron correlations in √ s = 7 TeV pp and √ s NN = 5.02 TeV p-Pb collisions", arXiv: 1811.09742 [nucl-ex].
  10. S. Acharya et al., ALICE Collaboration, "Λ + c production in Pb-Pb collisions at √ s NN = 5.02 TeV", Submitted to: Phys. Lett. (2018), arXiv: 1809.10922 [nucl-ex].
  11. S. Acharya et al., ALICE Collaboration, "Event-shape engineering for the D-meson elliptic flow in mid-central Pb-Pb collisions at √ s NN = 5.02 TeV", (2018), arXiv: 1809.09371 [nucl-ex]. 12. S. Acharya et al., ALICE Collaboration, "Measuring K 0 S K ± interactions using pp collisions at √ s = 7 TeV", Submitted to: Phys. Lett. (2018), arXiv: 1809.07899 [nucl-ex].
  12. S. Acharya et al., ALICE Collaboration, "Charged jet cross section and fragmentation in proton-proton collisions at √ s = 7 TeV", (2018), arXiv: 1809.03232 [nucl-ex].
  13. S. Acharya et al., ALICE Collaboration, "Energy dependence of exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at √ s NN = 5.02 TeV", (2018), arXiv: 1809.03235 [nucl-ex].
  14. S. Acharya et al., ALICE Collaboration, "Multiplicity dependence of light-flavor hadron production in pp collisions at √ s = 7 TeV", Submitted to: Phys. Rev. (2018), arXiv: 1807.11321 [nucl-ex].
  15. S. Acharya et al., ALICE Collaboration, "Medium modification of the shape of small-radius jets in central Pb-Pb collisions at √ s NN = 2.76TeV", JHEP 10, 139 (2018); arXiv: 1807.06854 [nucl-ex].
  16. S. Acharya et al., ALICE Collaboration, "Measurement of dielectron production in central Pb-Pb collisions at √ s NN = 2.76 TeV", (2018), arXiv: 1807.00923 [nucl-ex].
  17. S. Acharya et al., ALICE Collaboration, "p-p, p-Λ and Λ-Λ correlations studied via femtoscopy in pp reactions at √ s = 7 TeV", (2018), arXiv: 1805.12455 [nucl-ex].
  18. S. Acharya et al., ALICE Collaboration, "Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV", (2018), arXiv: 1805.05212 [nucl-ex].
  19. S. Acharya et al., ALICE Collaboration, "Production of the ρ(770) 0 meson in pp and Pb-Pb collisions at √ s NN = 2.76 TeV", arXiv: 1805.04365 [nucl-ex].
  20. S. Acharya et al., ALICE Collaboration, "Anisotropic flow of identified particles in Pb-Pb collisions at √ s NN = 5.02 TeV", JHEP 09, 006 (2018) ;arXiv: 1805.04390 [nucl-ex].
  21. S. Acharya et al., ALICE Collaboration, "Azimuthal anisotropy of heavy-flavour decay electrons in p-Pb collisions at √ s NN = 5.02 TeV", arXiv: 1805.04367 [nucl-ex].
  22. S. Acharya et al., ALICE Collaboration, "Measurements of low-p T electrons from semileptonic heavy-flavour hadron decays at mid-rapidity in pp and Pb-Pb collisions at √ s NN = 2.76 TeV", JHEP 10, 061 (2018) ; arXiv: 1805.04379 [nucl-ex].
  23. S. Acharya et al., ALICE Collaboration, "Inclusive J/ψ production at forward and backward rapidity in p-Pb collisions at √ s NN = 8.16 TeV", JHEP 07, 160 (2018); arXiv: 1805.04381 [nucl-ex].
  24. S. Acharya, ALICE Collaboration, "Dielectron and heavy-quark production in inelastic and high-multiplicity proton-proton collisions at √ s NN = 13 TeV", arXiv: 1805.04407 [hep-ex].
  25. S. Acharya et al., ALICE Collaboration, "Suppression of Λ(1520) resonance production in central Pb-Pb collisions at √ s NN = 2.76 TeV", Submitted to: Phys. Rev. Lett. (2018), arXiv: 1805.04361 [nucl-ex].
  26. S. Acharya et al., ALICE Collaboration, "Measurement of the inclusive J/ ψ polarization at forward rapidity in pp collisions at √ s = 8 TeV", Eur. Phys. J. C78, 562 (2018) DOI: 10.1140/epjc/s10052- 018-6027-2, arXiv: 1805.04374 [hep-ex].
  27. S. Acharya et al., ALICE Collaboration, "Inclusive J/ψ production in Xe–Xe collisions at √ s NN = 5.44 TeV", Phys. Lett. B785, 419–428 (2018); arXiv: 1805.04383 [nucl-ex].
  28. S. Acharya et al., ALICE Collaboration, "Υ suppression at forward rapidity in Pb-Pb collisions at √ s NN = 5.02 TeV", (2018), arXiv: 1805.04387 [nucl-ex].
  29. S. Acharya et al., ALICE Collaboration, "Dielectron production in proton-proton collisions at √ s = 7 TeV", JHEP 09, 064 (2018); arXiv: 1805.04391 [hep-ex].
  30. S. Acharya et al., ALICE Collaboration, "Direct photon elliptic flow in Pb-Pb collisions at √ s NN = 2.76 TeV", (2018), arXiv: 1805.04403 [nucl-ex].
  31. S. Acharya et al., ALICE Collaboration, "Dielectron and heavy-quark production in inelastic and high-multiplicity proton-proton collisions at √ s NN = 13 TeV", (2018); arXiv: 1805.04407 [hep-ex].
  32. S. Acharya et al., ALICE Collaboration, "Two particle differential transverse momentum and number density correlations in p-Pb and Pb-Pb at the LHC", (2018), arXiv: 1805.04422 [nucl-ex].
  33. S. Acharya et al., ALICE Collaboration, "Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at √ s NN = 5.44 TeV", (2018), arXiv: 1805.04432 [nucl-ex].
  34. S. Acharya et al., ALICE Collaboration, "Anisotropic flow in Xe-Xe collisions at √ s NN = 5.44 TeV", Phys. Lett. B784, 82–95 (2018); arXiv: 1805.01832 [nucl-ex].
  35. S. Acharya et al., ALICE Collaboration, "Measurement of D 0 , D + , D ∗+ and D + s production in Pb-Pb collisions at √ s NN = 5.02 TeV", JHEP 10, 174 (2018) ; arXiv: 1804.09083 [nucl-ex].
