Інститут теоретичної фізики ім. М.М. Боголюбова
Національної академії наук України

Наукові відділи
Відділ Теорії нелінійних процесів в конденсованих середовищах

Завідувач відділу – доктор фізико-математичних наук Лариса Свиридівна Брижик.

До складу відділу входять:
  • Лабораторія сильнокорельованих низьковимірних систем.
    Завідувач лабораторії - доктор фізико-математичних наук Сергій Геннадійович Шарапов.
  • Лабораторія біофізики макромолекул.
    Завідувач лабораторії - доктор фізико-математичних наук Сергій Наумович Волков.
Тематика наукових досліджень
  • Теорія елементарних збуджень та взаємодії між ними в кріокристалах
  • Теорія нелінійних збуджень конденсованих систем
  • Теорія нелінійного транспорту енергії та заряду в молекулярних та нано- структурах
  • Конформаційна механіка біологічних макромолекул
Брижик Лариса Свиридівна
Посада: завідувач відділу
доктор фіз.-мат. наук
старший науковий співробітник
brizhik@bitp.kiev.ua

Локтєв Вадим Михайлович
Посада: головний науковий співробітник
доктор фіз.-мат. наук
професор, академік НАН України
vloktev@bitp.kiev.ua

Малишева Любов Іванівна
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший науковий співробітник
malysh@bitp.kiev.ua

Оніпко Олександр Іванович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
професор
aleon@bitp.kiev.ua, alexanderthenth@gmail.com

Вахненко Олексій Олексійович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший науковий співробітник
vakhnenko@bitp.kiev.ua

Кравчук Володимир Петрович
Посада: старший науковий співробітник
кандидат фіз.-мат. наук
старший науковий співробітник
vkravchuk@bitp.kiev.ua, volodymyr.kr@gmail.com

Єршов Костянтин Васильович
Посада: молодший науковий співробітник
кандидат фіз.-мат. наук
kostya.er@gmail.com, yershov@bitp.kiev.ua

Решотка Богдана
Посада: провідний інженер
Лабораторія сильнокорельованих низьковимірних систем
Шарапов Сергій Геннадійович
Посада: завідувач лабораторії
доктор фіз.-мат. наук
старший дослідник
sharapov@bitp.kiev.ua
Єремко Олександр Олександрович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший науковий співробітник
eremko@bitp.kiev.ua
Золотарюк Ярослав Олександрович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший дослідник
yzolo@bitp.kiev.ua
Скрипник Юрій Вікторович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший науковий співробітник
skrypnyk@bitp.kiev.ua, yuriy.v.skrypnyk@gmail.com
Понежа Олена Олександрівна
Посада: науковий співробітник
кандидат фіз.-мат. наук
ponezha@bitp.kiev.ua
Стародуб Іван Олексійович
Посада: науковий співробітник
кандидат фіз.-мат. наук
starodub@bitp.kiev.ua
Букатова Дарина Владиславівна
аспірант
rayleighdf@gmail.com
Німий Ігор Олександрович
аспірант
igornimyi@gmail.com
Лабораторія біофізики макромолекул
Волков Сергій Наумович
Посада: завідувач лабораторії
доктор фіз.-мат. наук
старший науковий співробітник
snvolkov@bitp.kiev.ua
Крячко Євген Сергійович
Посада: провідний науковий співробітник
доктор фіз.-мат. наук
старший науковий співробітник
evgene.kryachko@gmail.com, e_kryachko@yahoo.com
Перепелиця Сергій Миколайович
Посада: старший науковий співробітник
доктор фіз.-мат. наук
старший дослідник
perepelytsya@bitp.kiev.ua
П'ятницький Дмитро Валерійович
Посада: науковий співробітник
кандидат фіз.-мат. наук
dvpyat@gmail.com
Здоревський Олексій Олександрович
Посада: молодший науковий співробітник
кандидат фіз.-мат. наук
zdorevskyi@bitp.kiev.ua
Каневська Поліна Павлівна
Посада: провідний інженер
kanevska@bitp.kiev.ua, ppkaneska@gmail.com
Бубон Тетяна Леонідівна
Посада: молодший науковий співробітник
tanya-bubon@ukr.net, tabubon@bitp.kiev.ua
  • Знайдено новий інваріант рівняння Дірака з кулонівським потенціалом і показано, що він доповнює інваріанти Дірака та Джонсона-Ліппмана та утворює з ними алгебру, а різні розв'язки рівняння є різними представленнями цієї алгебри. На основі теоретико-групового підходу з використанням алгебри спінорних інваріантів встановлено зв'язок між різними представленнями. Суто алгебраїчним шляхом отримано точний загальний розв'язок рівняння Дірака та проаналізовано всі його характерні властивості. В рамках такого підходу показано, що головне квантове число є фундаментальною характеристикою атома водню, а не простою комбінацією інших квантових чисел, як це випливає при безпосередньому знаходженні власних функцій.
    Л.С. Брижик, О.О. Єремко, академік НАН України В.М. Локтєв
  • Досліджено колапс рівнів Ландау для конфігурації магнітного та електричного полів де постійне внутриплощинне електричне поле направлено радіально. Рівняння Дірака для цієї конфігурації не має аналітичного розв'язку в термінах відомих спеціальних функцій. Наші результати отримані з використанням як наближення ВКБ, так і точної діагоналізації та методу стрільби. Показано, що колапс відбувається для додатних значень квантових чисел повного кутового моменту, при цьому дірочні (електронні) рівні Ландау колапсують коли електричне поле досягає значень +(-) Ec /2 , де Ec - це критичне поле в якому відбувається колапс в схрещених однорідних магнітному та електричних полях. У випадку графену зі щілиною колапс рівнів Ландау має ряд додатних особливостей.
    С.Г. Шарапов
  • Досліджено одновимірну нелінійну динамічну систему внутрішньовузлових збуджень та коливань ґратки з калібрувально подібним механізмом взаємодiї між підсистемами. Система допускає напівдискретне представлення нульової кривини і тому є інтеґровною в сенсі Лакса. Спираючись на доречно розвинену техніку одягання, основану на перетворенні Дарбу-Беклунда, побудовано та детально проаналізовано чотирикомпонентний аналітичний розв'язок системи. Внаслідок взаємного впливу між екситонною та фононною підсистемами фізично вмотивований розв'язок постає у вигляді суттєво нелінійної суперпозиції двох принципово відмінних типів мандрівних хвиль. Зміна взаємовідношення між двома характерними просторовими масштабами, стосовними до цих мандрівних хвиль, спричинює критичність динаміки системи та приводить до дипольно-монопольного переходу у просторовому розподілі внутрішньовузлових збуджень. Графічно проілюстровано докритичний та надкритичний режими динаміки системи.
    О.О. Вахненко
  • За допомогою розв'язку рівняння Шредінгера з гамільтоніаном типу Хюккеля для вуглецевих нанотрубок (2m,m) одержано аналітичні вирази хвильових функцій у рамках моделі сильного зв'язку та проаналізовано взаємозв'язок між коефіцієнтом проходження та зонною структурою кіральних та акіральних вуглецевих нанотрубок. Визначено вплив кіральності на коефіцієнт проходження електронів через систему з потенціалом у вигляді сходинки та показано, що (2m,m) нанотрубки із середнім кіральним кутом виявляють проміжні транспортні властивості порівняно з акіральними та зигзагоподібними нанотрубками.
    Л.І. Малишева
  • Знайдено і досліджено новий клас топологічно-нетривіальних розв'язків рівнянь Ландау-Ліфшиця у вигляді гвинтових дислокацій, що реалізуються в гелікоїдній фазі кубічних хіральних магнетиків. Знайдено тип дислокацій, який під дією зовнішнього магнітного поля неперервним чином деформується в скірміонну струну.
    В.П. Кравчук
  • Побудовано модель деформації подвійної спіралі для опису змін структури макромолекули. Крім еластичних компонентів (згинання, скручування, розтяг), представлена модель містить в собі конформаційні перебудови макромолекули, а також описує взаємозв'язок зовнішніх та внутрішніх ступенів вільності структури ДНК. Визначені форма та енергія сайтів деформації ДНК дають змогу запропонувати ймовірний механізм розпізнавання ключових послідовностей ДНК через їх деформацію, а також пояснити високу точність процесів відтворення генетичної інформації в біологічній клітині.
    П.П. Каневська, С.Н. Волков
  • Методом теорії функціоналу густини в присутності фізіологічного середовища визначено структуру та енергії утворення молекулярних комплексів атомних груп нуклеїнових основ макромолекули ДНК з молекулами пероксиду водню та води. Показано, що пероксид водню утворює стійкі комплекси з атомними крупами ДНК, блокуючи центри специфічного впізнавання макромолекули.
    Д.В. П'ятницький
  • Для рівняння Дірака з кулонівським потенціалом побудовано узагальнений спіновий інваріант, що визначає спіновий ступінь вільності. На його основі знайдено загальний розв'язок рівняння з повним набором квантових чисел, що характеризують електронні воднеподібні стани. Вперше розраховано розподіл середнього значення напряму спіна у зв'язаних електронних станах і показано, що як розподіл заряду, так і напрям спіна істотно залежать від спінового інваріанта, що може бути виявлено експериментально.
    акад. НАН України В.М. Локтєв, Л.С. Брижик, О.О. Єремко
  • Досліджено аналітично та проілюстровано графічно нелінійну динаміку зв'язаних PT-cиметричних збуджень і Тода-подібних коливань на одновимірній ґратці. Показано, що нелінійна екситон-фононна взаємодія як ціле є інтеґровною в сенсі Лакса. Розвинуто техніку інтеґрування Дарбу-Беклунда, прийнятну для ґенерування ужинкового розв'язку вищого рангу одяганням засівного розв'язку нижчого рангу. Знайдено нетривіальний аналітичний розв'язок, що описує перехід між монопольним та дипольним режимами просторового розподілу внутрішньовузлових збуджень. Встановлено, що критерій диполь-монопольного переходу пов'язаний зі зміною взаємовідношення між параметром екситон-фононного зв'язку та параметром локалізації Тодової моди.
    О.О. Вахненко
  • На основі розв'язку рівняння Шредінгера з гамільтоніаном типу Хюккеля для вуглецевих нанотрубок (2m,m) одержано аналітичні вирази хвильових функцій у рамках моделі сильного зв'язку і проаналізовано взаємозв'язок між коефіцієнтом проходження та зонною структурою хіральних і ахіральних вуглецевих нанотрубок. Визначено вплив хіральності на коефіцієнт проходження електронів через систему з потенціалом у вигляді сходинки. Наведено інтервали значень параметрів системи, для яких можливе експериментальне спостереження впливу хіральності на транспортні характеристики вуглецевих нанотрубок.