  36. S. Acharya et al., ALICE Collaboration, "ϕ meson production at forward rapidity in Pb-Pb collisions at √ s NN = 2.76 TeV", Eur. Phys. J. C78, 559 (2018); arXiv: 1804.08906 [nucl-ex].
  37. S. Acharya et al., ALICE Collaboration, "Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at √ s NN = 5.02 and 2.76 TeV", JHEP 07, 103 (2018) , arXiv: 1804.02944 [nucl-ex].
  38. S. Acharya et al., ALICE Collaboration, "Azimuthally-differential pion femtoscopy relative to the third harmonic event plane in Pb-Pb collisions at √ s NN = 2.76 TeV", Phys. Lett. B785, 320–331 (2018); arXiv: 1803.10594 [nucl-ex].
  39. S. Acharya et al., ALICE Collaboration, "Direct photon production at low transverse momentum in proton-proton collisions at √ s = 2.76 and 8 TeV", arXiv: 1803.09857 [nucl-ex].
  40. S. Acharya et al., ALICE Collaboration, "Neutral pion and η meson production at mid-rapidity in Pb-Pb collisions at √ s NN = 2.76 TeV", Phys. Rev. C98, 044901 (2018) ; arXiv: 1803.05490 [nucl-ex].
  41. S. Acharya et al., ALICE Collaboration, "Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC", JHEP 11, 013 (2018) ;arXiv: 1802.09145 [nucl-ex].
  42. S. Acharya et al., ALICE Collaboration, "Prompt and non-prompt J/ψ production and nuclear modification at mid-rapidity in p–Pb collisions at √ s NN = 5.02 TeV", Eur. Phys. J. C78, 466 (2018); arXiv: 1802.00765 [nucl-ex].
  43. S. Acharya et al., ALICE Collaboration, "Neutral pion and η meson production in p-Pb collisions at √ s NN = 5.02 TeV", Eur. Phys. J. C78, 624 (2018) DOI: 10.1140/epjc/s10052-018-6013-8, arXiv: 1801.07051 [nucl-ex].
  44. S. Acharya et al., ALICE Collaboration, "Λ + c production in pp collisions at √ s = 7 TeV and in p-Pb collisions at √ s NN = 5.02 TeV", JHEP 04, 108 (2018) arXiv: 1712.09581 [nucl-ex].
  45. S. Acharya et al., ALICE Collaboration, "Constraints on jet quenching in p-Pb collisions at √ s NN = 5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions", Phys. Lett. B783, 95–113 (2018); arXiv: 1712.05603 [nucl-ex].
  46. S. Acharya et al., ALICE Collaboration, "First measurement of Ξ 0 c production in pp collisions at √ s = 7 TeV", Phys. Lett. B781, 8–19 (2018); arXiv: 1712.04242 [hep-ex].
  47. S. Acharya et al., ALICE Collaboration, "Measurement of Z 0 -boson production at large rapidities in Pb-Pb collisions at √ s NN = 5.02 TeV", Phys. Lett. B780, 372–383 (2018); arXiv: 1711.10753 [nucl-ex].
  48. S. Acharya et al., ALICE Collaboration, "Longitudinal asymmetry and its effect on pseudorapidity distributions in Pb-Pb collisions at √ s NN = 2.76 TeV", Phys. Lett. B781, 20–32 (2018), arXiv: 1710.07975 [nucl-ex].
  49. S. Acharya et al., ALICE Collaboration, "Production of 4 He and 4 He in Pb-Pb collisions at √ s NN = 2.76 TeV at the LHC", Nucl. Phys. A971, 1–20 (2018); arXiv: 1710.07531 [nucl-ex].
  50. S. Acharya et al., ALICE Collaboration, "Production of deuterons, tritons, 3 He nuclei and their antinuclei in pp collisions at √ s = 0.9, 2.76 and 7 TeV", Phys. Rev. C97, 024615 (2018); arXiv: 1709.08522 [nucl-ex].
  51. S. Acharya et al., ALICE Collaboration, "Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at √ s NN = 5.02 and 8.16 TeV", Phys. Lett. B780, 7–20 (2018); arXiv: 1709.06807 [nucl-ex].
  52. S. Acharya et al., ALICE Collaboration, "Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at √ s NN = 2.76 TeV", Phys. Lett. B777, 151–162 (2018); arXiv: 1709.04723 [nucl-ex].
  53. S. Acharya et al., ALICE Collaboration, "The ALICE Transition Radiation Detector: construction, operation, and performance", Nucl. Instrum. Meth. A881, 88–127 (2018); arXiv: 1709.02743 [physics.ins-det].
  54. S. Acharya et al., ALICE Collaboration, "Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at √ s NN = 2.76 TeV", Phys. Rev. C97, 024906 (2018); arXiv: 1709.01127 [nucl-ex].
  55. S. Acharya et al., ALICE Collaboration, "π 0 and η meson production in proton-proton collisions at √ s = 8 TeV", Eur. Phys. J. C78, 263 (2018); arXiv: 1708.08745 [hep-ex].
  56. S. Acharya et al., ALICE Collaboration, "D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at √ s NN = 5.02 TeV", Phys. Rev. Lett. 120, 102301 (2018); arXiv: 1707.01005 [nucl-ex].
  57. D. Adamová et al., ALICE Collaboration, "J/ψ production as a function of charged-particle pseudo-rapidity density in p-Pb collisions at √ s NN = 5.02 TeV", Phys. Lett. B776, 91–104 (2018) ; arXiv: 1704.00274 [nucl-ex].
  58. S. Acharya et al., ALICE Collaboration, "First measurement of jet mass in Pb–Pb and p–Pb collisions at the LHC", Phys. Lett. B776, (2018) 249-264; arXiv: 1702.00804 [nucl-ex].
  59. V. Goloviznin, A. Nikolskii, A. Snigirev, G. Zinovjev. "Probing confinement by direct photons and dileptons"; arXiv:1804.00559 v2 [hep-ph].
  60. K. Bugaev, R. Emaus, V. Sagun, A. Ivanytskyi, L. Bravina, D. Blaschke, E. Nikonov, A. Taranenko, E. Zabrodin, G. Zinovjev. "Threshold collision energy of the QCD phase diagram tricritical endpoint". PEPAN Lett. 15 (2018) 210-224; arXiv:1709.05419 [hep-ph].
  61. K. Bugaev, V. Sagun, A. Ivanytskyi, E. Nikonov, G. Zinovjev. "Equation of state of quantum gases beyond the Van der Waals approximation". Ukr. J. Phys. 10 (2018) 863-880.
  62. K. Bugaev, V. Sagun, A. Ivanytsky, I. Yakimenko, E.Nikonov, A. Taranenko, G. Zinovjev. "Going beyond the second virial coefficient in the hadron resonance gas model", Nucl. Phys. A970 (2018), 133-155.
  63. V. Sagun, K. Bugaev, A. Ivanitskyi I. Yakimenko, E. Nikonov, A. Taranenko, C. Greiner, D. Blashke. "Hadron resonance gas model with induced surface tension". Euro. Phys. J. A54 (2018) 100. arXiv:1703.00049 [nucl-th].
  64. K. Bugaev, A. Ivanytskyi, V. Sagun, B. Grinyuk, D. Savchenko, G. Zinovjev E. Nikonov, L. Bravina, E. Zabrodin, D. Blaschke, S. Kabana, A. Taranenko. "Possible signals of two QCD phase transitionsat NICA-FAIR energies. arXiv:1811.07420 [nucl-th].
  65. K. Bugaev, A. Ivanytskyi, V. Sagun, B. Grinyuk, D. Savchenko, G. Zinovjev E. Nikonov, L. Bravina, E. Zabrodin, D. Blaschke, A. Taranenko, L. Turko. "Hard-core radius of nucleons within the induced surface tension approach"; arXiv:1810.00486 [nucl-th].
  66. K. Bugaev, A. Ivanytskyi, V. Sagun, B. Grinyuk, D. Savchenko, G. Zinovjev E. Nikonov, L. Bravina, E. Zabrodin, D. Blaschke, S. Kabana, A. Taranenko. "On separate chemical freeze-outs of hadrons and and light (anti)nuclei in high energy nuclear collisions". arXiv:1812.025009 [nucl-th].
  67. E.E. Kolomeitsev, V.D Toneev, V.V. Voronyk "Vorticity and hyperon polarization at energies available at JINR Nuclotron-based Ion Collider fAcility", Phys. Rev. C97 (2018) 064902.
  68. P. Alba, V. Vovchenko, M.I. Gorenstein, H. Stoecker. "Flavor-dependent eigenvolume interactions in a hadron resonance gas", Nucl. Phys. A 974, (2018) 22.
  69. V. Vovchenko, M. Gorenstein, H. Stoecker, "Modeling baryonic interactions with the Clausius-type equation of state", Eur. Phys. J. A 54, (2018) 16.
  70. V. Vovchenko, M.I. Gorenstein, H. Stoecker, "Finite resonance widths influence the thermal model description of hadron yields", Phys. Rev. C 98 (2018) 034906.
  71. A. Motornenko, L. Bravina, M.I. Gorenstein, A.G. Magner, E. Zabrodin, "Nucleon matter equation of state, particle number fluctuations, and shear viscosity within UrQMD box calculations", J. Phys. G 45, (2018) 035101.
  72. V. Vovchenko, F. Motornenko, M. Gorenstein, H. Stoecker, "Beth-Uhlenbeck approach for repulsive interactions between baryons in a hadron gas", Phys. Rev. C 97 (2018) 035202.
  73. V. Vovchenko, P. Alba, M.I. Gorenstein, H. Stoecker, "van der Waals Interactions and Hadron Resonance Gas: Role of resonance widths modeling on conserved charge fluctuations", EPJ Web Conf. 171 (2018) 14006.
  74. A. Motornenko, K. Grebeiszkow, E. Bratkovskaya, M.I. Gorenstein, M. Bleicher, K. Werner, Event-by-event fluctuations in p+p and central A+A collisions within relativistic transport models, J. Phys. G 45б (2018) 115104.
  75. V. Vovchenko, L. Jiang, M.I. Gorenstein, H. Stoecker, "Critical point of nuclear matter and beam energy dependence of net proton number fluctuations", Phys. Rev. C 98, (2018) 024910.
  76. V. Begun, V. Vovchenko, M. Gorenstein, H. Stoecker, "Statistical hadron-gas treatment of systems created in proton-proton interactions at energies available at the CERN Super Proton Synchrotron", Phys. Rev. C 98, (2018) 054909.
  77. A.G. Magner, M.I. Gorenstein, U.V. Grygoriev, "Velocity and absorption coefficient of sound waves in classical gases," arXiv:1803.03426 [nucl-th].
  78. V. Vovchenko, M.I. Gorenstein, H. Stoecker, "Monte Carlo approach to the excluded volume hadron resonance gas in the grand canonical and canonical ensembles’, arXiv:1805.01402[nucl-th].
  79. R. Poberezhbyuk, V. Vovchenko, M.I. Gorenstein, H. Stoecker, "Non-congruent phase transitions in strongly interacting matter within the Quantum van der Waals model," arXiv:1810.07640 [nucl-th].
  80. L. Satarov, I. Mishustin, A. Motornenko, V. Vovchenko, M.I. Gorenstein, H. Stoecker, "Phase transitions and Bose-Einstein condensation in alpha-nucleon matter," arXiv:1811.02924 [nucl-th].
  81. V. Vovchenko, M.I. Gorenstein, C. Greiner, H. Stoecker, "Hagedorn bag-like model with a crossover transition meets lattice QCD," arXiv:1811.05737 [nucl-th].
  82. M.I. Gorenstein,"Open and hidden charm in my collaboration with Walter Greiner," DOI: 10.1143/978981323484_0010.
  83. A. Motornenko, V.V. Begun, V. Vovchenko, M.I. Gorenstein, H. Stoecker,"Hadron yields and fluctuations at the CERN SPS: system size dependence from Pb+Pb to p+p collisions," arXiv1811.248215 [nucl-th].
  84. E. Martynov and B. Nicolescu, "Did TOTEM experiment discover the Odderon?" Phys. Lett. B 778, (2018) 414-418.
  85. E. Martynov and B. Nicolescu, "Evidence for maximality of strong interactions from LHC forward data"", Phys. Lett. B786 (2018) 207-211.
  86. E. Martynov and B. Nicolescu, "Odderon effects in the differential cross-sections at Tevatron and LHC energies", arXiv:1808:08580 [hep-ph].
  87. A. Alkin, E. Martynov, O. Kovalenko, S. Troshin, "Impact-parameter analysis of the new TOTEM pp data at 13 TeV: black disk limit excess," arXiv:1807.06471 [hep-ph].