    Л.І. Малишева
  • Теоретично і експериментально досліджено спектри спінових хвиль скирміонних ґраток в багатошарових феромагнетних гетероструктурах. Показано, що наявна сильна диполь-дипольна взаємодія призводить до суттєвої зміни положення магнонних мод, які мають ненульовий магнетний момент. Порівнюючи експериментально та теоретично отримані еволюції спектрів у магнетному полі, розраховано значення константи взаємодії Дзялошинського-Морія для гетероструктури Ir/Fr/Co/Pt.
    В.П. Кравчук
  • Досліджено структуру та енергії утворення молекулярних комплексів атомних груп цукрово-фосфатного остова ДНК з молекулами перекису водню та води. За допомогою методу молекулярної механіки, підходів квантової хімії та наявності фізіологічного середовища розраховано енергії взаємодії та оптимізовано просторові конфігурації молекулярних комплексів пероксида з фосфатом остова ДНК. Проведені розрахунки показують, що за фізіологічних умов перекис водню може тривалий час перебувати поблизу фосфатних груп ДНК, блокуючи центри генетичної активності макромолекули.
    Д.В. П'ятницький, О.О. Здоревський, С.Н. Волков
  • Змодельовано утворення подвійної спіралі ДНК у водному розчині з молекулами пероксиду водню та протийонами Na+. Методом молекулярної механіки показано, що молекули пероксиду водню зв'язуються з атомами кисню фосфатних груп подвійної спіралі і таким чином заміщують молекули води гідратної оболонки макромолекули. Визначено три шари упорядкування пероксиду водню навколо фосфатних груп спіралі ДНК з центрами густини біля 2.6 і 3.3 ангстрем, а також широку полосу з центром біля 5-и ангстрем. Таким чином, молекула перекису водню, що взаємодіє з фосфатами, може пригнічувати утворення водних зв'язків, необхідних для біологічного функціонування ДНК.
    С.Н. Волков, С.М. Перепелиця
  • Для одновимірного рівняння Шрединґера із кусково-сталим потенціалом виведено формули для даних розсіяння та дискретного спектру, для яких розроблено асимптотичний тримасштабний метод стискання системи до нульових розмірів. Показано, що межові умови на хвильові функції в точці синґулярності мають сенс тоді і лише тоді, коли можливе взаємне знищення розбіжностей у так званій матриці зв'язку. Виведено два типи трансцендентних рівнянь, розв'язки яких описують резонансні множини.
    О.В.Золотарюк, Я.О. Золотарюк
  • Для квазіодновимірного масиву джозефсонівських контактів, що складається з довільної кількостi N рядів та нескінченної кількості колонок, шляхом аналітичних розрахунків знайдено плазмонний спектр як за наявності зовнішнього струму, так і без нього. Показано, що за відсутності струму енергетичний спектр містить N-разово вироджену плоску зону. Це виродження знімається при прикладенні струму до кожної колонки, тоді залишається лише одна плоска зона.
    Д.В. Букатова, Я.О. Золотарюк
  • Розвинуто теорію магнетореологічного ефекту в еластомерах з одновісними феромагнетними частинками. За умови узгодженості механічного та магнетного моментів розраховано деформацію зсуву, що виникає в еластомері під дією магнетного поля. Показано, що величина зсуву може досягати 10 відсотків навіть у слабких полях.
    акад. НАН України В.М. Локтєв
  • Запропоновано нову сім'ю невпорядкованих систем. Ця сім'я належить до класу систем, що містять випадкові негермітові домішки заміщення. Розглянуто простий випадок, коли наявність точкових дефектів заміщення призводить до модельного гамільтоніану з діагональним безладом. На відміну від відомих моделей негермітових домішок, ненульова густина станів для кожної ізольованої від основного кристалу домішки наявна лише у неперервній зоні кінцевої ширини. Наведено спосіб побудови відповідних домішкових гамільтоніанів.
    акад. НАН України В.М. Локтєв, Ю.В. Скрипник
  • За допомогою методів функціоналу густини та молекулярної механіки показано, що молекули пероксиду водню утворюють стабільні комплекси з фосфатною групою макромолекули ДНК. У фізіологічних умовах такі комплекси енергетично вигідніші, аніж подібні комплекси з молекулою води. Енергетична перевага для комплексів з пероксидом водню досягається, зокрема, завдяки наявності в молекулі торсійного ступеня вільності, що робить її гнучкішою порівняно з молекулою води. Ці результати показують, що в живих тканинах пероксид водню може залишатися біля фосфатних груп ДНК значний час, блокуючи генетичну активність макромолекули.
    С.Н. Волков, Д.В. П'ятницький, O.O. Здоревський
  • Побудовано дві сім'ї точкових взаємодій із зв'язаними станами для випадку гетероструктури, яка складається з двох пласких однорідних шарів у границі, коли їхня ширина і відстань між ними прямують одночасно до нуля. Показано можливість резонасно-тунельного проходження електронів через таку структуру.
    О.В. Золотарюк, Я.О. Золотарюк
  • Запропоновано нелінійну модель трьох динамічних підсистем, зв'язаних в своїх кінетичній та потенціальній частинах. З огляду на квазіодновимірну просторову структуру її базової ґратки модель охоплює кілька ступенів вільности, здатних імітувати динамічну поведінку довгих макромолекул як природнього, так і синтезованого походження, а також динаміку нелінійних збуджень в низьковимірних просторово структурованих метаматеріалах. Модель допускає чітке гамільтонове формулювання зі стандартними дужками Пуассона і демонструє комплексно спряжену симетрію між підсистемами тодового типу. Інтеґровність рівнянь системи забезпечується її представленням нульової кривини, що випливає з допоміжної лінійної задачі зі спектральним оператором третього порядку. Розвинуто прийнятну подвійну техніку одягання Дарбу ‒ Беклунда, в рамках якої згенеровано нетривіальний ужинковий розв'язок, що охоплює всі три зв'язані підсистеми.
    О.О. Вахненко
  • Розроблено теорію криволінійних одновимірних антиферо-магнетиків. Встановлено, що ахіральний антиферомагнетний спіновий ланцюжок поводить себе як двовісний хіральний магнетик з ефективною анізотропією та взаємодією Дзялошинського-Морії. Індукована геометрією взаємодія Дзялошинського-Морії призводить до гібридизації магнонів у ланцюжку.
    К.В. Єршов, В.П. Кравчук
  • Вивчено ефект Нернста на диску Корбіно, підданому нормальному зовнішньому магнетному полю та радіальному градієнту температури. Геометрія Корбіно дає можливість для прямого вимірювання магнетувальних струмів, які маскуються кінетичним внеском у струм Нернста в звичайній геометрії. Магнетувальні струми (ще мають назву «крайові струми») не залежать від провідності зразка, тому їх можна зручно описати в термодинамічному підході. Вони можуть бути пов'язані з термодинамічним потенціалом Ландау для нескінченної системи. Продемонстровано, що прояв цього суто термодинамічного ефекту Нернста полягає в сильних коливаннях магнетного поля, виміряних в центрі диску як функції зовнішнього поля. Коливання залежать від різниці температур на краях диску. Ферміони Дірака та 2D електрони з параболічним спектром характеризуються коливаннями різної фази та частоти. Ми прогнозуємо якісно різні енергетичні залежності величини сигналу Нернста від хімічного потенціалу для нормальних і діракових носіїв.
    С.Г. Шарапов
  • Спираючись на квантову теорію спінорного поля Дірака, знайдено узагальнений оператор спін-орбітальної взаємодії, який шляхом його використання у нерелятивістському рівнянні Шредінґера забезпечує послідовний опис впливу спін-орбітальної взаємодії на електрони, що рухаються у зовнішньому потенціалі. Показано, що цей оператор крім загально відомої поправки Томаса-Френкеля містить ще й додатковий внесок, невідомий раніше.
    акад. НАН України В.М. Локтєв, Л.С. Брижик, О.О. Єремко
  • Теоретично досліджено вплив деформації на розсіяння носіїв струму резонансними станами, що утворюються в електронному спектрі графену за наявності точкових домішок. Запропоновано механізм збільшення оберненого часу розсіяння носіїв струму за рахунок зсуву енергії резонансу, який, у свою чергу, реалізується внаслідок зменшення за одноосьової деформації величин інтегралів перескоку між найближчими сусідами у кристалі-матриці. На прикладі моделі Ліфшиця для домішок заміщення та моделі Андерсона-Фано для адатомів. Отриманo залежності деформаційної варіативності ширини піку Друде як функції енергії Фермі, концентрації домішок та домішкового потенціалу. Детально розглянуто вплив деформаційного потенціалу.
    акад. НАН України В.М. Локтєв, Ю.В. Скрипник, С.Г. Шарапов, В.О. Шубний
  • Запропоновано два типи загальних інтеґровних нелінійних систем на безмежних квазіодновимірних регулярних ґратках. Запропоновано спосіб об'єднання коливної підсистеми Тодового типу з підсистемою самозахопних екситонів в єдину інтеґровну систему, тим самим значно розширивши коло реалістичних фізичних задач, що допускають строге моделювання. Знайдено декілька найважливіших густин, стосовних до нескінченних ієрархій локальних законів збереження.
    О.О. Вахненкo
  • Досліджено властивості вкладених солітонів (тобто солітонів, що існують незважаючи на наявні резонанси з лінійним спектром і мають лише ізольовані значення швидкості) в дискретному подвійному рівнянні синус-Гордон із взаємодією найближчих та наступних сусідів. Така модель описує масив контактів типу надпровідник/ феромагнетик/надпровідник в присутності зовнішнього постійного струму. В залежності від знаку взаємодії вона може грати як деструктивну, так і сприятливу роль в утворенні вкладених солітонів. Область існування вкладених солітонів залежить від ширини лінійного спектру: його звуження розширює область існування вкладених солітонів і навпаки.
    Я.О. Золотарюк, І.О. Стародуб
  • Розвинуто підхід для визначення одноточкових взаємодій за наявності зовнішніх полів в напівпровідникових гетероструктурах. Характерною особливістю цього підходу є асимптотичний метод, який основано на одноточковій апроксимації багатошарових гетероструктур, що перебувають під впливом потенціалу зміщення. У границі нульової товщини отримано матрицю зв'язку для двосторонніх граничних умов на хвильову функцію в точці синґулярности. Вивчено залежність коефіцієнтів відбиття та проходження від потенціалу зміщення. Розроблено кілька одноточкових моделей для дво- та триполюсних напівпровідникових приладів. Введено поняття точкового транзистора, де встановлено існування надзвичайно гострих піків, що виникають при зміні прикладеної напруги і утворюють резонансну множину для даної одноточкової взаємодії.
    О.В. Золотарюк, Я.О. Золотарюк
  • Проаналізовано взаємодію молекул пероксиду водню та води з ділянками специфічного та неспецифічного розпізнавання молекули ДНК білками, що важливо для пояснення ефектів променевої терапії ракових захворювань. На основі теорії функціоналу густини розраховано енергії взаємодії молекул води та пероксиду водню з нуклеїновими основами ДНК та отримано оптимальні геометрії стабільних комплексів. Знайдено позиції, що в них зв'язок пероксиду водню більший, ніж у молекули води.
    С.Н. Волков, О.О. Здоревський, Д.В. П'ятницький
  • Методом молекулярної динаміки досліджено взаємодію молекул поліамінів з макромолекулою ДНК. Виявлено, що поліаміни розташовуються переважно в мінорному жолобі подвійної спіралі в області зі специфічною нуклеотидною послідовністю типу А-тракта. Результати дослідження узгоджуються з наявними експерименталь-ними даними і пояснюють фізичний механізм переважної локалізації молекул поліамінів на ділянках ДНК з характерною нуклеотидною послідовністю.
    С.М. Перепелиця
  • Показано, що неоднорідна кривина магнетного дроту призводить до дрейфу магнетної доменної стінки у напрямі градієнта кривини. Знайдено асимптотичну швидкість стінки. Отримані результати перевірено за допомогою мікромагнетних моделювань.
    Ю.Б. Гайдідей, В.П. Кравчук, К.В. Єршов
  • Запропоновано двоетапний механізм виникнення порогових деформацій в макромолекулі ДНК під дією зовнішньої сили. На першому етапі утворюються домени з різною конформацією в ланцюжку макромолекули за критичного значення зовнішньої сили. На другому - кооперативний процес поширення доменних стінок - границь поміж звичайною (В-форма) і деформованою конформаціями. Розраховані параметри порогового переходу узгоджуються з експериментальними даними.
    С.Н. Волков
  • За допомогою методу молекулярної динаміки досліджено характер гідратації протиіонів Na+, K+, Cs+ та Mg2+, що взаємодіють з подвійною спіраллю ДНК. Виявлено, що структурування першої та другої гідратних оболонок іонів відіграє суттєву роль у специфічних взаємодіях з ДНК. Зокрема, Na+ та Mg2+ взаємодіють з ДНК переважно через молекули води першої гідратної оболонки, а K+ та Cs+ можуть дегідратуватися і проникати глибоко в мінорний жолоб подвійної спіралі.
    С.М. Перепелиця
  • Показано, що з точністю до членів другого порядку релятивістських поправок гамільтоніан частинок та античастинок у зовнішньому полі може бути зведений до гамільтоніану електронів і позитронів, що не взаємодіють. Знайдено операторні інваріанти, що описують спінові стани релятивістських частинок. Показано, що гамільтоніан електронів у нерелятивістському наближенні містить як відомі, так і невідомі раніше релятивістські поправки.
    О.О. Єремко, Л.С. Брижик, акад. НАН України В.М. Локтєв
  • Вивчено динаміку збуджень в нелінійному квантовому блуканні з дискретним часом. Показано, що в лінійній границі спектр моделі може бути приведений до цілком плоскозонного вигляду, що вказує на відсутність транспорту та існування компактних локалізованих станів. Продемонстровано існування солітоноподібних утворень, які можуть рухатися зі сталою швидкістю. Внаслідок пласкості лінійного спектру солітон уникає резонансів з ним. Також відсутність лінійних хвиль спричиняє не експоненційне, а суперекспоненційне [ ~ exp(-exp(x))] згасання амплітуди солітона.
    Я.О. Золотарюк
  • Знайдено перетворення Дарбу для допоміжної спектральної задачі, асоційованої з новою інтеґровною нелінійною системою Шрьодінґерівського типу на квазіодновимірній ґратці з трьома структурними елементами в елементарній комірці.
    О.О. Вахненко
  • Запропоновано новий механізм утворення точкових мутацій в біологічних об'єктах, який враховує флуктаційну появу в подвійній спіралі ДНК при відкритих молекулою води комплементарних пар. В рамках методу функціоналу густини проаналізовано можливі переходи протонів у привідкритій парі А-Т та розраховано їхні енергії. Показано, що в разі утворення привідкритої пари, неправильні таутомерні форми нуклеїнових основ можуть стабілізуватися і слугувати джерелом виникнення точкової мутації. Оцінена ймовірність такої мутації в ДНК (10-10-10-11) пояснює відомі експериментальні результати.
    Е.С. Крячко, С.Н. Волков
  • Побудовано змішану систему початкових та проміжних польових функцій для інтеґровної нелінійної Шрьодінґерівської системи на трикутній драбинчастій ґратці. Показано, що в термінах таких польових функцій система розщеплюється на дві підсистеми з якісно відмінними властивостями збуджень. Встановлено якісну зміну динамічних режимів системи при переході фонового параметра через критичну точку.
    О.О. Вахненко
  • Показано, що характерною рисою двовимірних систем, які проходять N послідовних топологічних переходів Ліфшиця, є поява піків ентропії на частинку з квантованою амплітудою при низьких температурах. Отримано загальний вираз для ентропії як функції хімічного потенціалу, температури та амплітуди щілин у діраківських матеріалах. Всередині меншої зі щілин, залежність від хімічного потенціалу містить мінімум та пік поблизу точки Дірака. Запропоновано експериментальне вимірювання всіх цих особливостей в експериментах з модуляцією температури зразків.
    С.Г. Шарапов, чл.-кор. НАН України В.П. Гусинін
  • На основі моделі двовимірних масивних ферміонів Дірака, які проявляють аномальний ефект Хола, показано, що амплітуда осциляцій Шубнікова-де Гааза в аномальній провідності Холапропорційна до амплітуди осциляцій діагональної провідності. Передбачено можливістьспостерігатиосциляції аномальної провідності Холла в графеновихсуперґратках, а також спіновий ефект Хола в нових діраківських матеріалах.
    С.Г. Шарапов
  • Показано, що кривина, кручення феромагнітного нанодротуістотно впливають на індукований спін-поляризованим струмом рух доменної стінки у ньому. Розглянуто найпростіший випадок постійної кривини, кручення, що відповідає нанодроту у формі тривимірної спіралі. Показано, що кривина призводить до появи Уокерівського ліміту, тобто до появи деякого критичного значення густини спін-поляризованого струму jc, при якому відбувається розділення двох режимів руху: поступального руху при j<jc та осциляційного руху для j>jc. При цьому в точці j=jc відбувається біфуркація типу сідло-вузол, акручення нанодроту, у свою чергу, призводить до зсуву матеріального параметру неадіабатичності спінового крутильного моменту. Величина зсуву пропорційна до добутку хіральності спіралі на топологічний заряд доменної стінки і може бути від'ємною. Pапропоновано практичний метод експериментального вимірювання параметру неадіабатичності, коефіцієнта тертя.
    Ю.Б. Гайдідей, В.П. Кравчук, К.В. Єршов
  • У рамках фундаментального рівняння Дірака аналітично знайдено спектр електронів у квазідвовимірному просторі (так звані квазі-2D електрони), що реалізується, наприклад, в шаруватих гетероструктурах, інтерфейсах, на поверхнях. Показано, що наявність декількох спінових інваріантів точного розв'язку призводить до можливості існування багатьох спінових станів квазі-2D електронів з різною спіновою поляризацією, різним впливом спін-орбітальної взаємодії на енергетичний спектр. Для електронів, захоплених асиметричною квантовою ямою, знайдено загальний розв'язок, що містить вільні параметри, конкретне значення яких відповідає тому чи іншому інваріанту. У загальному випадку спінове квантове число задає певне значення лінійної комбінації усіх інваріантів. Ці результати дають змогу визначити, за яких умов реалізується той чи інший спіновий стан, що відкриває нові можливості керування спіновою степенем вільності носіїв заряду для спінтроніки.
    О.О. Єремко, В.М. Локтєв, Л.С. Брижик
  • Аналітично досліджено спектральну задачу обмеженого фрагменту графену, скінченого ланцюжка полієну. Проаналізовано розв'язки трансцендентного характеристичного рівняння, запропоновано їхні надійні апроксимації. Використання одержаних результатів проілюстровано на прикладах аналізу фундаментальних характеристик графену, похідних структур типу нанострічок, а також полієнів різної довжини.
    Л.І. Малишева
  • Показано, що варіативність керівних параметрів призводить до сутєвих якісних перебудов динаміки інтеґровної нелінійної Шрьодінґерівської системи на трикутній драбинчастій ґратці. Так, параметри повздовжнього зв'язку, регульовні головним чином граничними значеннями допоміжних полів, відповідають за біфуркацію початкової інтеґровної системи до нелінійної системи Абловіца-Ладіка. Як наслідок, в критичній точці число незалежних польових змінних зменшується на половину, а Пуасонівська структура системи стає виродженою. З іншого боку, параметри поперечного зв'язку, регульовні в основному вибором їхньої апріорі довільної залежности від часу, здатні інкорпорувати дію зовнішнього лінійного потенціалу. Внаслідок цього початкова інтеґровна система з належно підлаштованими часовими залежностями параметрів зв'язку стає ізоморфною до системи, що моделює Блохівські осциляції нелінійних носіїв заряду на трикутній драбинчастій ґратці під дією повздовжнього однорідного електричного поля.
    О.О. Вахненко
  • Силове поле молекули (CHARMM), яке зазвичай застосовують в комп'ютерних розрахунках структури, динаміки макромолекул в біологічних системах, було модифіковано, імплементовано в програмний пакет MBN Explorer. Запропоновано новий тип потенціальних функцій, що дає змогу дослідити процеси розривів хімічних зв'язків, зміни валентних, двограних кутів в молекулах.
    С.Н. Волков
  • Досліджено структурні функції дзеркальних ядер 14С і 14O в моделі "три альфа-частинки плюс два додаткові нуклони". Знайдено розподіли зарядової густини і формфактори, парні кореляційні функції, імпульсні розподіли частинок в цих ядрах. В основному стані ядер 14С і 14O виявлено наявність двох просторових конфігурацій. Передбачено невідомий з експерименту середньоквадратичний зарядовий радіус ядра 14O.
    Б.Є. Гринюк, Д.В. П'ятницький
Монографії, статті в журналах, інші публікації
  1. Liguori, A., Brizhik, L., Liguori, S., Silli, L., Bangrazi, S., Petti, F., Pinti, M., Pistelli M.I., Giuliani, L. Effects of Ion Cyclotron Frequencies on Human Resistance and Reactance in 31 Healthy Subjects. Radiation 2022, 2, 357–375.
  2. L. Brizhik, A. Kovalev, A.Zagorodny. Life devoted to science. Part II. Low Temperature Physics/Fizyka Nyzkykh Temperatur, 2022, Vol. 48, No. 12, pp. 1103-1104.