  88. E. Martynov and B. Nicolescu, "Discovery of the Odderon by TOTEM experiments and the FMO approach", Contribution to Proceedings of 48th International Symposium on Multiparticle Dynamics (ISMD 2018), 03-07 Sep 2018. Singapore, Singapore, arXiv:1810.08930 [hep-ph].
  89. E. Martynov and B. Nicolescu, "Odderon: models vs experimental data - a short review of recent papers", arXiv:1811.07635 [hep-ph] .
  90. V. Naboka, Yu. Sinyukov, G. Zinovjev, "Direct-photon spectrum and elliptic flow produced from Pb+Pb collisions at √s = 2.76 TeV at the CERN Large Hadron Collider within an integrated hydrokinetic model", Phys. Rev. C 97, (2018) 054907.
  91. Yu. Sinyukov, V. Shapoval, "Particle production at energies available at the CERN Large Hadron Collider within evolutionary model". Phys. Rev. C 97 (2018) 064901.
  92. Yu. Sinyukov, M. Adzhymambetov, V. Naboka, and V. Shapoval, "The prethermal stage of heavy ion collision and the particle production"" Act. Phys. Polon. B11 (2018) 633.
  93. Yu. Sinyukov, Modified Skellam, Poisson and Gaussian distributions in semi-open systems at charge-like conservation law, arXiv:1805.03884 [nucl-th].
  94. V. Shapoval and Yu. Sinyukov, Bulk observables in the LHC 5.02 TeV Pb+Pb collisions within the integrated HydroKinetic Model, arXiv:1809.7400 [nucl-th].
  95. M. Adzhymambetov, V. Shapoval, Yu. Sinyukov, Description of bulk observables in Au+Au collisions at top RHIC energy in the integrated HydroKinetic Model, arXiv: 1811.04850 [nucl-th].
  96. V. Naboka, Yu. Sinyukov, G. Zinovjev, Analysing direct photon spectra and elliptic flow from heavy ion collision measurements at the top RHIC energy within the integrated hydrokinetic model, arXiv:1812.02763 [nucl-th].
  97. S. Khlebtsov, Y. Klopot, A. Oganesian, O. Teryaev, "Contributions of electromagnetic and strong anomalies to the η(η′)→γγ decays"J.Phys.Conf.Ser. 938 (2017) no.1, 012052 .
  98. S. Khlebtsov, Y. Klopot, A. Oganesian, O. Teryaev, "Dispersive approach to non-Abelian axial anomaly", arXiv:1802.00797 [hep-ph].
  99. B. Alles, O. Borisenko, A. Papa, "Finite density 2d O(3) sigma model: dualization and numerical simulations", arXiv:1808.07810 [hep-lat], Phys. Rev. D98 (2018) 114508.
  100. O. Borisenko, V. Chelnokov, S. Voloshin, "Duals of U(N) LGT with staggered fermions", European Physical Journal, Web of Conference, V175 (2018) 11021.
  101. O. Borisenko, V. Chelnokov, S. Voloshin, "SU(N) polynomial integrals and some applications", arXiv:1812.06069 [hep-lat].
  102. O. Borisenko, V. Chelnokov, E. Mendicelli, A. Papa, "Three-quark potentials in an effective SU(3) Polyakov loop model", arXiv:1812.05384 [hep-lat].
  103. M. Baker, P. Cea, V. Chelnokov, L. Cosmai, F. Cuteri, A. Papa, "The nonperturbative color field in the SU(3) flux tube", arXiv:1810.07133 [hep-lat].
  104. A. Ivanytskyi, V. Chelnokov, "On bimodal size distribution of spin clusters in the onedimensional Ising model", EPJ Web of Conferences 182 (2018) 03004.
  105. V. Sagun, Ilidio Lopes, A. Ivanytskyi, "The induced surface tension contribution for the equation of stateof neutron stars", arXiv:1805.04976v2 [astro-ph.HE].
  106. D. Borisyuk, A. Kobushkin. "Two-photon exchange in nonrelativistic approximation". arXiv:1811.06928 [hep-ph].
  107. K. Bugaev, A. Ivanytskyi, V. Sagun, G. Zinovjev, E. Nikonov, R. Emaus, L. Bravina, E. Zabrodin, A. Taranenko, "Probing the tricritical endpoint of QCD phase diagram at NICA- FAIR energies", EPJ Web of Conferences 182 , 02021 (2018).
  108. K. Bugaev, A. Ivanytskyi, V. Sagun, G. Zinovjev, E. Nikonov, R. Emaus, L. Bravina, E. Zabrodin, A. Taranenko, "Separate freeze-out of strange particles and the quark-hadron phase transition", EPJ Web of Conferences 182, 02057 (2018).
Department for Theory of Quantum Processes in Nanosystems
  1. E.G. Petrov. "Superexchange nonresonant tunneling current across a molecular wire", JETP Lett., 2018, Vol. 108, No. 5, pp. 322-331.
  2. V.I. Teslenko, O.L. Kapitanchuk. "Analytical description of two-step decay kinetics averaged exactly over dichotomous fluctuations in forward rate", Acta Physica Polonica B, 2018, Vol. 49, No. 8, pp. 1581-1605.
  3. V.I. Teslenko, O.L. Kapitanchuk. "Competitiveness of nonstationary states in linear kinetic systems", Mod. Phys. Lett. B, 2018, Vol. 48, No. 3, 1850022(1–21).
  4. O.L. Kapitanchuk, V.I. Teslenko. "Maximizing performance of optoelectronic system through minimizing its sensibility to brittle failure", Mol. Cryst. Liquid Cryst., 2018, doi: 10.1080/15421406.2018.1542072 (15 pages).
  5. N.I. Grigorchuk. "Size and Shape Effect on Optical Conductivity of Metallic Nanoparticle", Eur. Phys. Letters, 2018, Vol. 121, 67003(1-7).
  6. N.I. Grigorchuk. "Laser-induced angular momentum of spheroidal metal nanoparticle in a medium", J. Opt. Soc. Am. B, 2018, Vol. 35, No. 11, pp. 2851-2858.
  7. N.I. Grigorchuk. "Relaxation of the binding energy of electrons with phonons in metals", Mol. J. Phys. Sci., 2018, Vol. 17, No. 1-2, pp. 66-74.
  8. L.N. Christophorov. "Enzyme functioning: Along the lines of nonequilibrium phase transitions", AIP Advances, 2018, Vol. 8, 125326(1-14).
  9. S.P. Repetsky, I.G. Vyshyvana, S.P. Kruchinin, S. Bellucci. "Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene", Scientific Reports, 2018, Vol. 8, pp. 9123-9130.
  10. S.P. Repetsky, I.G. Vyshyvana, E.Ya. Kuznetsova, S.P. Kruchinin. "Energy spectrum of graphene with adsorbed potassium atoms", Int. J. Mod. Phys. B, 2018, Vol. 32, 1840030(1–5).
  11. Yu.I. Dzhezherya, A.O. Khrebtov, S.P. Kruchinin. "Sharp-pointed susceptibility of ferromagnetic films with magnetic anisotropy inhomogeneous in thickness", Inter. J. Mod. Phys. B., 2018, Vol. 32, pp. 18400349–18400363.
  12. Y. Nakazawa, S. Kruchinin. "Experimental and theoretical aspects of thermodynamic properties of quasi-1D and quasi-2D organic conductors and superconductors", Inter. J. Mod. Phys. B., 2018, Vol. 30, No. 13, pp. 18400362–18400400.
  13. G.V. Grushevskaya, G.G. Krylov, S.P. Kruchinin, B. Vlahovic. "Graphene quantum dots, graphene non-circular n–p–n junctions: quasi-relativistic pseudo wave and potentials", Proceedings of the NATO ARW "Nanostructured materials for the detection of CBRN", Springer, 2018, pp. 47–57.
  14. М.І. Григорчук, «Від Піфагора до Архімеда», Світогляд, 2018, № 5, сс. 40–55.
Department for Mathematical Methods in Theoretical Physics
  1. A.M. Gavrilik, I.I. Kacurik, M.V. Khelashvili, A.V. Nazarenko. Condensate of μ-Bose gas as a model of dark matter, Physica A: Stat. Mech. & Its Applics. 506 (2018), pp.835-843.
  2. A.M. Gavrilik. Geometric Aspects and Some Uses of Deformed Mo¬dels of Thermostatistics, Universe, vol. 4 (2018), paper id. 0033, 11 pages.
  3. A.M.Gavrilik, I.I.Kachurik. Pseudo-Hermitian position and momentum operators, Hermitian Ha¬miltonian, and deformed oscilators, Mod. Phys. Lett. A (December 2018), online DOI:https://doi.org/10.1142/S021773231950007X
  4. A.V. Zolotaryuk. Origin of resonant tunneling through single-point barriers, Physica E: Low-dimens. Systems & Nanostruct. 103 (2018), pp. 81-86.
  5. A.V. Zolotaryuk. A phenomenon of splitting resonant-tunneling one-point interactions, Annals of Physics, 2018, vol. 396, pp. 479-494.
  6. P. Gavrylenko, N. Iorgov, O. Lisovy. On solutions of the Fuji-Suzuki-Tsuda system, SIGMA 14 (2018), paper. id. 123, 27 pages.
  7. T. Skrypnyk. Modified n-level, n-1 mode Tavis-Cummings model and algebraic Bethe ansatz, J. Phys. A: Math. Theor. 51 (2018), paper id. 015204, 12 pages.
  8. T. Skrypnyk. Reductions in soliton hierarchies and special points of classical r-matrices, J. Geom. & Phys. 130 (2018), pp.260-287.
  9. T. Skrypnyk. Separation of variables in the anisotropic Shottky-Frahm model, Theor. Math. Phys. 196 (2018), pp.1359-1377.
  10. T. Skrypnyk. B. Dubrovin, Separation of variables for linear Lax algebras and classical r-matrices, J. Math. Phys. 59 (2018), paper. id. 091405, 18 pages.
  11. A.M. Pavlyuk. Generalized Equidistant Chebyshev Polynomials and Alexander Knot Invariants, Ukr. J. Phys. 63 (2018), No. 6, pp. 488-494.
  12. C. Marboe, D. Volin. The full spectrum of AdS5/CFT4 I: Representation theory and one-loop Q-system, J. Phys. A 51 (2018), paper id. 165401, 53 pages.
Department for Theory of Nonlinear Processes in Condensed Matter
  1. V.P. Kravchuk, D.D. Sheka, O.M. Volkov, A. Kákay, U.K. Rößler, J. van den Brink, D. Makarov, Yu. Gaididei. Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices, Physical Review Letters 120, 067201 (2018).
  2. V.P. Kravchuk, D.D. Sheka, U.K. Rößler, J. van den Brink, Yu. Gaididei. Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass, Physical Review B 97, 064403 (2018).
  3. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, O.V. Pylypovskyi, D. Makarov, Yu. Gaididei. Geometry-induced motion of magnetic domain walls in curved nanostripes, Physical Review B (Rapid Communications) 98, 060409(R) (2018).
  4. O.M. Volkov, D.D. Sheka, Yu. Gaididei, V.P. Kravchuk, U.K. Rößler, J. Fassbender, D. Makarov. Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality, Scientific Reports 8, 866 (2018).
  5. Yu. Gaididei, V.P. Kravchuk, F.G. Mertens, O.V. Pylypovskyi, A.B. Saxena, D.D. Sheka, O.M. Volkov. Localization of magnon modes in a curved magnetic nanowire, Low Temperature Physics 44, 634–643 (2018).
  6. P. L. Christiansen, S. V. Iermakova, Yu. B. Gaididei and M. P. Soerensen. Scattering of flexural waves in Euler -Bernoulli beams by short-range potentials, J. Phys. A: Math. Theor. 51 095202 (2018).
  7. F.S. Nogueira, I. Eremin, F. Katmis, J.S. Moodera, J. van den Brink, V.P. Kravchuk. Fluctuation-induced Néel and Bloch skyrmions at topological insulator surfaces, Physical Review B (Rapid Communications) 98, 060401(R) (2018).
  8. A. Onipko and L. Malysheva. Analytic Theory of Wannier–Stark Quantization in Arbitrary-Size Atomic Square Lattices, Phys. Status Solidi B, 2018, 1700558, DOI: 10.1002/pssb.201700558.
  9. О.О. Вахненко. Напівдискретна інтеґровна Шрьодінґерова система з фоново-керованою міжвузловою резонансною взаємодією. Укр. Фіз. Журн. Огляди, 2017, 12, No 01, 3-40.
  10. O.O. Vakhnenko. Six-component semi-discrete integrable nonlinear Schrödinger system. Lett. Math. Phys., 2018, 108, No 08, 1807-1824.