  3. A.A. Eremko, L. Brizhik, V.M. Loktev. Algebra of the spinor invariants and the relativistic hydrogen atom. Submitted to Annals of Physics (Oct. 2022)
  4. L. Brizhik, A. Kovalev, A.Zagorodny. Alexander Davydov: Life Devoted to Science. Part I. Preface. Low Temperature Physics/Fizyka Nyzkykh Temperatur, 2022, Vol. 48, No. 11, pp. 853-856. Q3
  5. V. Loktev, V. Turkowskii. On the theory of nonhomogeneous nonequilibrium superconductivity in 2D system with massless fermions. LTP 48, 371 (2022).
  6. V. Loktev, V. Turkowskii. Nematic superconductivity in 1D system with massless fermions. LTP 48, 943 (2022).
  7. A. Bugrij, V. Loktev. On the theory of ideal Bose-gas thermodynamical properties at finite particle number. Ukr. J. Phys. 67, 235 (2022).
  8. I.O. Nimyi, V. Konye, S.G. Sharapov, V.P. Gusynin, Landau level collapse in graphene in the presence of in-plane radial electric and perpendicular magnetic fields, Phys. Rev. B 106, 085401 (2022); Q1
  9. A. Shutovskyi, V. E. Sakhnyuk, Y. Zolotaryuk, “Fluxon dynamics in long Josephson junctions with nontrivial current-phase relation”, Eur. Phys. J. B 95 134 (2022).
  10. A.V. Zolotaryuk and Y. Zolotaryuk, “Conditions for realizing one-point interactions from a multi-layer structure model”, J. Phys. A: Math. Theor 55, 085201 (2022).
  11. D. Bukatova and Y. Zolotaryuk, “Flat and almost flat bands in the quasi-one-dimensional Josephson junction array", J. Phys. Cond. Mat 34, 175402 (2022).
  12. E.A. Ponezha, “Transport spectroscopy in degenerate quantum dot”, Low Temp. Phys., 2022, Vol. 48, No 1, 70-78
  13. J.Baran, N.A. Davydova, M. Drozd, A. Krivchikov, E.A. Ponezha, “Spectroscopic and calorimetric investigation of cyclohexanol in different orientational states”, Mol. Cryst. Liq. Cryst. 2022, 747, №1, 30-41
  14. P.P. Kanevska, S.N. Volkov, Conformation impact in the deformation of DNA TATA- box. Low Temperature Physics/Fizika Nizkikh Temperatur, 48, 4 (2022) 351-358.
  15. E.S. Kryachko, Quantum Chemical Reactivity, Mutations and Reality, Chapter 18, 36 pp. n: Chemical Reactivity, Volume 2: Approaches and Applications, Edited by S. Kaya, L. von Szentpaly, G. Serdaroglu, and L. Guo. Elsevier. Published: 1st January 2023. (invited book chapter).
  16. E.Yu. Remeta and E.S. Kryachko, Modelling Amino Acid Threonine Under Ionizing Radiation: Mechanism of Fragmentation. In: Проблеми та Перспективи Реалізації та Впровадження Міждисциплінарних Наукових Досягнень. Вінниця, Європейська Наукова Платформа, 2022. с. 148-157.
  17. E.S. Kryachko, What Is Physics? Physics Today (Readers’ Forum) (submitted August 5, 2022; Submission code: 7573 [5-6 месяцев отведено в Physics Today на решение о публикации]).
  18. T. Vasiliu, F. Mocci, A. Laaksonen, L. Engelbrecht, and S. Perepelytsya, Caging polycations: Effect of increasing confinement on the modes of interaction of spermidine3+ with DNA double helices, Frontiers in Chemistry, 10, 836994 (2022).
  19. S.M. Perepelytsya and O.O. Zdorevskyi, Counterion atmosphere around DNA double helix: trapping of counterions at the nanoscale, Low Tem-perature Physics, 48, No. 4, pp. 293-300 (2022).
  20. D. Maria Azhar, Volodymyr P. Kravchuk , Markus Garst, Screw Dislocations in Chiral Magnets, Phys. Rev. Lett. 128, 157204 (2022),
  21. Kostiantyn V. Yershov, Attila Kákay, Volodymyr P. Kravchuk Curvature-induced drift and deformation of magnetic skyrmions: Comparison of the ferromagnetic and antiferromagnetic cases, Phys. Rev. B 105, 054425 (2022),
  22. L. Körber, R. Verba, Jorge A. Otálora, V. Kravchuk, J. Lindner, J. Fassbender, A. Kákay, Curvilinear spin-wave dynamics beyond the thin-shell approximation: Magnetic nanotubes as a case study, Phys. Rev. B 106, 014405 (2022),
  23. Mykola I. Sloika, Yuri Gaididei, Volodymyr P. Kravchuk, Oleksandr V. Pylypovskyi, Denys Makarov, Denis D. Sheka, Impact of curvature-induced Dzyaloshinskii–Moriya interaction on magnetic vortex texture in spherical caps Low Temp. Phys. 48, 1083–1089 (2022),
  24. Denis D. Sheka, Oleksandr V. Pylypovskyi, Oleksii M. Volkov, Kostiantyn V. Yershov, Volodymyr P. Kravchuk, Denys Makarov Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons (Review). Small, 18, 2105219 (2022)
  25. Denis D. Sheka, Volodymyr P. Kravchuk, Davide Peddis, Gaspare Varvaro, Michał Krupi´nski, Manfred Albrecht, Denise Erb, Stefan Facsko, and Denys Makarov, Curvilinear Magnetic Shells. Chapter in "Curvilinear micromagnetism. From fundamentals to applications" Edited by D. Makarov and D. Sheka. Springer, Topics in Applied Physics 146 (2022).
  26. O.O. Vakhnenko. Nonlinear dynamics of an integrable gauge-coupled exciton-phonon system on a regular one-dimensional lattice. Fiz. Nizk. Temp. 48 (3), 267–273 (2022).
  27. D. O. Oriekhov, V. P. Gusynin. Optical conductivity of semi-Dirac and pseudospin-1 models: Zitterbewegung approach, Phys. Rev. B 106, 115143 (2022).
  28. A.A. Eremko, L. Brizhik. Hydrogen states described by solutions of the Dirac equation: role of spinor invariants, Low Temperature Physics 48, No. 12, pp. 995-1008 (2022)
  29. A.A. Eremko, L.S. Brizhik, V.M. Loktev, Spin relevant invariants and the general solution of the Dirac equation for the Coulomb field, Annals of Physics, 439, 168786 (2022).
  30. V.P. Gusynin, O.O. Sobol, A.V. Zolotaryuk, Y. Zolotaryuk, Bound states of a one-dimensional Dirac equation with multiple delta-potentials, Low Temperature Physics 48, 1022–1032 (2022).
  31. A.A. Eremko, L. Brizhik. Hydrogen states described by solutions of the Dirac equation: role of spinor invariants, Фізика Низьких Температур, 48, No. 12, pp. 1127–1142 (2022).
  32. V.P. Gusynin, O.O. Sobol, A.V. Zolotaryuk, Y. Zolotaryuk, Bound states of a one-dimensional Dirac equation with multiple delta-potentials, Фізика Низьких Температур, 48, 1157-1168 (2022).
Монографії, статті в журналах, інші публікації
  1. Yu.Pogorelov and V.M. Loktev. Electronic spectra, topological states and impurity effects in graphene nanoribbons. Low Temp. Phys. 47, № 9, 819-829 (2021).
  2. D. Oriekhov, V.P. Gusynin, and V.M. Loktev. Orbital susceptibility of T-graphene: Interplay of High-order van Hove singularities and Dirac cones. Phys. Rev. B 103, 195104-13 (2021).
  3. A.I. Bugrij and V.M.Loktev. On the theory of ideal Bose-gas. Low Temp. Phys. 47, № 9, 819-829 (2021).
  4. Брижик Л.С. «Вплив ангармонізму та електрон-фононної взаємодії на транспорт електронів у низькорозмірних системах». В: «Фізика м’якої речовини» (відп. ред. Юхновський І.Р.), ІФКС НАН України, Львів-Київ, 2021, 193 с. Сс. 104-106
  5. O.O. Vakhnenko. Coupling-managed criticality in nonlinear dynamics of an integrable exciton-phonon system on a one-dimensional lattice. Fiz. Nizk. Temp., 47 (12), 1186–1190 (2021).
  6. O.O. Vakhnenko. Coupling-managed criticality in nonlinear dynamics of an integrable exciton-phonon system on a one-dimensional lattice. Low. Temp. Phys., 47 (12), XXX– XXX (2021).
  7. L. Malysheva. “Analytic analysis of electronic and transport properties of finite polyene”. Ukr. J. Phys., vol. 66, No.7, 619 (2021). https://doi.org/10.15407/ujpe66.7.619.
  8. L. Malysheva. Solution of the Spectral Problem for (2m,m) Carbon Nanotubes by Green's Function Method, Phys. Stat. Solidi B, 2100264 (2021), https://doi.org/10.1002/pssb.202100264.
  9. B. Satywali, V.P. Kravchuk, L. Pan, M. Raju, S. He, F. Ma, A.P. Petrović, M. Garst, C.Panagopoulos, Microwave resonances of magnetic skyrmions in thin film multilayers, Nature Communications, 12, 1909, (2021).
  10. V. Kagalovsky, D. Nemirovsky, S.G. Sharapov, V.O. Shubnyi, Electrostatic potential and magnetic moment of radially insulating Corbino disk,Physica E: Low-dimensional Systems and Nanostructures, Volume 137, 2022, 115049, ISSN 1386-9477, https://doi.org/10.1016/j.physe.2021.115049.
  11. A. Shutovskyi, V.E. Sakhnyuk, Y. Zolotaryuk, “Fluxon dynamics in long Josephson junctions with nontrivial current-phase relation”, prepared for Eur. Phys. J.B.
  12. D.V. Piatnytskyi, O.O. Zdorevskyi and S.N. Volkov, Interaction of hydrogen peroxide molecules with non-specific DNA recognition sites. Eur. Phys. J. D, 75, 24 (2021)
  13. D.V. Piatnytskyi, O.O. Zdorevskyi, S.N. Volkov “Interaction of hydrogen peroxide molecules with non-specific DNA recognition sites”, Eur. Phys. J. D 75, 24 (2021).
  14. Bubon T.L., Perepelytsya S.M. Low-frequency vibrations of water molecules in DNA minor groove. Eur. Phys. J. E 44, 84 (2021). https://doi.org/10.1140/epje/s10189-021-00080-3 (Q3)
  15. Брижик Л.С. «Транспорт електронів на великі відстані через альфа-спіралі». В: «Фізика м’якої речовини», (відп. ред. Юхновський І.Р.), ІФКС НАН України, Львів-Київ, 2021, 193 с. Сс. 102—103
  16. O.O. Vakhnenko. Coupled nonlinear dynamics in the three-mode integrable system on a regular chain. Ukr. J. Phys., 16(7), 6016–611 (2021). https://doi.org/10.15407/ujpe66.7.601
  17. O.O. Vakhnenko and A.P. Verchenko. Nonlinear system of PT-symmetric excitations and Toda vibrations integrable by the Darboux–Bäcklund dressing method . Proc. R.Soc. A, 477(2256), 20210562 (18 pages) (2021). https://doi.org/10.1098/rspa.2021.0562
  18. B. Wolba, O. Gomonay, V.P. Kravchuk, Chaotic antiferromagnetic nano-oscillator driven by spin torque, Phys. Rev. B 104, 024407 (2021).