  11. O.O. Vakhnenko. Nonlinear integrable system of coherently coupled excitations on an intercalated ladder lattice. Eur. Phys. J. Plus, 2018, 133, No 06, 243 (19 pages).
  12. O.O. Vakhnenko. Semidiscrete integrable nonlinear Schrödinger system with background-controlled intersite resonant coupling. Short summary of key properties. Ukr. J. Phys, 2018, 63, No 03, 220-225.
  13. O.O. Vakhnenko. Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell. J. Math. Phys., 2018, 59, No 05, 053504 (25 pages).
  14. S.N. Volkov. Understanding the mechanism of DNA threshold elongation. Low Temperature Physics, 2018, v. 44, No. 7, pp. 893–904.
  15. O.O. Zdorevskyi, S.N. Volkov. Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments. European Biophysics Journal, 2018, №8 (December) v.47, pp. 917-984.
  16. D.V. Piatnytskyi, S.N. Volkov. Complexes of hydrogen peroxide and DNA phosphate group in quantum chemical calculations. Біофізичний Вісник, 2018, 39 (1), 5-14.
  17. Є.С. Крячко, С.Н. Волков. До розуміння механізму утворення точкових мутацій в ДНК. Доповіді НАН України, 2018, № 7, с.103-112.
  18. T.Yu. Nikolaenko, E.S. Kryachko, and G.A. Dolgonos. On the Existence of He-He Bond in the Endohedral Fullerene He2@C60. J. Comput. Chem. Special Issue: Quantum Crystallography 39, No. 18, 1090-1102 (2018). doi: 10.1002/jcc.25061.
  19. Г.А. Долгонос, Є.С. Крячко, Т.Ю. Ніколаєнко. До питання Не-Не зв’язку у ендоедральному фулерені Не2@C60. Укр. физ. ж. 63, № 4, 288-308 (2018).
  20. E.S. Kryachko. Selected Theses on Science. In (invited review) : Sustainable Futures for Higher Education: The Making of Knowledge Makers. Eds. J. Valsiner, A. Lutsenko, and A. Antoniouk. Springer, Berlin, 2018. Ch.16, pp. 159-176.
  21. S.M. Perepelytsya. Hydration of counterions interacting with DNA double helix: a molecular dynamics study. Journal of Molecular Modeling, 24, 171 (2018).
  22. O.O. Vakhnenko. Effect of lattice ribbonization via the background-controlled inter-site resonant interactions in nonlinear integrable systems. AIP Conference Proceedings, 2018, 2037, No 01, 020027 (11 pages).
  23. Yu.G. Pogorelov and V.M. Loktev. Conventional and unconventional impurity effects in superconductors. Low Temp. Phys. 44, No 1, 3-35 (2018).
  24. V.M. Loktev and Yu.G. Pogorelov. On the theory of high-Tc superconductivity cuprates. Cond. Matt. Phys. 21, No 3, 33704-33724 (2018). doi: 10.5488/CMP.21.33704
  25. G.Yu. Lavanov, V.M.Kalita and V.M. Loktev. Change in the entropy during 1st order phase transition induced by a magnetic field in an isotropic non-Heisenberg ferromagnet. Low Temp. Phys. 44, No 4, 322-326 (2018). doi: 10.1063/1.5030455
  26. D. Grassano, O. Pulci, V.O. Shubnyi, S.G. Sharapov, V.P. Gusynin, A.V. Kavokin, A.A. Varlamov. Detection of topological phase transitions through entropy measurements: the case of germanene, Phys. Rev. B 97, 205442 (2018).
  27. V.O. Shubnyi, S.G. Sharapov, Y.V. Skrypnyk. Impurity induced broadening of Drude peak in strained graphene, Condens. Matter Phys. 21, No. 3, 33703 (2018).
  28. Y.M. Galperin, D. Grassano, V.P. Gusynin, A.V. Kavokin, O. Pulci, S.G. Sharapov, V.O. Shubnyi and A. A. Varlamov. Entropy Signatures of Topological Phase Transitions, JETP 127 (2018). (Скорочена версія вийшла у ЖЭТФ, 154, 1057–1060 (2018).)
  29. V.O. Shubnyi, V.P. Gusynin, S.G. Sharapov, A.A. Varlamov. Entropy per particle spikes in the transition metal dichalcogenides. ФНТ 44, 721-726 (2018).
  30. Larissa Brizhik, Enrico Chiappini, Patrizia Stefanini and Giuseppe Vitiello. Modeling meridians within the Quantum Field Theory. JAMS, 2018, v. 37. DOI: 10.1016/j/jams2018.06.009.
  31. A.A. Eremko, L.S. Brizhik, and V.M. Loktev. "On the theory of the Schrodinger equation with the full set of relativistic corrections".- Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6, pp. 734–746.
  32. Yaroslav Zolotaryuk, Ivan O. Starodub. Moving Embedded Solitons in the Discrete Double Sine-Gordon Equation, Nonlinear Systems, Vol.2, Springer International Publishing AG, 315-334, 2018.
  33. J.F.R. Archilla, Y. Zolotaryuk, Y.A. Kosevich, Y. Doi. Nonlinear waves in a model for silicate layers, Chaos, 2018, v. 28, p. 083119.
  34. Vakulchyk, M.V. Fistul, Y. Zolotaryuk and S. Flach. Almost compact moving breathers with fine-tuned discrete time quantum walks, Chaos, 2018, v. 28, p. 123104.
  35. Ю.В. Скрипник, В.М. Локтев. «Электронные свойства графена с точечными дефектами», ФНТ 44, № 11, 1417 (2018).
  36. Ю.В. Скрипник, В.М. Локтев. «О возможности оценки положения порога подвижности для носителей заряда с использованием одночастичных средних», ФНТ 44, № 7, 914 (2018).
  37. Ю.В. Скрипник, В.М. Локтев. «Электронные свойства графена с точечными дефектами», ФНТ 44, № 11, 1417 (2018).
Department for Synergetics
  1. J. Weiland, C.S.Liu, A. Zagorodny. Toroidal drift modes driven by the magnetic drift resonances. Physics of Plasmas 25 (9), 092504 (2018).
  2. A.I. Momot, A.G. Zagorodny, O.V. Momot. A kinetic description of ion-acoustic waves in collisional dusty plasma: Effects of grain charge fluctuations. Physics of Plasmas 25 (7), 073706 (2018).
  3. A.G. Zagorodny, S.A. Trigger. On the Problem of the Electromagnetic Field Energy in a Medium with Temporal and Spatial Dispersion under Absorption Conditions. Bulletin of the Lebedev Physics Institute 45 (5), 159-164 (2018).
  4. A.V. Kirichok, V.M. Kuklin, A.V. Mischin, A.G. Zagorodny. On the pulsating energy in weakly inverted medium. Problems of Atomic Science and Technologies. No.4 (116), 268-272 (2018).
  5. А.G. Zagorodny, Yu.V. Slyusarenko, and S.N. Shulga. Kinetics of low-temperature gas of hydrogen-like atoms in external electromagnetic field. Low Temperature Physics 44, № 10, 336–1352 (2018).
  6. V.B. Bobrov, A.G. Zagorodny, and S.A. Trigger. On the ground state energy for a finite inhomogeneous degenerate Bose gas. Low Temperature Physics, 44, № 11, c. 1549–1553 (2018).
  7. S.A. Trigger, A.G. Zagorodny. Electromagnetic field energy and radiation intensity in a medium with temporal and spatial dispersion outside the transparency domain. Problems of Atomic Science and Technologies. No.6 (116) (2018).
  8. Jeong-Seon Yu, Bohdan Lev, Hanbyul Jin, Kibog Park, Dong-Hun Chae, Wan-Seop Kim and Jong-Hyun Kim. Surface-induced transition of nematic liquid crystals on graphene/SiC substrate. EPL, 124, 5802 (2018).
  9. B.I. Lev. Statistical derivation of the fundamental scalar field. J. Modern Phys., 9, 2223 (2018).
  10. A.K. Vidybida, O.V. Shchur. Relation between firing statistics of spiking neuron with delayed fast inhibitory feedback and without feedback. Fluctuation and Noise Letters, 17, 1850005 (2018); https://doi.org/10.1142/S0219477518500050.
  11. A.K. Vidybida. Fast cl-type inhibitory neuron with delayed feedback has non-markov output statistics. J. Phys. Studies 22, No. 4, 4801(11 p.) (2018); https://doi.org/10.30970/jps.22.4801
  12. A.K. Vidybida. Simulating leaky integrate-and-fire neuron with integers. Mathematics and Computers in Simulation, https://doi.org/10.1016/j.matcom.2018.11.021 (published online 6 December 2018).
  13. V.I. Zasenko, O.M. Chernyak. Magnetized particle diffusion in a random electric field with jumping phase. Problems of atomic science and technology, №4, p. 264-267 (2018).
  14. О.М. Черняк, В.І. Засенко. Перенесення замагнічених частинок у випадковому електричному полі. Космічні дослідження в Україні. Київ: Академперіодика, 2018, с. 47-51, ISBN 978-966-02-8589-7.
  15. Khlevniuk and V. Tymchyshyn. Classical treatment of particle with position-dependent mass m(r)= 1/(1+ r4) in 1D and 2D subjected to harmonic potential. JMP 59 (8), 082901(2018).
  16. Eugene A. Eliseev, Yevhen M. Fomichov, Sergei V. Kalinin, Yulian M. Vysochanskii, Peter Maksymovich, and Anna N. Morozovska. Labyrinthine domains in ferroelectric nanoparticles: Manifestation of a gradient-induced morphological phase transition. Phys. Rev. B 98, 054101 (2018), DOI: 10.1103/PhysRevB.98.054101 (http://arxiv.org/abs/1801.03545)
  17. Anna N. Morozovska, Yevhen M. Fomichоv, Petro Maksymovych, Yulian M. Vysochanskii, and Eugene A. Eliseev. Analytical description of domain morphology and phase diagrams of ferroelectric nanoparticles. Acta Materialia 160, 109-120 (2018) https://doi.org/10.1016/j.actamat.2018.08.051 (http://arxiv.org/abs/1805.11134)
  18. Anna N. Morozovska, Eugene A. Eliseev, Ivan S. Vorotiahin, Maxim V. Silibin, Sergei V. Kalinin and Nicholas V. Morozovsky. Control of polarization hysteresis temperature behavior by surface screening in thin ferroelectric films. Acta Materialia 160, 57-71 (2018) https://doi.org/10.1016/j.actamat.2018.08.041 (http://arxiv.org/abs/1804.09138)
  19. Eugene A. Eliseev and Anna N. Morozovska. Hidden Symmetry of Flexoelectric Coupling. Phys. Rev. B 98, 094108 (2018); https://link.aps.org/doi/10.1103/PhysRevB.98.094108 (http://arxiv.org/abs/1801.09129).
  20. Anatolii I. Kurchak, Anna N. Morozovska, Eugene A. Eliseev, Sergei V. Kalinin and Maksym V. Strikha. Nontrivial temperature behavior of the carrier concentration in the nanostructure “graphene channel on ferroelectric substrate with domain walls”. Acta Materialia 155, 302-317 (2018), 10.1016/j.actamat.2018.04.036 (http://arxiv.org/abs/1712.03271).
  21. Anna N. Morozovska, Anatolii I. Kurchak, Zhanna G. Zemska, Anna Lukowiak, and Maksym V. Strikha. Temperature behavior of graphene conductance induced by piezoelectric effect in ferroelectric substrate. J. Appl. Phys. 124 (8), 084103 (2018) https://doi.org/10.1063/1.5034340 (http://arxiv.org/abs/1804.03175)
  22. О. Кочерга. Чого немовознавцеві бракує в загальномовному словнику. Лексикографічний бюлетень, 2015, вип. 24, сс. 44-48 (вийшов друком 2018 року).
  23. О. Кочерга. Мовне нормування та жива фахова мова. Проблеми української термінології. Зб. наукових праць учасників ХV Міжнародної наукової конференції «Проблеми української термінології СловоСвіт 2018». Львів: Вид-во Львівської політехніки, 2018, сс. 21-24.
  24. N.S. Gonchar. Martingales and Super-Martingales Relative to a Convex Set of Equivalent Measures. Advances in Pure Mathematics 8, 428-462 (2018).
  25. А.П. Махорт. Алгоритм визначення станів рівноваги за умови залежності структури споживання від обсягів випуску. Системні дослідження та інформаційні технології, №1, 36-51 (2018).
  26. А.Ф. Махорт. О состояниях равновесия открытой экономической системы с дополнительным перераспределением капитала. Проблемы управления и информатики., №3, 142–153 (2018).
  27. N.S. Gonchar, W.H. Kozyrski, A.S. Zhokhin, O.P. Dovzhyk. Kalman Filter in the Problem of the Exchange and the Inflation Rates Adequacy to Determining Factors. Noble Intern. J. Economics and Financial Research 3 (3), 31-39 (2018).