  19. Engelbrecht L., Mocci F., Wang Y., Perepelytsya S.M., Vasiliu T., Laaksonen A. Molecular perspective on solutions and liquid mixtures from modelling and experiment. In: Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham P. 53-84 (2022). https://doi.org/10.1007/978-3-030-80924-9_3
  20. Mocci F., Laaksonen A., Engelbrecht L., Vasiliu T., Perepelytsya S. NA-Polyamine Interactions: Insight from Molecular Dynamics Simulations on the Sequence-Specific Binding of Spermidine3+. In: Soft Matter Systems for Biomedical Applications. Springer Proceedings in Physics, vol 266. Springer, Cham. P. 163-192 (2022). https://doi.org/10.1007/978-3-030-80924-9_6
  21. O.O. Vakhnenko. Prototype and reduced nonlinear integrable systems with modulated pulson behavior. Wave Motion, 104, 102745 (14 pages) (2021). https://doi.org/10.1016/j.wavemoti.2021.102745
  22. O.O. Vakhnenko. Nonlinear integrable excitations on a regular one-dimensional lattice. Phys.lett. A, 405, 127431 (6 pages) (2021). https://doi.org/10.1016/j.physleta.2021.12743
  23. S.N. Volkov, On possible role of hydrogen peroxide molecules in ion beam therapy of cancer cells. Low Temperature Physics/Fizika Nizkikh Temperatur, 47, 3, 235 (2021)
  24. S.M. Perepelytsya, J. Ulicny, and S.N. Volkov, Molecular dynamics study of the competitive binding of hydrogen peroxide and water molecules with the DNA phosphate groups. Eur. Biophys. J., 50, 759 (2021)
  25. D.V. Piatnytskyi, O.O. Zdorevskyi and S.N. Volkov, Interaction of hydrogen peroxide molecules with non-specific DNA recognition sites. Eur. Phys. J. D, 75: 24 (2021)
  26. A.V. Zolotaryuk and Y. Zolotaryuk, “Scattering data and bound states of a squeezed double-layer structure'', J. Phys. A: Math. Theor. 54, 035201 (2021).
  27. A.V. Zolotaryuk and Y. Zolotaryuk, “Conditions for realizing one-point interactions from a multi-layer structure model”, accepted to J. Phys. A: Math. Theor.
  28. В.М. Локтєв. Чи має фундаментальна наука належний статус в Україні? Вісник НАН України № 6, 50-57 (2021).
  29. В.М. Локтєв. Якщо ситуація з наукою в країні не зміниться кардинально, Україні не допоможе сам Господь Бог. Вісник НАН України. № 12, хх (2021).
Препринти
  1. L. Malysheva. Green functions for a chain subjected to a uniformly varying field in the context of electron transmission. arXiv:2111.08803.
  2. M. Azhar, V.P. Kravchuk, M. Garst, Screw dislocations in cubic chiral magnets, arXiv:2109.04338v1 (2021).
  3. D. Bukatova and Y. Zolotaryuk, “Flat and almost flat bands in the quasi-one-dimensional Josephson junction array", submitted to J. Phys. Cond. Mat, JPCM-119791, arxiv http://arxiv.org/abs/2112.02555.
  4. L.S. Brizhik, A.A. Eremko, V.M. Loktev, General solution vs spin invariant eigenstates of the Dirac equation with the Coulomb potential. ArXiv 2111.08552 - [cond-mat.mes-hall], November 16, 2021. http://arxiv.org/abs/2111.08552 – 1230
Доповіді на конференціях та семінарах
  1. L. Brizhik. “Nonlinear electromagnetic properties of living matter and selfregulation processes”. Book of Abstracts of the International Workshop “Quantum Electrodynamics of Living Systems” (Istituto Europeo di Shiatsu, Florence, Italy). April 17-18, 2021. P. 3.- https://www.shiatsu.mi.it/seminari/April_17_2021
  2. L. Brizhik. “Meridians from the point of view of Quantum Electrodynamics”. Book of Abstracts of the International Workshop “Quantum Electrodynamics of Living Systems” (Istituto Europeo di Shiatsu, Florence, Italy). April 17-18, 2021. P.4. - https://www.shiatsu.mi.it/seminari/April_18_2021
  3. Mocci F., Laaksonen A., Engelbrecht L., Vasiliu T., Perepelytsya S. Mechanisms of spermidine3+ interactions with the DNA double helix at the nanoscale. Book of abstracts: 7-th International Conference NANOBIOPHYSICS: Fundamental and Applied Aspects. October 4-10, Kharkov, Ukraine. P. 77.
  4. Mocci F., Laaksonen A., Engelbrecht L., Vasiliu T., Perepelytsya S. Modeling the specific interaction of metal and molecular counterions with DNA double helix. Записки Української науково-дослідницької асоціації: тези доповідей Всеукраїнської конференції наукових дослідників (Львів, 19-25 вересня 2021 року). – Львів : ЛНУ імені Івана Франка, 2021. – 188 с.. 19-25 вересня 2021. Львів, Україна. С. 179.
Монографії, статті в журналах, інші публікації
  1. V.M. Kalita, I.M. Ivanova, and V.M.Loktev. Magnetorheological effect in elastomers with uniaxial ferromagnetic particles. Cond. Matt. Phys. B 23, No 2, 23608-9 (2020).
  2. Yu.V. Skrypnyk and V.M. Loktev. On the theory of systems with substitutional non-Hermitian disorder. Low Temp. Phys. 46, № 8, 1028-1032 (2020).
  3. Yu.G. Pogorelov, V.M. Loktev, and D. Kochan. Impurity resonance effects in graphene ocal spectra at impurity and neighbouring sites in graphene: resonance manifestation. Phys. Rev. B 102, 155414-18 (2020).
  4. L. Brizhik, A. Foletti. Impact of oscillating magnetic field on charge transport processes in the light of possible biological effects (Submitted to J. Biophys, 2020).
  5. A. Korniienko, A. Kákay, D. Sheka, V. Kravchuk. Effect of curvature on the eigenstates of magnetic skyrmions, Physical Review B 102, 014432 (2020).
  6. K. Yershov, V. Kravchuk, D. Sheka, U. Rößler. Curvature effects on phase transitions in chiral magnets, SciPost Phys. 9, 043 (2020).
  7. I.V. Sukhenko, S.G. Sharapov, and V.P. Gusynin. Differential entropy per particle in Dirac semimetals in external magnetic field , ФНТ 46, 322 (2020).
  8. O.O. Vakhnenko. Integrable nonlinear triplet lattice system with the combined inter-mode couplings. Phys. J. Plus, 135(09), 769 (16 pages) (2020).
  9. S.N. Volkov. On possible role of hydrogen peroxide molecules in ion beam therapy of cancer cells, Low Temp. Phys., (accepted for publication 04.11.2020).
  10. K. Yershov, V. Kravchuk, D. Sheka, J. van den Brink, A. Saxena. Domain wall diode based on functionally graded Dzyaloshinskii–Moriya interaction, Appl. Phys. Lett. 116, 222406 (2020)
  11. O. Pylypovskyi, V. Kravchuk, O. Volkov, J. Faßbender, D. Sheka, D. Makarov. Unidirectional tilt of domain walls in equilibrium in biaxial stripes with Dzyaloshinskii–Moriya interaction, J. Phys. D: Appl. Phys. 53 395003 (2020).
  12. A.V. Kavokin, B.L. Altshuler, S.G. Sharapov, P.S. Grigoryev, and A.A. Varlamov. The Nernst Effect in Corbino Geometry, Proceedings of the National Academy of Sciences 117, 2846–2851 (2020).
  13. D. Grassano, M. D'Alessandro, O. Pulci, S.G. Sharapov, V.P.Gusynin, A.A. Varlamov. Work function, deformation potential, and collapse of Landau levels in strained graphene and silicene, Phys. Rev. B 101, 245115 (2020).
  14. А.Г. Загородній, Ю.I. Iзотов, Е.Г. Петров, Б.I. Лев, В.П. Гусинiн, Ю.О. Ситенко, Л.С. Брижик. Академiк НАН України Вадим Михайлович Локтєв (до 75-рiччя вiд дня народження). Укр. фiз. журн. 2020. Т. 65, No 6, 544-547.
  15. S. Perepelytsya. Positively and negatively hydrated counterions in molecular dynamics simulations of DNA double helix. Ukr. J. Phys. 65, No6, 510-520 (2020).
  16. Є.С. Крячко. Водневий зв'язок і ДНК: 66-річна ретроспектива (в короткому викладі). [Пам'яті Юрія Павловича Благого (29.07.1929 - 24.04.2018) присвячується.]Біофізичний Вісник 43, № 1, 148-173 (2020).
  17. Є.С. Крячко. Щодо гіпотези Уотсона-Кріка про рідкісну таутомерну мутацію і реальність. Біофізичний Вісник 43, № 1, 121-132 (2020).
  18. O.O. Zdorevskyi, S.M. Perepelytsya. Dynamics of K+ counterions around DNA double helix in the external electric field: a molecular dynamics study, Eur. Phys. J. E 43: 77 (2020).
Препринти
  1. D.V. Piatnytskyi, O.O. Zdorevskyi and S.N. Volkov. Interaction of hydrogen peroxide molecules with non-specific DNA recognition sites. arXiv: 2004.14017[physics.bio-ph] (2020).
  2. S.M. Perepelytsya, J. Ulicny, and S.N. Volkov. Molecular dynamics study of the competitive binding of hydrogen peroxide and water molecules with the DNA phosphate groups. arXiv: 2004.11882 [q-bio] (2020).
  3. P.P. Kanevska, S.N. Volkov. The effect of DNA conformation changes on the coupling of the macromolecule deformation components. arXiv: 2011.14772 [cond-mat.soft] (2020).
  4. P.P. Kanevska, S.N. Volkov. Conformational impact on deformation of DNA TATA-box. arXiv: 2012.03696 [cond-mat.soft] (2020).
  5. T. Bubon, S. Perepelytsya. Low-frequency vibrations of water molecules in DNA minor groove. 2020 arXiv:2010.15967
  6. A. Eremko, L. Brizhik, and V. M. Loktev. General solution of the Dirac equation with the Coulomb potential, arXiv:2009.09838v1, [quant-ph] (17 Sept2020).