  28. А. Загородній, В. Козирський, В. Шендеровський. Українські вчені, які змінили світ. ІХ Міжн. конґрес україністів. Зб. наук. статей. Київ: Вид-во ІМФЕ, 72–85 (2018).
  29. W.H. Kozyrski, A.V. Malovichko. Archaeolinguistics as a way to overcome the impasse in Comparative Linguistics. J. Advances in Linguistics 9 (1), 1313-1323 (2018).
  30. В. Козирський, В. Шендеровський. Апостоли УАН. Дивосвіт, 2018, с. 27–35.
  31. V.C. Usenko. Unidimensional continuous-variable quantum key distribution using squeezed states. Phys. Rev. A 98, 032321 (2018).
  32. V.I. Maslov, A.P. Fomina, R.I. Kholodov, I.P. Levchuk, S. Nikonova, O.P. Novak, I.N. Onishchenko. Accelerating field excitation, occurrence and evolution of electron beam near Jupiter. Problems of atomic science and technology, №4, 106-111 (2018).
  33. О.П. Новак, Р.І. Холодов, А.П. Фомiна. Роль подвiйних шарiв в формуваннi умов поляризацiйного фазового переходу в стан надвипромiнювання в токовiй трубцi Iо. УФЖ 63, №8, 739-745 (2018).
  34. Б.І. Лев, О.М. Товкач, С.Б. Чернишук. Рідкокристалічні колоїди: деякі аспекти теорії. –/Інститут теоретичної фізики ім. М.М. Боголюбова НАН України–/ Київ. Наукова думка, 2018. – 392 с. (29.9). ISBN 978-966-00-1622-4
  35. В.Г. Козирський, М.Д. Тимочко, В.А. Шендеровський. Тематичний реєстр гасел з напряму «Фізика». –/ Велика Українська Енциклопедія –/ Київ. Енциклопедичне видавництво, 2018. – 144 с. (9). ISBN 978-617-7015-68-9
Department for Theory of Nuclei and Quantum Field Theory
  1. Yu.A. Sitenko. Chiral effects in magnetized quantum spinor matter in particle and astroparticle physics, Intern. J. Mod. Phys. A, 2018, Vol.33, No. 12, 1845020 (13 pp.).
  2. Yu.A. Sitenko, V.M. Gorkavenko. Properties of the ground state of electronic excitations in carbon-like nanocones, Low Temp. Phys./Fiz.Nizk.Temp., 2018, Vol. 44, No. 12, 1688-1629.
  3. Yu.A. Sitenko, V.M. Gorkavenko. Non-Euclidean geometry, nontrivial topology and quantum vacuum effects, Universe, 2018, Vol. 4, No. 2, 23, (12 pp.).
  4. V.F. Kharchenko. Partial wave off-shell Coulombamplitudes at excited-state energy, Canadian Journal of Physics , Vol. 96 , No.8 (2018 ) p.p. 933 – 937.
  5. В.А. Бабенко, Н.М. Петров. Об оценке массы странного кварка на основе экспериментальных данных об октете легчайших барионов. Ядерна фізика та енергетика, 2018, т. 19, № 3, с. 227-236. [Babenko V. A., Petrov N. M. On the estimation of the strange quark mass from the experimental data on the light baryon octet. Nuclear Physics and Atomic Energy, 2018, Vol. 19, No. 3, P. 227-236.].
  6. В.А. Бабенко, Н.М. Петров. О свойствах бегущей константы связи сильного взаимодействия в области низких энергий. Ядерна фізика та енергетика, 2018, т. 19, № 4. [Babenko V. A., Petrov N. M. Properties of the running coupling constant of strong interaction at low energies. Nuclear Physics and Atomic Energy, 2018, Vol. 19, No. 4.] (Удруцi).
  7. В.А. Бабенко, В.Н. Павлович. Изучение свойств самоподдерживающейся цепной ядерной реакции в топливосодержащих массах объекта "Укрытие" в случае переменной скорости поступления воды. Ядернафізикатаенергетика, 2018, т. 19, № 1, с. 21-30. [Babenko V. A., Pavlovych V. N. Study of the properties of self-sustaining nuclear chain reaction in the fuel-containing masses of the "Ukryttya" object for the case of varying velocity of water inflow. Nuclear Physics and Atomic Energy, 2018, Vol. 19, No. 1, P. 21-30.]
  8. V.A. Babenko, V.I. Gulik , V.M. Pavlovych. The pulsed subcritical amplifier of neutron flux driven by high-intensity neutron generator. Nuclear Technology and Radiation Protection, 2018, Vol. 33, No. 3. (Удруці).
  9. V.E. Kuzmichev, V.V. Kuzmichev. "Quantum dynamics of the early universe", Ukr. J. Phys., 2018, Vol. 63, No. 3, p. 196-203.
  10. V.E. Kuzmichev, V.V. Kuzmichev. "The matter-energy intensity distribution in a quantum gravitational system", Quantum Stud.: Math. Found., 2018, Vol. 5, No. 2, p. 245-255.
  11. V.S. Vasilevsky, Yu. A. Lashko, G.F. Filippov. "Two- and three-cluster decays of light nuclei with the hyperspherical harmonics", Phys.Rev.C., 2018, vol. 97, p.064605 (16 pages)
  12. V.S. Vasilevsky,K. Katō, N. Takibayev."Systematic investigation of the Hoyle-analog states in light nuclei", Phys. Rev. C, vol. 98, N2, 024325, (14 pp), 2108;ArXiv e-prints nucl-th/1806.03423, (15 pp), 2018.
  13. V.S. Vasilevsky, K. Katō, N. Takibayev. "The Hoyle-analog states in light nuclei", Proc. of the 4th International workshop "State of the Art in Nuclear Cluster Physics", Galveston, Texas, USA, 14-18 May, 2018,AIP Conference Proceeding, vol. 2038, N1, 020022(8 pp), 2018.
  14. Yu.A. Lashko, G.F. Filippov, V.S. Vasilevsky. "Democratic and nondemocratic motion of three clusters with the hyperspherical harmonics". In Proc. of the 36th International Workshop on Nuclear Theory, 25 June – 1 July 2017, the Rila Mountains, Bulgaria, Heron Press, Sofia, Bulgaria,eds. M. Gaidarov and N. Minkov, 2017, vol. 36, pp. 244-253.