  7. A.A. Eremko, L. Brizhik, V.M. Loktev. Generalized spin-orbit interaction in two-dimensional electron systems. ArXiv 2003.14245 [cond-mat.mes-hall]. March 23, 2020.
Доповіді на конференціях та семінарах
  1. L. Brizhik. Пленарна доповідь "Soliton facilitated long-range electron transport in donor-polymer-acceptor systems" на Міжнародній он-лайн конференції "XII International Conference "Electronic Processes in Organic and Inorganic Materials" (ICEPOM-12) (Кам'янецьк-Подільський, 1-5 червня 2020 р.)
  2. S.G. Sharapov. "Thermoelectric and thermomagnetic phenomena: from history to the Nernst effect in Corbino geometry", International workshop Photon – graphene interactions: phenomena and applications, Kyiv, February 13-14, 2020.
  3. S.G. Sharapov. "Thermoelectric and thermomagnetic phenomena", 2nd UKRATOP Workshop "Topological Phenomena in Quantum Materials", June 29 –July 2, 2020.
  4. С.Г. Шарапов. " Thermoelectric and thermomagnetic phenomena", Колоквіум. Мудра макитра, 12 вересня, 2020. (https://www.youtube.com/watch?v=i-8oR7vmhLs&fbclid=IwAR0I6vdawbxK2OO8tdPHE4IZ0VS45sqQS50YUtUpm7CLsF1bna1nCBLgdcI).
  5. S.N. Volkov. Conformational Solitons in DNA macromolecule. XI Conference of Young Scientists "PROBLEMS OF THEORETICAL PHYSICS", BITP, 21-23.12.2020. (Запрошена доповідь).
  6. V. Kravchuk. Geometrical phenomena in chiral magnets, Retreat and Network meeting "Skyrmionics: Topological Spin Phenomena in Real-Space for Applications", 2-4 September 2020, Bad Honnef, Germany. (Усна доповідь).
  7. V. Kravchuk. Topological magnetic solitons in curvilinear low-dimensional nanomagnets, XX Workshop and Award for young researchers, 15-16 October, Lviv, Ukraine. (Пленарна лекція).
  8. S.M. Perepelytsya. UKRATOP Days 2020 Topological Effects in Quantum Materials June 29 - July 2, 2020 "Horizons of the Bogolyubov Institute for Theoretical Physics: From Quarks to Biophysics". Kiev, July 1, 2020 (запрошена)
  9. L. Brizhik. Запрошена доповідь на он-лайн семінарі "Basic information about psoriasis and protective role of melanin against UV damage in human skin: role of nonlinear excitations in DNA". Семінар організовано д-ром Енріко Фермі (Мілан, Італія) 7 квітня 2020 р.
  10. В.М. Локтєв. Онлайн конференція з фізики студентів КПІ. Київ, травень 2020.
Монографії, статті в журналах, інші публікації
  1. Yuri Gaididei, Christian Marschler, Mads Peter Soerensen, Peter L. Christiansen, Jens Juul Rasmussen, Jens Starke. Pattern Formation In Flows of Asymmetrically Interacting Particles: Peristaltic Pedestrian Dynamics as a Case Study. Evolution Equations and Control Theory 8, Number 1, March 2019 pp. 73-100.
  2. Yuri Gaididei, Kostiantyn V. Yershov, Denis D. Sheka, Volodymyr P. Kravchuk, and Avadh Saxena. Magnetization-induced shape transformations in flexible ferromagnetic rings, Phys. Rev. B 99, 014404 (2019).
  3. Anastasiia Korniienko, Volodymyr P. Kravchuk, Oleksandr V. Pylypovskyi, Denis D. Sheka, Jeroen van den Brink, Yuri Gaididei. SciPost Phys. 7, 035 (2019).
  4. Volodymyr P. Kravchuk, Olena Gomonay, Denis D. Sheka, Davi R. Rodrigues, Karin Everschor-Sitte, Jairo Sinova, Jeroen van den Brink, Yuri Gaididei. Spin eigenexcitations of an antiferromagnetic skyrmion, Physical Review B 99 P. 184429 (2019).
  5. Kostiantyn V. Yershov, Volodymyr P. Kravchuk, Denis D. Sheka, Jeroen van den Brink, Yuri Gaididei. Spontaneous deformation of flexible ferromagnetic ribbons induced by Dzyaloshinskii-Moriya interaction, Phys. Rev. B 100 P. 140407(R) (2019)
  6. O.O. Vakhnenko. Four-component integrable systems inspired by the Toda and the Davydov–Kyslukha models. Wave Motion 88, 1‒12 (2019).
  7. O.O. Vakhnenko. Nonlinear integrable systems containing the canonical subsystems of distinct physical origins. Physics Letters A 384(3), 126081 (9 pages) (2020).
  8. A. Onipko and L. Malysheva. On the Theory of Steady Current in Electric Contacts. Submitted to Phys. Rev. B (2019).
  9. О.О. Єремко, Л.С. Брижик, В.М. Локтєв. Узагальнена спін-орбітальна взаємодія та її прояв у двовимірних електронних структурах, УФЖ. 2019. 64, №6, с. 460-472.
  10. L. A. Cisneros-Ake, L. Brizhik. Energy transfer by Holstein solitons in a one-dimensional anharmonic continuum medium, Chaos, Sol. and Fractals, 119, 343-354 (2019), DOI: 10.1016/j.chaos.2018.12.025.
  11. R. Grasso, F. Musumeci, A. Triglia, L. Brizhik, A. Scordino. Impact of structure on the delayed luminescence of D-Glucose-based polymer chains, J. Photochem. Photobiol. B: Biol., September 2019, 111589 (9 pp); https://doi.org/10.1016/j.jphotobiol.2019.111589
  12. V.O. Shubnyi, Y.V. Skrypnyk, S.G. Sharapov and V.M. Loktev. Effect of resonant impurity scattering of carriers on the Drude-peak broadening in uniaxially strained graphene, Phys. Rev. B 99, 235421 (2019).
  13. S.G. Sharapov et al. Transport Spectroscopy of the Field Induced Cascade of Lifshitz Transitions in YbRh2Si2, J. Phys. Soc. Jpn. 88, 104702 (2019).
  14. I.O. Starodub, Y. Zolotaryuk. Fluxon interaction with the finite-size dipole impurity, Phys. Lett. A, 2019, vol. 383, p. 1419-1426.
  15. A.V. Zolotaryuk, G. P. Tsironis, Y. Zolotaryuk. Point Interactions With Bias Potentials, Frontiers in Physics, 2019, vol. 7, article 87.
  16. Y. Zolotaryuk, I.O. Starodub. Embedded solitons in the double sine-Gordon lattice with next-neighbor interactions, Phys. Rev. E, 2019, vol. 100, 032216.
  17. Perepelytsya S., Uličný J., Laaksonen A., Mocci F. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4+. Nucleic Acids Research. 47, 6084-6097 (2019).
  18. O.O. Zdorevskyi, D.V. Piatnytskyi, S.N. Volkov. On a possibility of the blocking of DNA specific recognition sites by hydrogen peroxide molecules during ion beam therapy. Dopov. Nac. akad. nauk Ukr. 2019. №6, p.82 – 89.
  19. V.N. Ermakov and E.A. Ponezha, Nonlinear resonant tunneling as mechanism of cool electrons filtration. Low Temp. Phys. 45, 803 (2019).
Препринти
  1. Volodymyr P. Kravchuk, Olena Gomonay, Denis D. Sheka, Davi R. Rodrigues, Karin Everschor-Sitte, Jairo Sinova, Jeroen van den Brink, Yuri Gaididei. Spin eigen-excitations of an antiferromagnetic skyrmion, arXiv.org /cond-mat / arXiv:1902.09846 (1919).
  2. Denis D. Sheka, Oleksandr V. Pylypovskyi, Pedro Landeros, Yuri Gaididei, Attila Kakay, and Denys Makarov. Micromagnetic. Theory of Curvilinear Ferromagnetic Shells, arXiv:1904.02641v1 [cond-mat.mes-hall] 4 Apr 2019.
  3. Volodymyr P. Kravchuk, Ulrich K. Rößler, Jeroen van den Brink, Markus Garst. Solitary wave excitations of skyrmion strings in chiral magnets (2019), arXiv:1902.01420
  4. L.S. Brizhik, Jingxi Luo, B.M.A.G. Piette, W.J. Zakrzewski. Long-range electron transport mediated by alpha-helices, arXiv:1909.08266v1 [cond-mat-other]
  5. A.V. Kavokin, B.L. Altshuler, S.G. Sharapov, P.S. Grigoryev, and A.A. Varlamov. The Nernst Effect in Corbino Geometry, arXiv:1911.10325
  6. O.O. Zdorevskyi, D.V. Piatnytskyi, S.N. Volkov. Blocking of DNA specific recognition sites by hydrogen peroxide molecules in the process of ion beam therapy of cancer cells. arXiv:1811.11026
Доповіді на конференціях та семінарах
  1. L.S. Brizhik. Electron-phonon coupling and electron correlations in low-dimensional systems. Book of Abstracts. Bogolyubov Kyiv Conference Problems оf Theoretical And Mathematical Physics (September 24-26, 2019, Kyiv, Ukraine). P. 59. Kyiv, 2019.
  2. L.S. Brizhik. Role of biophotons in self-organization of the alive. Book of Abstracts of the 4th Summer School “Biophotons” (Wietow, Germany, August 1-3, 2019). P. 4-5.
  3. L.S. Brizhik. Soliton Induced Electromagnetic Field and Biophotons. Book of Abstracts of the 4th Summer School “Biophotons” (Wietow, Germany, August 1-3, 2019). P. 6-7
  4. L.S. Brizhik. Nonlinear quantum electron states and their role in biological systems. Book of Abstracts of the International Workshop “Quantum Physics in Applications to Physics of the Alive” (December 13-14, 2019, Milan, Italy). Pp. 8-9.
  5. O.O. Vakhnenko. Integrable nonlinear Schrödinger system on an intercalated ladder lattice. Bogolyubov Kyїv Conference “Problems of Theoretical and Mathematical Physics” dedicated to the 110th anniversary of M.M. Bogolyubov. 24‒26 September 2019, Kyїv (Ukraine). Program and Abstracts, 118 (2019).
  6. Volodymyr P. Kravchuk, Helen Gomonay, Denis Sheka, Karin Everschor-Sitte, Davi Rodrigues, Jeroen van den Brink, and Yuri Gaididei, Spin eigen-excitations of the antiferromagnetic skyrmion, DPG-Frühjahrstagung (зустріч німецького фізичного товариства) 31 March – 5 April 2019, Regensburg, Germany. (усна доповідь);
  7. Yu. Gaididei, V.P. Kravchuk, D.D. Sheka, Effects of curvature in low-dimensional ferromagnets, International workshop “Curvilinear Micromagnetism”, 22-25 May 2019, Kyiv, Ukraine (запрошена доповідь).
  8. Volodymyr P. Kravchuk, Ulrich K. Rößler, Jeroen van den Brink, Markus Garst. Nonlinear dynamics of skyrmion strings, International Workshop on Topological Structures in Ferroic Materials (TOPO 2019), Prague, Czech Republic, June 16–20, 2019 (запрошена доповідь).
  9. Kostiantyn V. Yershov, Denis D. Sheka, Volodymyr P. Kravchuk, Avadh Saxena, Yuri Gaididei. Magnetically controlled geometry of flexible ferromagnetic rings, APS March Meeting 2019, Bulletin of the American Physical Society, P. E39.00011 (2019) – усна доповідь
  10. Kostiantyn V. Yershov, Volodymyr P. Kravchuk, Denis D. Sheka, Avadh Saxena, Yuri Gaididei. Shape transformations of elastic ferromagnetic systems, International workshop Curvilinear Micromagnetism. May 22-25, 2019, Kyiv, Ukraine (Book of Abstracts), P. 12-13 (2019) – усна доповідь
  11. Perepelytsya S.M., Uličný J., Laaksonen A., Mocci F. Modeling the structure and dynamics of DNA with organic and inorganic counterions. Final AMMODIT Conference “Mathematics for Life Sciences”. Kiev, March 18-22, 2019. Kiev, Ukraine. Book of abstracts P. 32 (oral)
  12. Perepelytsya S.M. Dynamics of counterions in the hydration shell of DNA double helix. Dipartamento di Scienze Chimiche e Geologiche Dell' Universita degli Studi di Cagliari. https://www.unica.it/unica/it/dip_scienzechimicgeo_35.page?contentId=AVS182764 July 24, 2019 - Cagliari, Sardinia (Italy). (Oral)
  13. Perepelytsya S.M. Effects of counterion interactions with DNA double helix: Manifestations in experiments and MD simulations. Scientific Summer School Molecular Modeling: Real Applications and New Approaches July 29 - August 2, 2019 - Pula, Sardinia (Italy). (Poster)
  14. Perepelytsya S.M., Uličný J., Laaksonen A., Mocci F. Modeling specific interaction of polyamines with DNA double helix. Bogolyubov Kyiv Conference Problems of Theoretical and Mathematical Physics. September 24-26, 2019. Kiev, Ukraine. Book of abstracts P. 64 (oral)
  15. Oleksii Zdorevskyi, Dmytro Piatnytskyi, Sergey N. Volkov. Blocking of DNA sites of specific recognition by hydrogen peroxide molecules in the process of ion beam therapy. Book of abstracts of IX young scientists conference “Problems of Theoretical Physics”, December 4 – 5, 2018, Kyiv, Ukraine – p. 4.
  16. D.V. Piatnytskyi, O.O. Zdorevskyi, S.N. Volkov. Binding of hydrogen peroxide with DNA phosphate group. Book of abstracts of Final AMMODIT Conference “Mathematics for Life Sciences”, March 18 – 22, 2019, Kyiv, Ukraine – p. 36.
  17. O.O. Zdorevskyi, D.V. Piatnytskyi, S.N. Volkov, Competitive interaction of hydrogen peroxide and water molecules with specific DNA recognition sites in the process of ion beam therapy. Abstracts of Joint 12th EBSA 10th ICBP-IUPAP Biophysics Congress, July 20 – 24, 2019, Madrid, Spain – p.7.
  18. V.S. Vasilevsky, B.E. Grinyuk, D.V. Piatnytskyi. Structure features of mirror nuclei 14C and 14O within a five-cluster model. Book of abstracts of Bogolyubov Kyiv Conference “Problems of Theoretical and Mathematical Physics”, September 24 – 26, 2019, Kyiv, Ukraine – p. 81
  19. S.G. Sharapov. Electro Effect of resonant impurity scattering of carriers on Drude peak broadening in uniaxially strained graphene . Book of Abstracts. Bogolyubov Kyiv Conference Problems оf Theoretical and Mathematical Physics (September 24-26 2019, Kyiv, Ukraine). Kyiv, 2019.
  20. Y.V. Skrypnyk and V.M. Loktev. Mobility edge trajectory in classical Lifshitz problem. Book of Abstracts. Bogolyubov Kyiv Conference Problems оf Theoretical And Mathematical Physics (September 24-26 2019, Kyiv, Ukraine). Kyiv, 2019.
  21. V.N. Ermakov, E.A. Ponezha. Correlation Mechanism of Cold Electrons Filtration in Resonant Tunneling Devices. Spectroscopy of molecules and crystals, Book of Abstracts of XXIV Galyna Puchkovska International School-Seminar (Odesa, Ukraine, August 25-30, 2019, p. 130).
  22. V.N. Ermakov and E.A. Ponezha. Nonlinear resonant tunneling as mechanism for coldl electrons filtration in nanodevices, Book of Abstracts of Bogolyubov Kyiv Conference “Problems of Theoretical and Mathematical Physics” (Kyiv, Ukraine, September 24-26, 2019, p. 61).
  23. J. Baran, N.A. Davydova, M. Drozd, V.Ya. Reznichenko, E.A. Ponezha. Polymorphism and its Manifestation in the IR Spectra of 2-phenol-o-cresol Spectroscopy of molecules and crystals, Book of Abstracts of XXIV Galyna Puchkovska International School-Seminar (Odesa, Ukraine, August 25-30, 2019, p. 31). International School-Seminar (Odesa, Ukraine, August 25-30, 2019, p. 31)
Монографії, статті в журналах, інші публікації
  1. V.P. Kravchuk, D.D. Sheka, O.M. Volkov, A. Kákay, U.K. Rößler, J. van den Brink, D. Makarov, Yu. Gaididei. Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices, Physical Review Letters 120, 067201 (2018).
  2. V.P. Kravchuk, D.D. Sheka, U.K. Rößler, J. van den Brink, Yu. Gaididei. Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass, Physical Review B 97, 064403 (2018).
  3. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, O.V. Pylypovskyi, D. Makarov, Yu. Gaididei. Geometry-induced motion of magnetic domain walls in curved nanostripes, Physical Review B (Rapid Communications) 98, 060409(R) (2018).
  4. O.M. Volkov, D.D. Sheka, Yu. Gaididei, V.P. Kravchuk, U.K. Rößler, J. Fassbender, D. Makarov. Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality, Scientific Reports 8, 866 (2018).
  5. Yu. Gaididei, V.P. Kravchuk, F.G. Mertens, O.V. Pylypovskyi, A.B. Saxena, D.D. Sheka, O.M. Volkov. Localization of magnon modes in a curved magnetic nanowire, Low Temperature Physics 44, 634-643 (2018).
  6. P. L. Christiansen, S. V. Iermakova, Yu. B. Gaididei and M. P. Soerensen. Scattering of flexural waves in Euler -Bernoulli beams by short-range potentials, J. Phys. A: Math. Theor. 51 095202 (2018).
  7. F.S. Nogueira, I. Eremin, F. Katmis, J.S. Moodera, J. van den Brink, V.P. Kravchuk. Fluctuation-induced Néel and Bloch skyrmions at topological insulator surfaces, Physical Review B (Rapid Communications) 98, 060401(R) (2018).
  8. A. Onipko and L. Malysheva. Analytic Theory of Wannier-Stark Quantization in Arbitrary-Size Atomic Square Lattices, Phys. Status Solidi B, 2018, 1700558, DOI: 10.1002/pssb.201700558.
  9. О.О. Вахненко. Напівдискретна інтеґровна Шрьодінґерова система з фоново-керованою міжвузловою резонансною взаємодією. Укр. Фіз. Журн. Огляди, 2017, 12, No 01, 3-40.
  10. O.O. Vakhnenko. Six-component semi-discrete integrable nonlinear Schrödinger system. Lett. Math. Phys., 2018, 108, No 08, 1807-1824.
  11. O.O. Vakhnenko. Nonlinear integrable system of coherently coupled excitations on an intercalated ladder lattice. Eur. Phys. J. Plus, 2018, 133, No 06, 243 (19 pages).
  12. O.O. Vakhnenko. Semidiscrete integrable nonlinear Schrödinger system with background-controlled intersite resonant coupling. Short summary of key properties. Ukr. J. Phys, 2018, 63, No 03, 220-225.
  13. O.O. Vakhnenko. Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell. J. Math. Phys., 2018, 59, No 05, 053504 (25 pages).
  14. S.N. Volkov. Understanding the mechanism of DNA threshold elongation. Low Temperature Physics, 2018, v. 44, No. 7, pp. 893-904.
  15. O.O. Zdorevskyi, S.N. Volkov. Possible scenarios of DNA double-helix unzipping process in single-molecule manipulation experiments. European Biophysics Journal, 2018, №8 (December) v.47, pp. 917-984.
  16. D.V. Piatnytskyi, S.N. Volkov. Complexes of hydrogen peroxide and DNA phosphate group in quantum chemical calculations. Біофізичний Вісник, 2018, 39 (1), 5-14.
  17. Є.С. Крячко, С.Н. Волков. До розуміння механізму утворення точкових мутацій в ДНК. Доповіді НАН України, 2018, № 7, с.103-112.
  18. T.Yu. Nikolaenko, E.S. Kryachko, and G.A. Dolgonos. On the Existence of He-He Bond in the Endohedral Fullerene He2@C60. J. Comput. Chem. Special Issue: Quantum Crystallography 39, No. 18, 1090-1102 (2018). doi: 10.1002/jcc.25061.
  19. Г.А. Долгонос, Є.С. Крячко, Т.Ю. Ніколаєнко. До питання Не-Не зв'язку у ендоедральному фулерені Не2@C60. Укр. физ. ж. 63, № 4, 288-308 (2018).
  20. E.S. Kryachko. Selected Theses on Science. In (invited review) : Sustainable Futures for Higher Education: The Making of Knowledge Makers. Eds. J. Valsiner, A. Lutsenko, and A. Antoniouk. Springer, Berlin, 2018. Ch.16, pp. 159-176.
  21. S.M. Perepelytsya. Hydration of counterions interacting with DNA double helix: a molecular dynamics study. Journal of Molecular Modeling, 24, 171 (2018).
  22. O.O. Vakhnenko. Effect of lattice ribbonization via the background-controlled inter-site resonant interactions in nonlinear integrable systems. AIP Conference Proceedings, 2018, 2037, No 01, 020027 (11 pages).
  23. Yu.G. Pogorelov and V.M. Loktev. Conventional and unconventional impurity effects in superconductors. Low Temp. Phys. 44, No 1, 3-35 (2018).
  24. V.M. Loktev and Yu.G. Pogorelov. On the theory of high-Tc superconductivity cuprates. Cond. Matt. Phys. 21, No 3, 33704-33724 (2018). doi: 10.5488/CMP.21.33704
  25. G.Yu. Lavanov, V.M.Kalita and V.M. Loktev. Change in the entropy during 1st order phase transition induced by a magnetic field in an isotropic non-Heisenberg ferromagnet. Low Temp. Phys. 44, No 4, 322-326 (2018). doi: 10.1063/1.5030455
  26. D. Grassano, O. Pulci, V.O. Shubnyi, V.P. Gusynin, S.G. Sharapov, A.V. Kavokin, A.A. Varlamov. Detection of topological phase transitions through entropy measurements: the case of germanene, Phys. Rev. B 97, 205442 (2018).
  27. V.O. Shubnyi, S.G. Sharapov, Y.V. Skrypnyk. Impurity induced broadening of Drude peak in strained graphene, Condens. Matter Phys. 21, No. 3, 33703 (2018).
  28. Y.M. Galperin, D. Grassano, V.P. Gusynin, A.V. Kavokin, O. Pulci, S.G. Sharapov, V.O. Shubnyi, A.A. Varlamov. Entropy signatures of topological phase transitions, JETP, V.54, 1057 (2018).
  29. V.O. Shubnyi, V.P. Gusynin, S.G. Sharapov, A.A. Varlamov. Entropy per particle spikes in the transition metal dichalcogenides, Fizika Nizkikh Temperatur, Vol. 44, No.6, 721-726 (2018).
  30. Larissa Brizhik, Enrico Chiappini, Patrizia Stefanini and Giuseppe Vitiello. Modeling meridians within the Quantum Field Theory. JAMS, 2018, v. 37. DOI: 10.1016/j/jams2018.06.009.
  31. A.A. Eremko, L.S. Brizhik, and V.M. Loktev. On the theory of the Schrodinger equation with the full set of relativistic corrections.- Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6, pp. 734-746.
  32. Y. Zolotaryuk, I. O. Starodub. Moving Embedded Solitons in the Discrete Double Sine-Gordon Equation, Nonlinear Systems, Vol.2, Springer International Publishing AG, 315-334, 2018.
  33. J.F.R. Archilla, Y. Zolotaryuk, Y.A. Kosevich, Y. Doi. Nonlinear waves in a model for silicate layers, Chaos, 2018, v. 28, p. 083119.
  34. Vakulchyk, M.V. Fistul, Y. Zolotaryuk and S. Flach. Almost compact moving breathers with fine-tuned discrete time quantum walks, Chaos, 2018, v. 28, p. 123104.
  35. Ю.В. Скрипник, В.М. Локтев. Электронные свойства графена с точечными дефектами, ФНТ 44, № 11, 1417 (2018).
  36. Ю.В. Скрипник, В.М. Локтев. О возможности оценки положения порога подвижности для носителей заряда с использованием одночастичных средних, ФНТ 44, № 7, 914 (2018).
  37. Ю.В. Скрипник, В.М. Локтев. Электронные свойства графена с точечными дефектами, ФНТ 44, № 11, 1417 (2018).
Монографії, статті в журналах, інші публікації
  1. M.I. Sloika, D.D. Sheka, V.P. Kravchuk, O.V. Pylypovskyi, Yu. Gaididei. Geometry induced phase transitions in magnetic spherical shell, Journal of Magnetism and Magnetic Materials 443, (2017) 404-412.
  2. Yu. Gaididei, A. Goussev, V.P. Kravchuk, O.V. Pylypovskyi, J.M. Robbins, D.D. Sheka, V. Slastikov, S. Vasylkevych. Magnetization in narrow ribbons: curvature effects, Journal of Physics A: Mathematical and Theoretical 50, (2017) 385401.
  3. O.O. Vakhnenko. Semi-discrete integrable nonlinear Schrödinger system with background-controlled inter-site resonant coupling. J. Nonlin. Math. Phys., 2017, 24, No 02, 250-302.
  4. O.O. Vakhnenko. Distinctive features of the integrable nonlinear Schrödinger system on a ribbon of triangular lattice. Ukr. J. Phys, 2017, 62, No 03, 271-282.
  5. L. Malysheva. Spectral problem for graphene fragments and polyenes: An analytic approach, Phys. Status Solidi B, 254, issue 6, 2017, DOI:10.1002/pssb.201600773.
  6. A. Onipko and L. Malysheva. Electron Spectrum of Graphene Macromolecule Revisited, Phys. Status Solidi B, 2017, DOI: 10.1002/pssb.201700248.
  7. D.V. Piatnytskyi, S.N. Volkov. Complexes of Hydrogen Peroxide and DNA Phosphate Group in Quantum Chemical Calculations, Biophysical Bulletin, 2017, №2, 8 с.
  8. O.O. Zdorevskyi, S.N. Volkov. Possible scenarios of DNA unzipping process, Eur. Biophys. J. 2017, vol. 46 (Suppl. 1), p. 135.
  9. B.E. Grinyuk, D.V. Piatnytskyi. Structure of 14N nucleus within a five-cluster model. Ukr. J. Phys., vol. 62, № 10, 2017, p. 835-844.
  10. Yu. B. Gaididei, J-G. Caputo, P.L. Christiansen, J.J. Rasmussen, M.P. Soerensen. A general microscopic traffic model yielding dissipative shocks DOI 10.1007/978-3-319-63082-3_59
  11. T.Yu. Nikolaenko, E.S. Kryachko, G.A. Dolgonos. On the existence of He-He bond in the endohedral fullerene H2@C60. J. Comput. Chem. (2017)
Доповіді на конференціях та семінарах
  1. С.Н. Волков. DNA polymorphism as a tool for geneticin formation implementation Procedings of Belgrade Bio In formatics Conference 2016, 2017, 11 с.
Монографії, статті в журналах, інші публікації
  1. R. Rasmussen, M. P. Sorensen, Yu. B. Gaididei, P. L. Christiansen, Compound waves in a higher order nonlinear model ofthermoviscous fluids, Mathematics and Computers in Simulation 127, 236-251 (2016).
  2. Yu. Gaididei, A. R. Rasmussen, P. L Christiansen and M. P. Sorensen, Oscillating nonlinear acoustic shock waves, Evolution Equations and Control Theory, 5, 367 (2016).
  3. Yu.B. Gaididei, J.F.R. Archilla, V.J. Sanchez-Morcillo, C. Gorria, Energy localization and shape transformations in semiflexible polymer rings, Phys. Rev. E 93, 062227 (2016).
  4. R. Streubel, P. Fischer, F. Kronast, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, O.G Schmidt, D. Makarov Magnetism in curved geometries (topical review), Journal of Physics D: Applied Physics 49, 363001 (2016)
  5. K.V. Yershov, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, Curvature and torsion effects in spin-current driven domain wall motion, Phys. Rev. B 93, 094418 (2016).
  6. O.V. Pylypovskyi, D.D. Sheka, V.P. Kravchuk, K.V. Yershov, D. Makarov, Yu. Gaididei Rashba Torque Driven Domain Wall Motion in Magnetic Helices, Scientific Reports 6, 23316 (2016).
  7. V.P. Kravchuk, U.K. Rößler, O.M. Volkov, D.D. Sheka, J. van den Brink, D. Makarov, H. Fuchs, H. Fangohr, Yu. Gaididei. Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions Phys. Rev. B 94, 144402 (2016).
  8. R. Streubel, P. Fischer, F. Kronast, V.P. Kravchuk, D.D. Sheka, Yu. Gaididei, O.G Schmidt, D. Makarov Magnetism in curved geometries (topical review), Journal of Physics D: Applied Physics 49, 363001 (2016)
  9. В.О. Вахненко, О.О. Вахненко. Хвильова динаміка структурованих середовищ. Київ, Наукова думка, 2016, 227 с.
  10. O.O. Vakhnenko. Coupling-governed metamorphoses of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Phys. Lett. A, 2016, vol. 380, No 24, 2069-2074.
  11. O.O. Vakhnenko. Symmetry-broken canonizations of the semi-discrete integrable nonlinear Schrödinger system with background-controlled inter-site coupling. J. Math. Phys., 2016, vol. 57, No 11, 113504 (16 pages).
  12. O.O. Vakhnenko. Asymmetric canonicalization of the integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Appl. Math. Lett., 2017, vol 64, February, 81-86.
  13. Y.G. Pogorelov, V.M. Loktev. Biased doped silitsen as a way to tune electronic conduction. Phys. Rev. В 93, 045117-8 (2016)
  14. G.Yu. Lavanov, V.M. Kalita, I.M. Ivanova, V.M. Loktev. Magnetic quantum phase transitions and entropy in Van Vleck Vleck magnet. JMMM 416, 466-474 (2016).
  15. Ю.В. Скрипник, В.М. Локтев. Об эквивалентности двух моделей вакансии в применении к электронному спектру материалов с сотовой решеткой. ФНТ 42, № 8, 863-869 (2016).
  16. A.A. Eremko, L.S. Brizhik, V.M. Loktev, General solution of the Dirac equation for quasi-two-dimensional electrons. Ann. Phys., Volume 369, June 2016, Pages 85-101.
  17. L.S. Brizhik, Electron correlations in molecular chains, Chapter 15. In: Correlations in Condensed Matter under Extreme Conditions, Eds. G. G. N. Angilella and A. La Magna, Springer, 2016, pp. 191-207.
  18. L. Brizhik, L. Ferroni, C. Gardin, E. Fermi. On the Mechanisms of Wound Healing by Magnetic Therapy: the Working Principle of Therapeutic Magnetic Resonance. International Journal of Biophysics, vol. 6, no. 3, pp. 328-343 (2016)
  19. М.І. Григорчук, Розширення лінії поврхневого плазмонного резонансу в сфероїдальних металевих наночастинках Журнал Фізичних Досліджень, Т.20, № 1/2, 1701 (9 с.) (2016).
  20. М.І. Григорчук, Поведінка лінії поверхневого плазмонного резонансу в металевих наночастинках, Металофізика і Найновіші Технології, Т.38, № 6, с. 717-735 (2016).
  21. V.Yu. Tsaran and S.G. Sharapov, Magnetic oscillations of the anomalous Hall conductivity, Phys. Rev. B 93, 075430 (2016).
  22. E.A. Ponezha. Decay of intensity correlation function near instability point for the model of resonant tunneling, УФЖ, 2016, Т. 61, №5, c. 440-448.
  23. G.B. Sushko, I.A. Solov'yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov'yov, Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology, Eur. Phys. J. D, 70, 12 (2016).
  24. D.V. Piatnytskyi, O.O. Zdorevskyi, S.M. Perepelytsya, S.N. Volkov, Complexes formation of hydrogen peroxide molecules with active sites of DNA double helix, Ukr. J. Phys., 61, 219-225(2016).
  25. Б.Є. Гринюк, Д.В. П'ятницький. Структура ядер 14C та 14O у варіаційному підході. УФЖ, 2016, т.61, №8, с. 680-686.